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Abstract

During terminal differentiation, most cells exit the cell cycle and enter into a prolonged or

permanent G0 in which they are refractory to mitogenic signals. Entry into G0 is usually

initiated through the repression of cell cycle gene expression by formation of a transcrip-

tional repressor complex called dimerization partner (DP), retinoblastoma (RB)-like, E2F

and MuvB (DREAM). However, when DREAM repressive function is compromised during

terminal differentiation, additional unknown mechanisms act to stably repress cycling and

ensure robust cell cycle exit. Here, we provide evidence that developmentally pro-

grammed, temporal changes in chromatin accessibility at a small subset of critical cell

cycle genes act to enforce cell cycle exit during terminal differentiation in the Drosophila

melanogaster wing. We show that during terminal differentiation, chromatin closes at a

set of pupal wing enhancers for the key rate-limiting cell cycle regulators Cyclin E (cycE),

E2F transcription factor 1 (e2f1), and string (stg). This closing coincides with wing cells

entering a robust postmitotic state that is strongly refractory to cell cycle reactivation, and

the regions that close contain known binding sites for effectors of mitogenic signaling

pathways such as Yorkie and Notch. When cell cycle exit is genetically disrupted, chro-

matin accessibility at cell cycle genes remains unaffected, and the closing of distal

enhancers at cycE, e2f1, and stg proceeds independent of the cell cycling status. Instead,

disruption of cell cycle exit leads to changes in accessibility and expression of a subset of

hormone-induced transcription factors involved in the progression of terminal differentia-

tion. Our results uncover a mechanism that acts as a cell cycle–independent timer to limit

the response to mitogenic signaling and aberrant cycling in terminally differentiating tis-

sues. In addition, we provide a new molecular description of the cross talk between cell

cycle exit and terminal differentiation during metamorphosis.
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Introduction

The majority of cells in mature multicellular organisms spend most of their existence in non-

proliferating states, often referred to as cellular quiescence or the G0 phase [1]. Substantial

progress has been made on understanding how developmental signaling pathways interface

with the cell cycle machinery to control tissue growth and proliferation [2,3]. Yet we under-

stand very little about why some cell types can enter a more flexible G0 state and retain the

ability to reenter the cell cycle in response to mitogens, whereas others become permanently

postmitotic and refractory to mitogenic signaling. Robust and synchronous silencing of cell

cycle gene expression is critical to the proper timing of cell cycle exit and the maintenance of a

postmitotic state. Yet the molecular details of how this silencing is initiated and maintained in

maturing tissues remain unresolved. This impacts a wide range of biological questions, as the

proper control of G0 is critical during development and tissue regeneration but becomes dis-

rupted in cancer.

The transition from proliferation to G0 is accompanied by a functional switch in the master

regulators of the cell cycle program, such as E2F transcription factor (E2F) complexes, leading

to global down-regulation of cell cycle gene transcription [4–6]. In proliferating cells, activat-

ing E2F family members (dE2F1 in Drosophila) bind with the dimerization partner (DP) at

promoter proximal E2F binding motifs at hundreds of cell cycle genes, including cyclins,

cyclin-dependent kinases (Cdks), replication proteins, and mitotic regulators, to promote their

expression. Upon entry into G0, silencing through these same binding sites occurs via the for-

mation of a transcriptional repressor complex called DP, retinoblastoma (RB)-like, E2F and

MuvB (DREAM). DREAM complexes are conserved from Caenorhabditis elegans to humans,

and in Drosophila, DREAM (termed dREAM) consists of the E2F binding partner DP, Retino-

blastoma-family protein Rbf1 or Rbf2, the repressive E2F transcription factor family member

dE2F2, chromatin assembly factor 1, p55 subunit (p55/CAF1), Myb oncogene-like protein

(Myb), and Myb-interacting proteins [4,6]. Formation of dREAM is promoted by the accumu-

lation of hypophosphorylated or unphosphorylated RB through the inhibition of cyclin/Cdk.

Therefore, it can be induced through developmental activation of Cdk inhibitors, developmen-

tal down-regulation of the expression and production of cyclins and cdks, or the up-regulation

of cyclin destruction through the anaphase-promoting complex/cyclosome (APC/C) [7–10].

