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Abstract

Motivation: Metagenomics research has accelerated the studies of microbial organisms, providing

insights into the composition and potential functionality of various microbial communities.

Metatranscriptomics (studies of the transcripts from a mixture of microbial species) and other

meta-omics approaches hold even greater promise for providing additional insights into functional

and regulatory characteristics of the microbial communities. Current metatranscriptomics projects

are often carried out without matched metagenomic datasets (of the same microbial communities).

For the projects that produce both metatranscriptomic and metagenomic datasets, their analyses

are often not integrated. Metagenome assemblies are far from perfect, partially explaining why

metagenome assemblies are not used for the analysis of metatranscriptomic datasets.

Results: Here, we report a reads mapping algorithm for mapping of short reads onto a de Bruijn

graph of assemblies. A hash table of junction k-mers (k-mers spanning branching structures in the

de Bruijn graph) is used to facilitate fast mapping of reads to the graph. We developed an applica-

tion of this mapping algorithm: a reference-based approach to metatranscriptome assembly using

graphs of metagenome assembly as the reference. Our results show that this new approach (called

TAG) helps to assemble substantially more transcripts that otherwise would have been missed or

truncated because of the fragmented nature of the reference metagenome.

Availability and implementation: TAG was implemented in Cþþ and has been tested extensively

on the Linux platform. It is available for download as open source at http://omics.informatics.indiana.

edu/TAG.

Contact: yye@indiana.edu

1 Introduction

Metagenomes are being generated at an accelerating pace, reveal-

ing important properties of microbiomes. Other meta-omic (e.g.

metatranscriptomic and metaproteomic) techniques can provide

additional insights, in particular into functional characteristics of

microbial communities, such as gene activities and their regulatory

mechanisms. Bacteria have low inventories of short-lived mRNAs;

as such, fluctuations in their mRNA pools provide a highly sensi-

tive bioassay for environmental signals [e.g. the concentrations of

dissolved organic carbon (Shi et al., 2012) and pollutant concen-

trations (de Menezes et al., 2012) relevant to microbes (Moran

et al., 2013)]. The acquisition of meta-omics data on human

microbiomes will enable us to refine the annotations of the metage-

nomes [the ENCODE (Dunham et al., 2012) and modENCODE

(Roy et al., 2010) projects are great exemplars], and more import-

antly to study gene activity and its regulation (Maurice et al.,

2013) in complex microbial communities in order to understand

how microbial organisms work as a community in response to

changes in their environment, e.g. health conditions of their human

hosts (Jorth et al., 2014). A recent metatranscriptomic study of the

human oral microbiome using patient-matched healthy and

diseased (periodontal) samples revealed that health- and disease-

associated communities exhibit defined differences in metabolism

that are conserved between patients while the metabolic gene
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expression of individual species was highly variable between pa-

tients (Jorth et al., 2014).

In a metatranscriptomic RNA-seq study, total RNA is first iso-

lated from the sample (with rRNAs removed to enrich for mRNA),

which is then reverse transcribed into cDNA, and subjected to

sequencing using next-generation sequencing platforms (Gosalbes

et al., 2011). Unlike metagenomics, which reveals potential activity

(as reflected in genes or pathways that can be coded for by metage-

nomic sequences), metatranscriptomic data indicate which of the

genes/metabolic pathways are actually active (and the level of their

activities) on the basis of their transcription within the community.

Giannoukos et al. (2012) presented a protocol for metatranscrip-

tomic analysis of bacterial communities that accommodates both in-

tact and fragmented RNA and combines efficient rRNA removal

with strand-specific RNA-seq. Currently, only a handful of meta-

transcriptomic datasets are available (and metaproteomic datasets

are even scarcer), but we envision a flood of metatranscriptomic

data in the near future, as experimental techniques mature

(Franzosa et al., 2014; Giannoukos et al., 2012).

Metatranscriptome analyses typically include the assignment of

the predicted function and taxonomic origin of RNA-seq reads, by

directly searching metatranscriptomic sequences (bags of reads)

against prokaryotic genomes (the reference genomes) (Leimena

et al., 2013) or known protein sequences (Franzosa et al., 2014).

This way, tools and pipelines—including MG-RAST (Meyer et al.,

2008), MEGAN (Huson et al., 2011) and HUMAnN (Abubucker et

al., 2012)—that have been developed for metagenome data analysis

can be utilized for analyzing metatranscriptomic datasets. For ex-

ample, Franzosa et al. (2014) analysed metagenomic and metatran-

scriptomic datasets of human gut microbiomes using the HUMAnN

pipeline, revealing that metatranscriptional profiles were signifi-

cantly more individualized than DNA-level functional profiles. One

potential pitfall of such approaches is that they cannot identify tran-

scripts of new genes, which however may be better annotated using

assembly approaches (de novo or reference based). A recent study

(Celaj et al., 2014) compared the performances of currently em-

ployed transcriptome assemblers—including Trinity (Grabherr

et al., 2011), Oases (Schulz et al., 2012a), Metavelvet (Namiki

et al., 2012) and IDBA-MT (Leung et al., 2013)—and showed that

assembly helps to improve the rate of functional annotation for

metatranscriptomic datasets.

