
Citation: Bica, I. Composite Materials

Based on Polymeric Fibers Doped

with Magnetic Nanoparticles:

Synthesis, Properties and

Applications. Nanomaterials 2022, 12,

2240. https://doi.org/10.3390/

nano12132240

Received: 24 June 2022

Accepted: 28 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Editorial

Composite Materials Based on Polymeric Fibers Doped with
Magnetic Nanoparticles: Synthesis, Properties and Applications
Ioan Bica

Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania; ioan.bica@e-uvt.ro

The increasingly sophisticated requirements of contemporary society, in relation to
the assessment of environmental and health factors, are receiving much attention from
the scientific community. There are many activities regarding the production of fabrics
based on composite materials, such as temperature sensors or pH sensors, with functions
of monitoring environmental factors and health [1–9] or in magnetic field protection of
implant holders and pacemakers [9,10].

In the efforts made by the academic community to satisfy these requirements, an im-
portant role is played, as will be shown below, by composite materials based on natural,
artificial polymeric fibers or their combinations, and magnetizable nano-microparticles.
In the complex form known as composite materials, polymeric fibers have the role of
support. The determining role is played by the magnetizable phase. The latter may be in
the form of iron nanoparticles [11,12], colloidal magnetic nanoparticles [13,14], octopus-
shaped magnetizable microparticles [15], iron microtubes [16], iron microspheres and/or
iron pore microspheres [17,18] and iron oxide nano-microfibers [19], generated by plasma
processes. Their size and shape are controlled by the electro-thermal parameters of the
plasma and by the quantities of thermally processed materials in inert or oxidizing gas
environments [11–19]. From liquid solutions, based on the nano–microfibers of iron oxides
and silicone oil, magnetorheological suspensions are obtained whose electrical properties
are useful in making magnetically active composites [20].

Cotton fiber composites [21] are made of microfibers as described in Refs. [19,20]
and a well-specified amount of carbonyl iron microparticles and silicone oil. The absorp-
tion coefficient of the medium-frequency electric field energy is fixed by the value of the
microfiber mass fraction and is significantly modified by the applied magnetic field [21].
By electrostatic interaction to the cotton fibers of well-chosen quantities of mixtures com-
posed of barium titanate nanoparticles and carbonyl iron microparticles, composites with
remarkable physical properties are obtained [22]. When fixed between two copper plates
and the assembly is consolidated in a silicone rubber mantle, magneto-tactile transducers
are obtained.

Following this research direction, in Ref. [23] the composites, made of cotton mi-
crofibers with carbonyl iron microparticles, are distinguished by dielectric properties
controlled by a static magnetic field, a static electric field and combinations thereof. The elec-
trical devices made with these composites can be useful in recording the limits allowed by
the labor protection rules for magnetic and electric fields. In commercial sponges, carbonyl
iron microparticles attach electrostatically to polyurethane fibers, forming a magnetizable
composite [24]. Inserted between copper cylindrical electrodes, they form a capacitor.
Using the planar capacitor method [25], the authors of the paper [24] obtain information on
the modification of the dispersion coefficients and of the energy absorption of a medium-
frequency electromagnetic field, and respectively when applying a static magnetic field.
The composite obtained in Ref. [24] is low-cost and useful for the absorption of medium
frequency electromagnetic radiation. The electrical device based on this composite stands
out as an excellent electromagnetic radiation sensor.

It is known that white light [26,27], magnetic field [28,29], low- and medium-frequency
electromagnetic field [30–32], carbonyl iron microparticles [33], honey [34,35] and turmeric
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powder are good remedies [28], on a case-by-case basis, in medical treatments. Based
on the reports published in Refs. [26–35], composite membranes based on cotton fabric,
with square mesh, having a side of 3 mm size, honey and carbonyl iron microparticles are
manufactured, as shown in Refs. [36,37]. By adjusting the intensity of the static magnetic
field, superimposed over the medium-frequency electromagnetic field, the white light
transmission changes and the value of the dielectric loss coefficient is adjusted. Through
this procedure, the thermal transfer of well-chosen components from bee honey, or the
controlled lighting of the incident surfaces based on medical prescriptions can be achieved.

Investigations in static magnetic fields superimposed on an alternating medium-
frequency electric field of composites based on bee honey and turmeric powder is the
subject of Refs. [38,39]. In these works, the preparation of the composites is described, and
it is shown that for well-specified amounts of turmeric powder and well-chosen frequencies
of the medium frequency field, one can achieve those values of the tangent of the dielectric
loss angle which allows the thermal transport of the substance, from the components of
the three-phase mixture. The device made in Refs. [38,39] can be assimilated to a medical
device. Similar results are reported in Ref. [40], where cotton fabric with bee honey and
iron microparticles are introduced in beeswax. Here, the kinetics of the crystallization
of the glucose solution in the magnetic field is studied, with possible applications in
the study of the crystallization of the glucose solutions and in the realization of medical
devices. By preparing cotton fabric with γ − Fe2O3 nanoparticles, magnetoresistors are
obtained in which the resistive function is magnetically controlled [41]. An electrical
device, with capacitive, resistive and electric voltage generation functions, is made in
Ref. [42]. The electrical device consists of two copper textolite plates between which there
are composites based on cotton fibers with barium titanate nanoparticles and carbonyl
iron microparticles. In a magnetic field, the capacitive, resistive and piezoelectric functions
of the device are magnetically controlled. For shielding devices significantly influenced
by electromagnetic interference, in Ref. [43], membranes are manufactured that have
polyurethane fibers and magnetite nanoparticles in their composition. The membranes are
thin (0.45 mm), flexible and offer a good shield against the electromagnetic field.

In short, we consider that this Special Issue, although it only has five works, opens a
research direction aiming at the realization of magnetically and electrically active compos-
ites, based on polymeric fiber fabrics, which is useful for the realization of necessary means
for vital parameter control, notification and protection of the human being from unfriendly
environmental factors.
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