Although dREAM plays an important role in the repression of cell cycle genes in G0, key

aspects of cell cycle exit in vivo are still not understood. For example, in some contexts of dif-

ferentiation, cells eventually arrest and differentiate even in the presence of constitutive high

E2F or cyclin/Cdk activity [11–15]. We and others have found that this is in part due to coop-

erative roles for RBs, cyclin kinase inhibitors, and the APC/C. Double and triple combinations

of alleles altering these pathways cooperate to further delay cell cycle exit, but they fail to abro-

gate it completely, suggesting these pathways act in addition to still-unknown developmental

mechanisms [8,9,16–19]. These redundant mechanisms make cell cycle exit upon terminal dif-

ferentiation more robust than other states of G0, such as reversible quiescence.

We and others have also observed that the longer a terminally differentiated cell remains in

G0, the more refractory it becomes to reentering the cell cycle, even in the presence of high

E2F or cyclin/Cdk activity [20]. This has been termed “deep” or “robust” G0 [9,21]. The molec-

ular basis of robust G0 and how it differs from temporary or “flexible” G0 states remains

unknown. One model for how terminally differentiated cells become resistant to strong prolif-

eration signals involves a chromatin lockdown mechanism, in which chromatin compaction

or repressive modifications act globally to silence cell cycle gene expression and promote

robust cell cycle exit. For example, DREAM complexes can recruit chromatin modifiers to add

repressive histone modifications at E2F-dependent cell cycle genes such as H3K27
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trimethylation (H3K27Me3) or H3K9 trimethylation (H3K9Me3), which in turn recruit

repressive heterochromatin binding proteins such as the Polycomb repressive complex 1

(PRC1) or heterochromatin protein 1 (HP1) for long-term silencing of cell cycle genes [22,23].

Another model posits that cell cycle genes become recruited to the nuclear periphery to be

sequestered in repressive nuclear lamina-associated domains (LADs) [24]. We directly tested

these models in the terminally differentiating Drosophila wing and found cell cycle exit occurs

despite disruption of heterochromatin-dependent gene silencing [25] and without obvious

sequestration or recruitment of cell cycle genes to heterochromatin compartments or the

nuclear lamina. This suggests developmentally controlled cell cycle exit in Drosophila uses

additional mechanisms to ensure a robust G0.

Cell cycle exit in the Drosophila wing occurs during metamorphosis and is tied to pulses of

the hormone ecdysone that induce downstream transcription factors to modulate cell cycle

gene expression [26]. We recently showed that transcription factors downstream of ecdysone

signaling play a critical role in promoting sequential changes in chromatin accessibility to pro-

mote wing differentiation [27]. This suggested to us that changes in chromatin accessibility

during metamorphosis could contribute to the regulation of cell cycle genes to coordinate cell

cycle exit with differentiation. To examine this, we characterized the transcriptome and

genome-wide chromatin accessibility landscape of the Drosophila wing during metamorphosis

through RNA sequencing (RNA-seq) and formaldehyde-assisted isolation of regulatory ele-

ments (FAIRE) sequencing (FAIRE-seq) over six developmental time points. We show that

during wing differentiation, chromatin accessibility and gene expression changes are coordi-

nated with the transition from a proliferating to a postmitotic state. This includes the closing

of specific regulatory elements at a subset of critical “master” cell cycle regulators during G0.

Moreover, we have uncoupled differentiation from cell cycle exit, revealing that the closing of

pupa wing enhancers at these cell cycle master regulator genes is developmentally pro-

grammed and occurs independent of E2F activity or cell cycling status, coincident with robust

G0. We propose that the developmentally programmed closing of regulatory elements at a sub-

set of key cell cycle genes is the molecular mechanism underlying robust cell cycle exit in vivo.