A matched metagenome can be helpful for the analysis of meta-

transcriptomic dataset. Metagenomes are often represented as con-

tigs and scaffolds (although de Bruijn graphs are often the

underlying data structure of the assemblers that were used), and are

fragmented, limiting the utilization of metagenome for metatran-

scriptome analysis. There are pros and cons with the contig (and

scaffold) representations of metagenomes. Most existing computa-

tional tools for sequence analysis work with linear representations

of assemblies, so these tools (or modified versions) can be employed

to analyse these representations of metagenomes. However, metage-

nomes are often very fragmented, and the connections between con-

tigs or scaffolds are not captured in linear representations, which

otherwise could be utilized later. For example, after we assembled

two metagenomic datasets of stool samples from the Human

Microbiome Project (Huttenhower et al., 2012), the total lengths of

scaffolds and contigs (�300 bp) reported by SOAPdenovo2 (Luo

et al., 2012) were about 85 and 90 Mb, respectively, whereas the

total length of the edge sequences in the de Bruijn graph from the

same assembly was 150 Mb for each. This comparison indicates that

the de Bruijn graph representation of the assembly contains 50%

more sequences than scaffolds reported from the assembler: most of

these extra sequences are relatively fragmented sequences connect-

ing long contigs. Furthermore, many short contigs contain only gene

fragments; even long contigs contain broken genes at their ends due

to the complexity of metagenome assembly (Wu et al., 2012b).

Here, we propose a novel application of de Bruijn graphs for

metatranscriptomic data analyses, taking advantage of the fact that

de Bruijn graph representations of metagenome assemblies contain

more information than the contigs and scaffolds reported by assem-

blers. The de Bruijn graph was first proposed for de novo genome

assembly in EULER, replacing the traversal of Hamiltonian paths in

the overlap graph by the traversal of Eulerian paths (Pevzner et al.,

2001), and is now employed as an efficient data structure in most

short-read assemblers [e.g. Velvet (Zerbino and Birney, 2008),

ALLPATHS-LG (Gnerre et al., 2011), SOAPdenovo (Li et al., 2010)

and IDBA-UD (Peng et al., 2012)] for single genomes and metage-

nomes. Our approaches based on de Bruijn graph representation of

metagenomes provide a natural way of compressing the data, and,

more importantly, allow direct utilization of the graphs. We note

that we have developed several applications previously, based on de

Bruijn graph representation of genomes and metagenomes, for min-

ing of functional elements (Wu et al., 2012a) and reads mapping

(Wang et al., 2012), demonstrating the utility of direct computation

on de Bruijn graphs. Application of our method to simulated and

real metatranscriptomic datasets showed that our approach can sig-

nificantly improve the assembly of metatranscriptomic datasets, re-

sulting in substantially more transcripts that otherwise would have

been missed or truncated because of the fragmented nature of the

reference metagenome.

2 Methods

In this article, we propose a novel algorithm (i.e. read2graph) for

aligning short reads from RNA-seq experiments to de Bruijn graphs

of assemblies. We note in this article we focused on de Bruijn graphs

of metagenome assemblies, but the mapping algorithm can be

applied to mapping short reads to any de Bruijn graph of assembly.

We also developed an application of the mapping algorithm for

metatranscriptome assembly using matched metagenomes as the ref-

erence. Based on reads mapping results, we will derive putative tran-

scripts (encoding a single bacterial gene or multiple genes within an

operon), using paired-end RNA-seq reads to traverse the de Bruijn

graph. We named our transcript assembly approach TAG, in which

TA stands for Transcript Assembly, and G is used to emphasize the

fact that our approach utilizes the graph of metagenome assembly

instead of the linear sequences. We note that our method is different

from the de novo approaches to transcriptome assembly, including

Trinity (Grabherr et al., 2011), IDBA-MT (Leung et al., 2013) [and

also a hybrid approach (Leung et al., 2014) that utilizes known

protein sequences], and that it is different from the traditional

reference-based assembly approaches. In our method, metatran-

scriptomic sequences are mapped onto matched metagenomes repre-

sented as de Bruijn graphs. So our method represents a new variant

of the reference-based approaches, which uses the de Bruijn graph of

matched metagenome, instead of a genome (or a collection of gen-

omes), as the reference.