Results

Chromatin accessibility and gene expression are temporally dynamic

during wing metamorphosis

During metamorphosis, wings undergo morphogenetic changes coordinated with cell cycle

alterations, loss of regeneration capacity, and activation of a wing terminal differentiation pro-

gram [28–30]. These events are temporally coordinated by systemic hormone pulses, which

trigger metamorphosis and drive its progression, leading to coordinated morphogenesis and

differentiation of organs [31,32]. Although the hormone pulses are systemic, through a combi-

nation of direct and indirect regulation, they result in activation of unique gene expression

programs in different tissues [27,33–35]. For the wing, major events during metamorphosis

include the following: eversion coordinated with a temporary cell cycle arrest in G2 and pupa

cuticle formation; elongation and apposition of dorsal and ventral surfaces, coordinated with a

relatively synchronized final cell cycle and vein refinement; and finally, permanent cell cycle

arrest, which precedes wing hair formation and deposition of adult cuticle [26,36–39]. Under-

lying these processes are temporally coordinated changes in gene expression. We and others

have examined the dramatic gene expression changes in the wing during metamorphosis

[37,40]. To identify the global landscape of potential regulatory elements driving these gene

expression changes, we carried out FAIRE-seq in parallel with RNA-seq in a time course of

wild-type Drosophila wings from the late wandering third instar stage when wing cells are
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proliferating to 44 h after puparium formation (APF), when wing cells are postmitotic and

begin to deposit adult cuticle.

We identified a total of 20,329 high-confidence open chromatin regions (peaks). We first

compared the similarity of open chromatin profiles across our wing developmental time

course by examining Pearson correlation coefficients. The open chromatin landscape is gradu-

ally changing during metamorphosis, and early proliferative stages are clearly distinct from

postmitotic stages in chromatin accessibility (Fig 1A). By calculating the fold change in peak

accessibility between stages, we found that only 5,516 peaks (27%) are static and exhibit

<2-fold changes between any two time points. The remaining 14,813 peaks (73%) appear

developmentally dynamic, exhibiting >2-fold changes between two or more time points. To

visualize peak accessibility dynamics during metamorphosis, we divided the reads per kilobase,

per million mapped reads (rpkm) value of each FAIRE peak by its maximum rpkm value for

each of the six time points and then plotted the fraction in the form of a heatmap (Fig 1B). To

distinguish different dynamic patterns, we separated the peaks into 18 k-means clusters. We

found that dynamic peaks could be divided into three broad categories: a temporally sharp cat-

egory that transiently opens at only one stage, a temporally broad category that remains acces-

sible for several sequential stages, and a category of peaks that oscillate during metamorphosis.

Consistent with previous work, our parallel RNA-seq revealed dynamic expression changes

for over 6,000 genes (over 35% of the genome) during wing metamorphosis. For comparison

to the FAIRE-seq clusters, we also clustered genes based on RNA expression into 18 k-means

RNA-seq clusters (S1A Fig). Clustering based on gene expression identified groups of genes

that are functionally related and temporally coordinated. For example, RNA cluster 4 contains

genes highly expressed at 6 h, which are enriched for genes involved in wing pupal cuticle

development (S1B Fig), whereas RNA clusters 7 and 10 coordinately decrease expression after

18 h and are highly enriched for cell cycle genes. This is consistent with our previous work

showing that cell cycle gene expression plummets by 24 h when cells transition to a postmitotic

state [26,40].

To more easily visualize the temporal dynamics of peaks, we next compared dynamic peaks

between adjacent stages to define them as opening or closing compared with the previous

stage (Fig 1C and 1D, S2 Fig). The time point with the most dynamic changes is 6 h, and the

second-most dynamic is 24 h. Both of these stages are associated with cell cycle arrests. We

previously showed that at 6 h, wings undergo a temporary G2 arrest induced by high levels of

the transcription factor Broad suppressing the critical G2-M regulator cell division cycle 25c

(cdc25c) or string. This synchronizes the subsequent final cell cycle [26]. At 24 h, cells in the

wing finish the final cell cycle in a relatively synchronized manner and enter into a postmitotic

G0 state [41,42]. This suggested to us that a developmentally controlled program of coordi-

nated chromatin accessibility could link changes in the cell cycle with differentiation during

metamorphosis.

To correlate chromatin accessibility changes with gene expression changes, we assigned

dynamic and static FAIRE peaks to the nearest transcription start site (TSS) (S2 Fig). Dynamic

and static FAIRE peaks exhibit similar distributions, with most of them located in introns,

intergenic regions, and promoter proximal regions. This is consistent with previous work

showing that FAIRE-seq enriches for DNA regulatory elements [43]. Both dynamic and static

peaks were most highly enriched at locations near (1–5 kb) their assigned TSS. However

dynamic peaks were also more likely to be located farther from TSSs (5–10 kb) than static

peaks, which were more likely to be promoter proximal (within 0.5 kb from the assigned TSS)

(S2 Fig). Similar to other studies using FAIRE in Drosophila, we find most developmentally

dynamic putative regulatory elements for the wing are located within introns, especially the

first intron and 1–5 kb upstream of the TSS. This is also consistent with the locations of

Chromatin accessibility and robust cell cycle exit
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Fig 1. Dynamics of chromatin accessibility and gene expression are correlated during metamorphosis. (A) Open

chromatin regions (peaks) in wings were identified by FAIRE-seq on time points prior to metamorphosis (L3) and

during pupal stages 6 h, 18 h, 24 h, 36 h, and 44 h APF. Heatmaps of Pearson correlation coefficients for each replicate

across this time course reveal differences between the proliferative and postmitotic stages (red dotted line). (B)

Dynamic open chromatin peaks were organized into 18 k-means clusters, displayed as a heatmap representing the

fraction of the maximum FAIRE rpkm value. (C, D) Most chromatin accessibility changes are associated with gene

activation rather than repression during metamorphosis. (C) We assigned dynamic FAIRE peaks to the nearest

expressed gene and correlated peak changes (opening or closing) with observed gene expression changes (increasing or

decreasing) measured by RNA-seq at each subsequent time point. This revealed four classes of FAIRE peak/RNA

expression correlations: opening/increasing consistent with gene activation, closing/decreasing consistent with loss of

activation, opening/decreasing consistent with binding of a repressor, and closing/activation consistent with a loss of

repression. We show the number of dynamic FAIRE peaks that fall into each quadrant for comparisons at time point 1

(t1) (y-axis) and time point 2 (t2) (x-axis). (D) Genes were clustered based on RNA expression patterns across

metamorphosis. Two clusters showing a high positive correlation between RNA signal (average log2 fold change from

L3) and accessibility of their assigned FAIRE peaks (average maximum FAIRE rpkm value) are shown. The full dataset

correlating RNA expression with accessibility of their assigned FAIRE peaks for all clusters is provided in the

Supporting information. The underlying data in Fig 1A–1D can be found within S1 Data. APF, after puparium

formation; Cdk, cyclin-dependent kinase; FAIRE, formaldehyde-assisted isolation of regulatory elements; FAIRE-seq,

FAIRE sequencing; RNA-seq, RNA sequencing; rpkm, reads per kilobase, per million mapped reads.

https://doi.org/10.1371/journal.pbio.3000378.g001
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Drosophila enhancers identified using a functional accessibility-independent approach, self-

transcribing active regulatory region sequencing (Starr-Seq) [44].

Dynamic chromatin is mostly correlated with gene activation

Open chromatin sites often correspond to gene regulatory elements such as transcriptional

enhancers, which can activate or repress gene expression. To determine whether FAIRE peak

dynamics correlate positively or negatively with gene expression changes, we assigned each

FAIRE peak to its nearest gene and carried out pairwise comparisons between each stage and

its next two sequential stages for >2-fold changes in chromatin accessibility correlated with

>2-fold expression changes using our RNA-seq data (S3 Fig). When we plot peak accessibility

change versus assigned gene expression changes, we generate four quadrants: FAIRE peaks

opening with corresponding gene expression increasing, consistent with an activation func-

tion; FAIRE peaks opening with gene expression decreasing, consistent with a repressive func-

tion; FAIRE peaks closing with gene expression increasing, consistent with the loss of a

repressor binding; and FAIRE peaks closing and gene expression decreasing, consistent with

the loss of an activator binding (Fig 1C).

We observed that the majority of dynamic FAIRE peaks fall into the category of peaks

opening with the corresponding gene expression increasing. This suggests that the majority of

gene expression changes in the differentiating wing are driven by transcriptional activators

gaining access to their binding sites. The second-largest category of FAIRE peaks close and are

associated with loss of expression. This suggests that loss of access to transcriptional activators

also plays a major role in gene repression during terminal differentiation.