2.1 Fast reads mapping onto de Bruijn graph using a

hash table of k-mers spanning branching structure in

the graph
Given a de Bruijn graph, more exactly, a contracted de Bruijn graph

(Cazaux et al., 2014; Chang et al., 2015), in which each edge
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represents an assembled unique sequence from metagenomic reads,

and a set of short reads from an RNA-seq experiment, the goal of

our read2graph algorithm is to find the location of each read on the

graph. Because bacterial genes do not have split gene structure, we

can assume each read should be contained in the graph as a whole;

equivalently, each read, if its location in the graph is known, can be

represented as a path (i.e. sequence of edges) in the graph. The reads,

therefore, can be classified into two groups depending on the path

length: some reads are located within a single edge, whereas many

others may cross one or more vertices in the graph. The first class of

reads can be mapped to the graph using conventional fast reads

mapping algorithms by using all edge sequences longer than the read

length as the target sequences. In this article, we used Bowtie 2

(Langmead and Salzberg, 2012) for this purpose; but other mapping

algorithms including BWA (Li and Durbin, 2009) can be used. Here,

we focus on the methods for mapping reads spanning multiple edges

(i.e. multi-edge-spanning reads; see Fig. 1), which cannot be mapped

using conventional mapping algorithms. A substantial number of

reads may belong to this class, due to the incompleteness of metage-

nome assembly.

Recall that each vertex in the de Bruijn graph represents a k-mer

in metagenomic reads [typically k¼23–31 for metagenome assem-

bly (Huttenhower et al., 2012; Qin et al., 2010)]. Therefore, as illus-

trated in Figure 1, each multi-edge-spanning read contains one or

more junction k-mers (i.e. corresponding to vertices with either inde-

gree or outdegree >1): reads A and D span three edges in the graph,

and thus each contains two such k-mers, whereas reads B and C

span two edges, and thus each contains one such k-mer (Fig. 2a).

Hence, we can build a hash table for all junction k-mers that span

branching structures in the de Bruijn graph assembly and then

search for their exact occurrences in each putative multi-edge-

spanning read (i.e., those that cannot be mapped to the edge se-

quences) with the assistance of the hash table (Fig. 1b). Because each

k-mer in the de Bruijn graph is unique (Pevzner et al., 2001), every

k-mer in a read matches at most one k-mer stored in the hash table.

Each matched k-mer determines a unique putative location of the

multi-edge-spanning read in the graph (i.e. a seed match between the

read and the graph), and simultaneously breaks the read into two or

more segments (Fig. 1c). The seed match will then be used to con-

strain the alignment between the read and the graph, starting from

the seed match, going in opposite directions, using a constrained dy-

namic programming algorithm allowing only a small number of

indels and mismatches. The bandwidth for constrained alignment is

set to 7 by default for metatranscriptome assembly using matched

metagenome as the reference, and this parameter can be changed by

users for other purposes.

The mapping of multi-edge-spanning reads should run fast and

consume reasonable memory because usually there are only hun-

dreds of thousands of junction k-mers in a typical metagenome as-

sembly in practice. We note that the multi-edge-spanning reads

considered here are different from the split reads considered in tran-

script assembly for eukaryotes (Grabherr et al., 2011), and in rare

cases for archaeal species (due to tRNA splicing and self-splicing in-

trons) (Doose et al., 2013). Since strand-specific RNA-seq protocols

are often used in metatranscriptome analysis (Giannoukos et al.,

2012), our algorithm can consider the strand information and map

reads to one appropriate strand in the de Bruijn graph that contains

sequences from both DNA strands (and thus is symmetric).

2.2 Construction of transcripts from mapped reads
Once all RNA-seq reads including multi-edge-spanning reads are

mapped to the graph, each read can be represented by a path

(referred to as the read path) traversing the graph < e1; e2; . . . ; el >

(e1; e2; . . . ; el are edges; for non-multi-edge-spanning reads, path

length l¼1) as well as two offset values representing the locations

of the read in the first and last edges in the graph. Furthermore, in

most cases, two paired-end reads can also be represented as a path

(i.e. the read-pair path) if there exists a unique path in the graph

whose length is consistent with the expected insert size. As a result,

the assembly of RNA-seq reads is equivalent to the superpath prob-

lem, which attempts to find a minimal set of superpaths (each cor-

responding to a transcript) that covers a given set of paths in a de

Bruijn graph (Nagarajan and Pop, 2009). Although this problem is

generally hard, we can represent the solutions of the problem in a

much simpler subgraph (the transcript graph) that contains only the

edges present in at least one of the read paths or read-pair paths.

Figure 2 shows such an example: assuming four read paths (A, B, C

and D) are derived from multi-edge-spanning reads, we will induce

the transcript graph by retaining all edges in these paths, and then

(a)

(b) (c)

Fig. 1. A schematic illustration of the algorithm for mapping reads onto de

Bruijn graphs. (a) A toy example showing four reads spanning junction

k-mers in the graph (shown as the vertices). (b) Using a hash table of junction

k-mers, candidates of reads that span multiple edges can be retrieved by

looking up in the table. (c) For each candidate, a matched k-mer determines a

unique putative location of the read in the graph (i.e. a seed match). The seed

match will then be used to constrain the alignment between the read and the

graph by a dynamic programming algorithm

Fig. 2. A schematic example illustrating the induced transcript graph derived

from four reads (A–D) mapped to a de Bruijn graph of metagenome assembly
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contracting all vertices with both indegree and outdegree of 1. We

note that many read paths may contract into a single edge in the

transcript graph if they are not tangled with reads from another

transcript (e.g. k1 and k4 in Fig. 2 can be contracted because there

are no conflicting transcript reads traversing through these nodes);

as a result, the corresponding transcript sequences can be retrieved

as a subsequence of an edge sequence in the transcript graph. In

other cases, read paths remain spanning multiple edges in the tran-

script graph. These read paths sometimes can be used to further

simplify transcript graph, as illustrated in the heuristic algorithms

in genome assembly (Pevzner et al., 2001; Zerbino and Birney,

2008). For instance, in the example shown in Figure 2, if we have

two read-pair paths spanning AC and BD, respectively, we can ob-

tain two resolved transcripts from the graph. Otherwise, we can

only obtain partial transcript sequences. We note that, even if the

transcripts cannot be fully resolved, the transcript graph is still

useful for inferring the abundances of putative transcripts in a

metatranscriptome sample based on the counts of reads on the

edges in the transcript graph, a problem similar to the inference of

splicing variants in eukaryotic RNA-seq experiments (see Pachter,

2011 for a review).

2.3 Metatranscriptome assembly using metagenome

assembly graph as the reference
Our approach for metatranscriptome assembly (called TAG) is

based on the read2graph mapping algorithm and the transcript con-

struction approach as described above. Given a metatranscriptomic

dataset and a matched metagenomic dataset, SOAPdenovo2 (Luo

et al., 2012), one commonly used assembler in metagenomic shot-

gun sequencing, is used to assemble the metagenomic dataset.

Notably, SOAPdenovo2 is a de Bruijn graph-based assembler, and

in its final output, both the de Bruijn assembly graph and the contig

sequences (representing the edges in the graph) are produced. The

mapping of metatranscriptomic sequences to the de Bruijn graph is

conducted in two consecutive steps: (1) all reads are first mapped to

the edges (i.e. contigs) in the de Bruijn graph using Bowtie 2 (version

2.2.3) (Langmead and Salzberg, 2012), and then, (2) the un-mapped

reads in the previous step are further mapped to the graph based on

the matching with junction k-mers. Next, TAG traverses the de

Bruijn graph along with the mapped metatranscriptomic reads, and

reports the transcripts that may span multiple edges in the assembly

graph. To use the strand-specific information, the mapping of a

metatranscriptomic sequence is only considered for the strand of the

read that represents the transcript (i.e. the forward strand of R2

reads and the reverse-complement strand of R1 reads for the data-

sets we have tested). We note that other short read assemblers [such

as IDBA (Peng et al., 2012)] and mapping tools [such as BWA (Li

and Durbin, 2009)] can be utilized for generating the inputs (i.e. the

de Bruijn assembly graph and the mapping of metatranscriptomic

reads to contigs) for TAG. For the rest of this article, we will focus

on the utility of TAG on improving the assembly of transcripts,

which will be demonstrated by using the SOAPdenovo2 and

Bowtie2 tools. The construction of an optimal pipeline (in particular

the selection of upstream software tools) utilizing TAG is beyond

the scope of this article.

3 Results

We tested our tool (TAG) on two metatranscriptomic datasets

(Giannoukos et al., 2012): one derived from a mock microbial com-

munity consisting of three bacterial species, and the other derived

from a real microbiome sample in human stool. Results showed that

our graph-based reads mapping algorithm (read2graph) is efficient,

and TAG, which is based on the mapping algorithm, significantly

improves the assembly of metatranscriptomes by considering reads

mapping to branching structures in de Bruijn graphs of matched

metagenomes.