We next examined the correlation between gene expression and chromatin accessibility

changes during our time course (Fig 1D, S4 and S5 Figs). We plotted the trajectory of gene

expression based upon RNA-seq for 18 coregulated gene clusters and overlaid the average

changes in FAIRE peaks assigned to the genes within each RNA cluster (Fig 1D, S4 Fig). We

also performed a reciprocal analysis using 18 gene clusters based upon coregulated FAIRE

peaks and overlaid average gene expression changes from RNA-seq (S5 Fig). We found that

for several clusters, the temporal changes in RNA and accessibility by FAIRE-seq are well cor-

related (Fig 1C). Together, our results suggest that most of the dynamic regulatory elements

during fly wing metamorphosis are associated with gene activation.

Opening the wing differentiation program during metamorphosis

During metamorphosis, the wing undergoes cell cycle exit, coordinated with subsequent ter-

minal differentiation. We therefore examined several hundred genes involved in these pro-

cesses (Fig 2A). A major event during wing differentiation is the formation of the adult

cuticular exoskeleton. The wing cuticle is a multilayered structure, and its formation requires

the proper expression of cuticle-related genes, such as enzymes involved in cuticle deposition,

and zona pellucida (ZP) domain proteins, which link the apical surface of wing cells to the

overlying cuticle [37]. When we examined 154 cuticle formation–associated genes, we found

distinct subgroups of genes highly expressed at 6, 36, and 44 h (Fig 2B). The cuticle genes

expressed at 6 h are likely to be involved in the pupa cuticle formation [36], whereas the adult

cuticle program begins at 36 h and extends to 44 h and beyond. The subgroups of cuticle-

related genes reaching their peak expression at different stages suggest that waves of sequential

regulation during metamorphosis may drive differences in pupa cuticle versus adult cuticle

composition and structure. Highly accessible FAIRE peaks found near cuticle genes (Fig 2C)

are significantly more accessible at 6, 36, and 44 h, consistent with the high expression at those

time points. To identify a cuticle gene regulatory element, we examined a line containing a

Chromatin accessibility and robust cell cycle exit
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Fig 2. Temporal regulation of the wing differentiation program and cell cycle changes. (A) The length (in bp) of

introns, 50 UTRs, and 30 UTRs (left) and genes (right) for all protein coding genes, wing terminal differentiation genes,

and cell cycle genes is shown. The majority of FAIRE peaks occur within introns (S2 Fig). Most cell cycle genes have a

compact structure with few, short introns, whereas differentiation genes contain large introns, providing potential

dynamic regulatory elements. (B, E) Heatmap of gene expression for differentiation genes (B) and cell cycle genes (E),

plotted by the percent of maximum RNA rpkm value. Both groups of genes show dynamic expression during

metamorphosis. (C, F) Line plots of average FAIRE signal of the six stages for differentiation genes (C) and cell cycle

genes (F). Differentiation genes show an increase in FAIRE peak accessibility at time points when gene expression is

high: 6 h (p-value = 0.0004088), 36 h (p-value = 1.36 × 10−7), and 44 h (p-value = 1.408 × 10−12), compared with L3,

Mann-Whitney U Test). Cell cycle genes show an increase in accessibility at time points when gene expression is

repressed: 24 h (p-value = 0.0209), 36 h (p-value = 1.655 × 10−5), and 44 h (p-value = 0.005469), Mann-Whitney U

Test. (D) A Gal4 reporter containing the indicated (blue bar) portion of the Cpr51A regulatory region drives UAS-GFP

in late wings (44 h) when the regulatory elements are accessible. (G) Motif discovery was performed on open regions

for cell cycle genes using MEME and compared with known motifs using TOMTOM. Potential regulatory elements for

Chromatin accessibility and robust cell cycle exit
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Gal4 transgene overlapping an open chromatin region near Cuticular protein 51A (Cpr51A)

driving upstream activation sequence (UAS)–green fluorescent protein (GFP) (Fig 2D). This

region is highly accessible at 44 h, and with this transgene, GFP is highly expressed in almost

all the wing cells at 44 h. Our results show that opening and activation of the adult cuticle pro-

gram is a major feature of wing differentiation during metamorphosis.

Repression of most cell cycle genes is established and maintained through

promoter proximal regulatory elements

Cells in pupal wings exit the cell cycle at 24 h, which accompanies temporally synchronized

repression of cell cycle genes. We examined the expression of approximately 300 cell cycle

genes compiled from our previous analysis of cell cycle exit [9] (Fig 2E) and observed a tempo-

rary repression during the G2 arrest at 6 h, followed by reactivation at 18 h for the final cell

cycle, and silencing during cell cycle exit at 24 h. We examined the chromatin accessibility pro-

files for 291 of these cell cycle genes and found that most of them exhibit a compact gene struc-

ture with smaller introns and relatively short intergenic upstream sequences (Fig 2A). Most

FAIRE peaks associated with these genes are found to be proximal to the TSS, consistent with

the previously reported distribution for functional enhancers at “housekeeping” genes [45].

Surprisingly, putative regulatory elements at the majority of cell cycle genes exhibit a moderate

increase in accessibility at time points when cells are postmitotic (24–44 h) despite the tempo-

rally regulated shutoff of their associated genes at 24 h (Fig 2F).

We carried out a de novo motif discovery on the promoter proximal regions for cell cycle

genes using Multiple Em for Motif Elicitation (MEME) tool (Fig 2G). The most highly

enriched motifs match Motif 1, a core promoter element bound by Motif 1 binding protein

(M1BP) to promote RNA Polymerase II pausing [46,47], DNA replication-related element

(DRE), a core promoter/enhancer known to be associated with cell cycle genes [48], and a

motif matching the binding site for the heterodimer transcription factor complex E2F/DP

(found in 130 out of 540 promoter proximal regions). The increased accessibility at these

motifs is similar to the increased micrococcal nuclease sensitivity found at sites in cell cycle

genes bound by repressive human DREAM complexes [49]. Although increased accessibility

may seem counterintuitive when coupled with gene repression, this may be consistent with a

model whereby promoter proximal DREAM binding to nucleosome-free regions represses cell

cycle genes by positioning nucleosomes downstream of the transcriptional start site [49].

Multiple studies have reported that depletion of Rb family members leads to derepression

of cell cycle genes and defects in exiting the cell cycle. However, it has remained unclear

whether Rb- or DREAM-dependent repression is required to counteract E2F activity to initiate

cell cycle genes are highly enriched for E2F binding motifs, DRE promoter sequences, and the Pol II pausing-

associated motif 1. (H) A GFP reporter containing the indicated regulatory element (blue bar) for the simple cell cycle

gene pcna is silent at the postmitotic stage of 44 h but can be reactivated postmitotically when E2F or E2F + CycD/

Cdk4 is expressed. (I) stg, e2f1, and cycE are complex cell cycle genes with large regulatory regions. Blue shading

indicates regions of known regulatory sequence that exhibit dynamic accessibility. Gal4 reporters containing the

indicated portions (blue bars) of their regulatory regions drive UAS-degradable GFP to capture their regulatory

functions in the pupal wing. Expression correlates with accessibility for these regions. p-values were determined by

Mann-Whitney U Test; ����< 0.0001, ��< 0.01, �< 0.05. The underlying data in Fig 2A, 2B and 2E can be found

within S2 Data. Cdk, cyclin-dependent kinase; Cpr51A, Cuticular protein 51A; ctr, control; CycD, Cyclin D; CycE,

Cyclin E; DRE, DNA replication-related element; E2F, E2F transcription factor; FAIRE, formaldehyde-assisted

isolation of regulatory elements; GFP, green fluorescent protein; MEME, Multiple Em for Motif Elicitation; PCNA,

proliferating cell nuclear antigen; Pol II, RNA polymerase II; RNA-seq, RNA sequencing; rpkm, reads per kilobase of

transcript, per million mapped reads; stg, string; TOMTOM, Motif Comparison Tool; UAS, upstream activation

sequence.

https://doi.org/10.1371/journal.pbio.3000378.g002
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repression of cell cycle genes, to maintain repression in cells that have already become postmi-

totic, or both. To investigate this, we took advantage of a proliferating cell nuclear antigen