3.1 Evaluation of assembly accuracy on a

mock dataset
We first tested TAG using a metranscriptomic data from the mock

bacterial community of three species (Giannoukos et al., 2012). The

‘matched’ metagenomic dataset used in TAG were simulated from

the reference genomes of these bacteria [Escherichia coli (GenBank:

NC_000913.3), Perkinsus marinus (GenBank: NC_005072.1) and

Rhodobacter sphaeroides (GenBank: NC_007493.2)] using NeSSM

(Jia et al., 2013) with the Illumina error model. We used this hybrid

approach here because (1) there is currently no metatranscriptomic

dataset from a mock community with a matched metagenomic data-

set available, and (2) there is no proper software tool for simulating

metatranscriptomic dataset. (Flex Simulator is a tool for simulating

RNAseq data for single species, and it has been mainly used for eu-

karyotic species. Bacteria have complicated transcription regulation

mechanisms, which are not completely understood.) In total,

1 M paired-end reads of length 101 bp (i.e. �20� coverage) were

simulated from the three species with equal abundances.

SOAPdenov2 (version 2.04-r240) (k¼31; see below for the choice

of k-mer size) was used to assemble the simulated reads, and the as-

sembly results (including the contigs and the de Bruijn assembly

graph) were then used as the inputs to TAG. Because this is a simple

community with bacterial species that are phylogenetically distant

(Giannoukos et al., 2012), the assembly graph of the metagenome is

not very tangled, and thus we do not anticipate that many tran-

scripts reported by TAG will span multiple edges (referred to as the

multi-edge transcripts) in the assembly graph. In fact, TAG reported

a total of 9428 transcripts (of �100 bp), among which only 138 are

multi-edge spanning transcripts.

3.1.1 Accuracy evaluation for the TAG transcripts

We blasted transcripts assembled by TAG against the three reference

genomes to evaluate the accuracy of metatranscriptome assembly.

Our results showed that only 16 out of 9428 (0.17%) transcripts

cannot be perfectly aligned back to the reference genomes: among

the 16 transcripts, 14 can be aligned with minor differences, and

only two contain potentially serious problems (see Table 1). We

note that there are two types of potential errors in the transcripts

assembled by TAG: the errors introduced by TAG, and the errors in-

herited from the metagenome assembly (i.e. the mis-assemblies pre-

sent in the metagenome assembly that propagates into the

transcript). One of the problematic transcript is single-edge tran-

script, suggesting that this assembly error was propagated from the

metagenome assembly. The other problematic transcript (of 390 bp)

is a multi-edge spanning transcript, and the error was introduced by

TAG (as no matching sequence can be found in the metagenome as-

sembly). Our results suggest that TAG achieves high assembly accur-

acy overall with an error rate of <<1%. If we only focused on

multi-edge spanning transcripts (which are more difficult to assem-

ble than transcripts contained within edges and therefore more error

prone), the assembly error rate is still very low: only one out of 138

multi-edge transcripts contains such large assembly problem (the

error rate is 0.7%).
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3.1.2 Comparison with de novo assembly

We further compared the performance of TAG with Oases (version

1.2.10) (Schulz et al., 2012a) and Trinity (release 2014-07-17)

(Grabherr et al., 2011), de novo assemblers for transcriptomic se-

quences. (Trinity has been applied to analyse metatranscriptomic

datasets (Celaj et al., 2014), although the program was developed

targeting splicing isoforms in Eukaryotes.) For Oases, we used

merged results from assemblies using k-mer sizes ranging from 19

to 31. Table 1 summarizes the comparison results. Although Oases

and Trinity produced larger numbers of transcripts than TAG, the

total bases in the transcripts assembled by these three methods are

comparable (i.e. TAG assembled longer transcripts). If we con-

sidered only the ‘good’ transcripts by excluding the transcripts that

cannot be aligned well to the reference genomes [which are likely

misassembles, or assemblies from contaminated sequences or other

artifacts commonly found in RNA-seq experiments (Lahens et al.,

2014)], the difference in the total lengths of transcripts is even

more significant. TAG produced a total of 9426 good transcripts

with a total of 7020484 bp, while Oases and Trinity assembled

transcripts of 407648 and 5025072 total bases, respectively. This

result shows that using reference genomes for metatranscriptome

assembly helps to improve the coverage and quality of the

assemblies.

We ran CD-HIT-EST (version 4.6) (Li and Godzik, 2006) to

cluster the good transcripts from all programs at 95% sequence

identity cutoff (�c 0.95), resulting in 10 944 clusters: only a modest

number of clusters (2309) are shared by all methods, 2965 clusters

are shared by two methods (1399 shared Trinity and Oases; 1369

by Trinity and TAG; and 116 by TAG and Oases), and the remain-

ing clusters are unique to one method (TAG: 2571, Trinity: 2983,

and Oases: 197). We quantified the abundances of the transcripts by

mapping metatranscriptomic sequences onto the transcripts using

Bowtie2. The transcripts that are shared by all methods are highly

abundant with an average coverage of 28.2 (i.e. on average, each

position is covered by 28.2 reads). In contrast, the average abun-

dances of the transcripts that can be assembled by Oases, Trinity

and TAG are 11.4, 8.0 and 6.4, respectively. This result suggests

that de novo assembly and reference-based approaches can comple-

ment each other: transcripts of highly expressed genes in rare species

(and therefore less well represented in metagenomes) may be

assembled by de novo assembly, while transcripts of low expression

level can be better identified using reference-based approaches.

3.2 Application of TAG to a real metatranscriptomic

dataset
We applied TAG to analysing a metatranscriptomic dataset derived

from a human stool sample, using its matched metagenomic dataset

as the reference (Giannoukos et al., 2012). (We combined the meta-

transcriptomic reads from four fractions of sequencing of the same

sample, downloaded from SRA (SRX130930, SRX130937,

SRX130922 and SRX130928), and the metagenomic reads from

four fractions of sequencing, also downloaded from SRA

(SRX130930, SRX130954, SRX130936 and SRX130949). Note

that we used the metatranscriptomic dataset sequenced on 5 mg

RNA extracted from an individual’s stool microbiome, which was

shown to yield the best sequencing results (Giannoukos et al.,

2012).) As described above, the metagenomic sequences were first

assembled using SOAPdenovo2, and the metagenome assembly was

then used as the reference for the metatranscriptome assembly by

TAG.

3.2.1 Time and memory cost of the reads mapping to the de Bruijn

graph

Metatranscriptome assembly by TAG (including reads mapping

onto the graph and the transcript inference afterwards) for this data-

set takes about 7 min to complete on a Linux computer with Intel(R)

Xeon(R) CPU E5-2680 v2 @ 2.80 GHz (using single processor). The

actual reads mapping step takes about 1 min to complete—the re-

maining 6 min were spent on other I/O steps including processing

the input SAM alignment file (from Bowtie2) and reads files. This

indicates that our graph-based reads mapping algorithm (read2-

graph) is efficient. TAG adds only a small amount of computational

time to the whole pipeline for the metatranscriptome analysis—

SOAPdenovo2 takes several hours to assemble the metagenome, and

mapping metatranscriptomic reads onto the metagenome contigs by

Bowtie2 takes about 1700 CPU minutes (the actual job was done in

parallel using 32 processors).

The memory consumption by TAG is bounded by the size of the

input metagenome assembly (which is used as the reference). TAG

consumed <2 GB RAM for the stool dataset. It shows another ad-

vantage of using metagenome assembly as the reference for meta-

transcriptome analysis, since de Bruijn graph provides a compact

representation of the metagenome assembly (but still keeps the

uncertainties of the assembly in the graph for future applications).

Table 1. Performance comparison of TAG and other assemblers on the mock dataset

Oases Trinity TAG

No. of transcriptsa 12598 24804b 9428

Perfectly aligned transcripts (percentage)c 5483 (43.5%) 12392 (50.0%) 9412 (99.8%)

Transcripts with minor problems (percentage)c 2724 (21.6%) 2725 (11.0%) 14 (0.15%)

Problematic transcripts (percentage)c 4391 (34.9%)d 9687 (39.1%)d 2 (0.02%)

Total length of the transcripts 6860841 bp 7428187 bp 7020975 bp

Total length of perfectly aligned transcripts 2265224 bp 3858486 bp 7002290 bp

Total length of good transcripts 4076481 bp 5025072 bp 7020484 bp

aOnly transcripts of at least 100 bp were considered for all programs.
bTrinity has many more transcripts, but their total length is comparable to the other methods.
cA transcript that is perfectly aligned to one of the reference genomes (with an alignment covering the entire transcript at 100% sequence identity) is considered

to be correctly assembled. We consider the problem of a transcript is ‘minor’ if its longest alignment with the reference genomes is not 10 nt shorter than the tran-

script and the alignment has 95% sequence identity or better. Other transcripts that do not meet these criteria are considered to be problematic.
dA large fraction of the problematic transcripts for Oases and Trinity are likely caused by the presence of contaminated sequences or other artifacts so should

not be considered as mis-assemblies. For example, 3494 (out of 4391) Oases transcripts have no significant alignments with the reference genomes with E-values

better than 1e� 4, and therefore are unlikely transcripts from the reference genomes.
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3.2.2 Exploiting tangles in de Bruijn graph to improve

metatranscriptome assembly

We tested the performance of TAG using reference metagenomes

assembled with different k-mer sizes, considering that the choice of

k-mer size is important for the metagenome assembly (Li et al.,

2010; Zerbino and Birney, 2008) and therefore metatranscriptome

assembly. As shown in Figure 3, when a relatively small k-mer (e.g.