(PCNA)-GFP transcriptional reporter that includes known E2F binding sites contained within

FAIRE peaks that remain accessible after cell cycle exit [50]. At 44 h, a time point when the

postmitotic state has been maintained for 20 h, the reporter is silenced. To test whether this

silencing can be reversed, we activated expression of the Drosophila activator E2F complex

E2F1/DP (hereafter, E2F) or E2F + CyclinD (CycD)/Cdk4 to phosphorylate and inactivate Rbf

specifically after cells have already established a flexible G0 state at 26 h (Fig 2H). Expressing

either E2F or E2F + CycD/Cdk4 was able to reinduce PCNA-GFP expression in postmitotic

cells, demonstrating that RB/E2F-dependent repression is required to maintain silencing of

cell cycle genes in Drosophila.

The accessibility of distal regulatory elements for complex cell cycle genes

is dynamic

In contrast to the majority of cell cycle genes, a few key, rate-limiting cell cycle genes are con-

trolled by long, complex regulatory elements upstream of their TSS or in long introns. For

example, cycE, string (stg), and e2f1 fall into this group (Fig 2I). We find several FAIRE peaks

in regulatory regions for these genes that overlap with previously characterized functional reg-

ulatory elements [51–54]. Here, we discovered that the accessibility of these regulatory ele-

ments is temporally dynamic during metamorphosis, in a manner coordinated with the cell

cycle changes. Accessibility at these elements is low during the G2 arrest at 6 h, then rises at 18

h and 24 h, and closes after 36 h. To examine whether the dynamic accessibility of these ele-

ments impacts temporal gene expression, we tested regions from the stg, e2f1, and cycE loci

driving a Gal4/UAS-destabilized GFP (stg, e2f1) or normal GFP (cycE) to capture gene expres-

sion shutoff. Our GFP reporters showed dynamic expression correlated with the accessibility

of the elements, which verifies some of these distal elements as pupal wing enhancers for these

cell cycle genes. However, none of these enhancers individually recapitulate the normal, broad

expression of these genes in the pupa wing. Our results suggest that dynamic chromatin acces-

sibility at specific enhancers of complex cell cycle genes drives temporal expression changes

during metamorphosis.

The closing of enhancers at complex cell cycle genes is independent of cell

cycle exit

We observed that chromatin dynamics at master regulator cell cycle genes is coordinated with

cell cycle changes during metamorphosis. However, a key question is whether the closing of

chromatin at these genes is a cause or consequence of cell cycle exit. To address this question,

we took advantage of conditions in which cell cycle exit in the pupal wing can be either tempo-

rarily delayed or bypassed for a prolonged period without preventing metamorphosis or termi-

nal differentiation. In brief, overexpression of the activator E2F complex during the final cell

cycle delays cell cycle exit and causes an extra cell cycle during the 24–36 h window, whereas

overexpression of E2F + CycD/Cdk4 during this same period causes multiple rounds of extra

cell division and effectively bypasses cell cycle exit until well after 50 h [25]. We used the Gal4/

UAS system in combination with a temperature-sensitive tub-Gal80 (Gal80TS) to limit the per-

turbation of the cell cycle from 12 to 24 or 44 h APF. This allows metamorphosis to initiate

properly yet effectively delays G0 by one extra cell cycle or bypasses G0 with multiple rounds

of extra division (Fig 3A, S6 Fig). We dissected 24 h or 44 h pupal wings under the delayed

(E2F) or continued cycling (E2F + CycD) conditions and performed genome-wide RNA-seq

and FAIRE-seq analysis (Fig 3B and 3C). Importantly, at 44 h when the E2F expressing wings
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are postmitotic, the E2F + CycD wings are still cycling, allowing us to distinguish the effects of

E2F overexpression from those of preventing cell cycle exit.

Fig 3. Global impacts of cell cycle exit disruption on gene expression and open chromatin. (A) G0 can be delayed

to 36 h or bypassed beyond 50 h through short-term expression of E2F or E2F + CycD/Cdk4. Transgenes were

overexpressed in the dorsal layer of wing epithelia under the control of Apterous-Gal4/Gal80TS from 12 h APF.