25) was used, the metagenome assemblies are more tangled, and as

a result, fewer transcripts can be assembled using the contigs as the

reference. This pitfall, however, can be alleviated by retaining

the tangled structure (i.e. the ambiguous connection caused by short

repeats) in the metagenome assembly in the de Bruijn graph,

which can be exploited by TAG to connect metatranscriptomic

reads into complete transcripts, resulting in improved assembly of

metatranscriptome.

As shown in Figure 3, the total length of the assembled tran-

scripts by TAG decreases slowly when k-mer size increases from 25

to 31. Considering that most transcripts are longer at k-mer¼31 as

compared with smaller k-mers (e.g. average lengths of the tran-

scripts are 264 and 273 for k-mer¼25 and 31, respectively),

we selected k-mer¼31 to demonstrate the improvement of meta-

transcriptome assembly by using TAG. Figure 4 shows the distribu-

tion of the path lengths (i.e. the number of edges that are traversed

in the de Bruijn graph to form a transcript by TAG) of the tran-

scripts assembled by TAG: most of the multi-edge transcripts span

two edges (contigs), although a single transcript may span as many

as seven edges.

Table 2 summarizes the metatranscriptome assembly results by

TAG. A majority of the metagenomic reads can be mapped to meta-

genomic assembly: for 68.8% of read pairs, both reads can be

mapped to contigs by Bowtie2, whereas an additional 13.6% reads

can be mapped to contigs although their mate-pairs cannot be

mapped. Among the �9.8M remaining unmapped reads, �1.9M

(18.9%) can be mapped to multiple edges (i.e. through one or more

junction k-mers in the de Bruijn graph) by TAG. Thanks to these

reads, TAG was able to improve the metagenomic assembly signifi-

cantly. In total, TAG assembled about 177K transcripts, among

which about 21K (15.7%) are multi-edge transcripts. These multi-

edge transcripts cannot be fully assembled if only those reads

mapped to contigs are considered in the metatranscriptome assem-

bly; instead, they are likely to be broken into partial transcripts,

each contained in a separate contig (i.e. the edge in the de Bruijn

graph). We note that TAG did not resolve all transcripts. A small

fraction of TAG-assembled transcripts are partial transcripts, each

of which represents a unique edge in the tangled transcript graph,

formed by two or more transcripts sharing some common segments

(see Section 2 for details) that cannot be resolved without additional

information. About 2.6% (552 out of 21455) of the multi-edge

Fig. 3. The impact of k-mer size on the performance of TAG. When the k-mer

size increases from 25 to 31 in SOAPdenovo2 assembly, the performance of

TAG remains the same: a substantial fraction of multi-edge transcripts can be

assembled by TAG. However, when further increasing the k-mer size to 35,

most transcripts assembled by TAG are single-edge transcripts, indicating

the TAG algorithm is not effective when a large k-mer is used. This is prob-

ably because, in this case, the metagenome assembly is fragmented rather

than tangled, and as a result the total length of the transcript also decreases.

Therefore, in the experiments of this article, we choose k¼31 in

SOAPdenovo2 assembly, which seems to yield the best results here

Fig. 4. The path length distribution for multi-edge-spanning reads that span

two or more edges when mapped to the de Bruijn graph by TAG. The X-axis

represents the length of multi-edge-spanning read paths (i.e. the number of

edges that the multi-edge-spanning reads span) and the Y-axis represents the

total number of multi-edge-spanning reads spanning the paths of certain

lengths. Paths of length 1 represent the cases when the seed extension in one

direction resulted in an alignment of at most 7 bp, and thus were considered

insignificant and discarded

Table 2. Some statistics of TAG assembly on the human stool

metatranscriptomics dataset

Total number of reads 27962127� 2 (paired)

Number of reads mapped to

contigs

19233474� 2þ 7645742 (single)

Number of multi-edge-spanning

reads

1893157

Number of resolveda single-edge

transcripts (length)

112527 (32216351 bp)

Number of partial a single-edge

transcripts (length)

2573 (340276 bp)

Total number of single-edgeb

transcripts (length)

115100 (32556627 bp)

Number of resolved of multi-

edge transcripts (length)

20903 (4596622 bp)

Number of partial multi-edge

transcripts (length)

552 (110063 bp)

Total number of multi-edgeb

(length) transcripts (length)

21455 (4706685 bp)

Total number of transcripts

(length)

177463 (40456052 bp)

Proportion of multi-edge

transcripts (in length)

15.7% (11.6%)

Only transcripts of at least 100 bp were considered in this summary.
aPartial transcripts: the transcripts that are not fully resolved by TAG (i.e.

the edge sequences); Resolved transcripts: the transcripts that are resolved by

TAG and therefore likely represent full-length transcripts.
bSingle-edge transcripts: the transcripts reported by TAG that are fully con-

tained within edges (contig) in the de Bruijn graph of the metagenome assem-

bly (they can be considered as the results of a baseline reference-based

metatranscriptome assembly approach that uses the contigs as the reference);

Multi-edge transcripts: the transcripts reported by TAG that span multiple

edges in the de Bruijn graph.
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transcripts were not fully resolved by TAG and remained as partial

transcripts. Similarly, 2.2% (2573 out of 115100) of the single-edge

transcripts are also partial transcript as some multi-edge-spanning

reads connect them with other partial transcripts, although their ac-

tual connections remain ambiguous. We note that these two num-

bers increase substantially (to 21.1 and 8.1%, respectively) when

there is no minimum length applied for output transcripts.

We also compared the TAG assemblies with the de novo tran-

script assemblies from Trinity. We note that this is a real metatran-

scriptomic dataset, so that we cannot compare the results in terms of

the accuracy of the assembly as we did for the mock dataset (but we

have shown using the mock dataset that de novo assembly tends to

produce more problematic transcripts). In total, TAG produced

136 555 transcripts with a total of 37.4 Mb, whereas Trinity gener-

ated 207697 transcripts with a total of 44.8 Mb. Similar to the re-

sults on the mock dataset, TAG transcripts are longer than Trinity

transcripts: the average lengths of the transcripts are 273 and

216 bp, for TAG and Trinity, respectively. Combining the tran-

scripts from both assemblers (and removing redundant transcripts at

95% sequence identity by CD-HIT-EST) resulted in 233 201 tran-

scripts with a total of �55.8 Mb, again demonstrating that refer-

ence-based and de novo approaches can complement with each

other to improve the coverage of transcript assembly.

4 Discussion

Even though thousands of complete prokaryotic genomes and many

more draft genomes are available, metagenomes are constantly

found to contain many new species and new genes (Huttenhower

et al., 2012; Qin et al., 2010; Vital et al., 2014). It is therefore im-

portant to develop methodologies for metatranscriptome data ana-

lysis that are not constrained by the sequenced genomes. With

‘matched’ metagenomic and metatranscriptomic datasets, we believe

that proper utilization of the metagenome data will help greatly the

analysis of metatranscriptomic data (and vice versa). The eventual

integration of these datasets (as well as other meta-omic datasets)

will provide new insights on the composition, function and regula-

tion of microbiomes. Well-assembled transcripts are important for

the function annotation of the metatranscriptome, and also for

inferring gene regulatory mechanisms such as the operons.

We developed a novel reads mapping algorithm (read2graph)

that allows fast mapping of short reads from transcriptome sequenc-

ing onto the assembly graphs of reference genomes. We applied this

mapping algorithm for metatranscriptome assembly, showing the

utility of the de Bruijn assembly graph of the metagenome in down-

stream applications such as the metatranscriptome analysis. Our

mapping tool is fast and can be applied to other applications, for ex-

ample, mapping metagenomic sequencing reads onto the de Bruijn

graph of closely related species for estimating the relative abun-

dances of these species (Wang et al., 2012). We have shown in a

related research that genes are often broken into fragments in meta-

genome assembly, and multi-edge-spanning reads can stitch them to-

gether (Wu et al., 2012b). The mapping of multi-edge-spanning

reads will also improve quantification of gene expression based on

read counts, in particular for genes (from the same or different or-

ganisms) sharing highly similar sequences. In reality, however, we

may still miss the mapping of a small fraction of multi-edge-

spanning reads: if a read contains a sequencing error in the occur-

rence of a branching k-mer, we cannot find its location in the graph.

Because of the low error rate (<1%) in Illumina reads, we believe

this fraction of reads is indeed negligible in metatranscriptomic data

analysis.

We note that de Bruijn graphs will naturally capture the genomic

variations of the metagenomes in the graphs [e.g. the single-nucleotide

variations are represented as bulges (Nijkamp et al., 2013), the vari-

ations in tandem repeats are represented as wheels, and structural

variations are represented long loops (Pevzner et al., 2001)], which is

yet another advantage of using graphs instead of contigs to represent

metagenomes. Genomic variations in metagenomes are naturally

handled by our graph-centric mapping approach.

We expect that a combination of different approaches

(reference-based and de novo) need to be applied to accomplish the

comprehensive metatranscriptome analysis. As the references for

metatranscriptome analysis, the matched metagenome will never be

perfect, due to biological (rare species may be poorly sampled), ex-

perimental (some genomic regions may not be covered well)

and computational (assemblers are not perfect) reasons. Integration

of known reference genomes, matched metagenomes and even non-

matched metagenomes can maximize the coverage of references for

reference-based approaches. On the other hand, if a microbial com-

munity contains new, rare but highly expressed microbial species,

their transcripts can only be revealed by de novo metatranscriptome

assembly (Schulz et al., 2012b) but not by the reference-based

approaches such as the one presented in this article.
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