Twenty-four-hour and 44-h wings were immunostained for ph3. (B, C) Genotype and scheme of RNA-seq and

FAIRE-seq experiments to disrupt cell cycle exit during metamorphosis. (D, E) MA plots of RNA and FAIRE changes

comparing bypassed exit (E2F + CycD/cdk4) between Ctr (D) and delayed cell cycle exit (E2F) (E) at 44 h. Abundant

changes in expression of cell cycle genes, ribosome biogenesis, and cuticle formation genes are observed, while

chromatin accessibility is nearly identical between conditions in which cells enter a delayed G0 versus continue

cycling. The underlying data in Fig 3D and 3E can be found within S3 Data. APF, after puparium formation; Cdk,

cyclin-dependent kinase; Ctr, control; CycD, Cyclin D; CyO, Curly O balancer; DP, dimerization partner; E2F, E2F

transcription factor; FAIRE, formaldehyde-assisted isolation of regulatory elements; FAIRE-seq, FAIRE sequencing;

Gal80TS, temperature-sensitive Gal80; GO, Gene Ontology; hsflp, heatshock-flippase; MA plot, scatter plot onto M (log

ratio) and A (mean average) scales; ph3, phosphohistone H3; RNA-seq, RNA sequencing; TM6B, TM6B balancer;

UAS, upstream activation sequence.

https://doi.org/10.1371/journal.pbio.3000378.g003

Chromatin accessibility and robust cell cycle exit

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000378 September 3, 2019 10 / 29

https://en.wikipedia.org/wiki/Arithmetic_mean
https://doi.org/10.1371/journal.pbio.3000378.g003
https://doi.org/10.1371/journal.pbio.3000378


E2F or E2F + CycD expression was sufficient to alter the expression of several hundred

genes at 24 h and over 1,500 by 44 h (Fig 3D, S7 Fig). Despite the dramatic changes in gene

expression, there were strikingly few changes in FAIRE peak accessibility, with only a handful

of peaks increasing accessibility at the 24-h time point and up to 287 peaks increasing accessi-

bility at the 44-h time point (Fig 3D, S7 Fig). Gene Ontology (GO) term enrichment analysis

under both conditions revealed that the up-regulated genes are highly enriched for those asso-

ciated with the cell cycle, whereas down-regulated genes are highly enriched for genes involved

in cuticle development. To determine whether these few accessibility changes were due to the

ectopic E2F activity or the continued ectopic proliferation itself, we compared chromatin

accessibility changes between E2F and E2F + CycD wings at 44 h (Fig 3E). Whereas RNA-seq

revealed differential effects on the expression levels of several hundred genes involved in the

cell cycle, ribosome biogenesis, and cuticle development, FAIRE-seq revealed almost no

changes in chromatin accessibility between these two conditions. This is remarkable consider-

ing that wings expressing E2F at 44 h are fully postmitotic, whereas wings expressing E2F

+ CycD continue to proliferate (S6 Fig). This demonstrates that the cycling status of differenti-

ating cells has little direct effect on chromatin accessibility at potential regulatory elements.

Despite the up-regulation of hundreds of cell cycle–related genes at both 24 and 44 h (Figs

3D, 3E and 4A), we observed little effect on their accessibility (Fig 4B). Examples of simple

(origin recognition complex subunit 6 [orc6] and pcna) and complex cell cycle genes (cycE and

stg) showed minor changes in chromatin accessibility when cell cycle exit was delayed or dis-

rupted. Importantly, the closing of cycE and stg distal enhancers proceeds with normal timing

despite the delay or bypass of cell cycle exit (Fig 4C). This demonstrates that we have uncou-

pled differentiation from cell cycle exit and that the closing of regulatory elements at complex

cell cycle genes is developmentally controlled and independent of cell cycling status. Impor-

tantly, the closing of distal regulatory elements seems to prevent the activation of stg by ectopic

E2F but not E2F + CycD (Fig 4D). This suggests that the continued closing of regulatory ele-

ments at these cell cycle genes underlies the increased robustness of the G0 state at these later

time points.

We next looked more closely at the 1,053 differentially regulated genes in E2F versus E2F +

CycD conditions at 44 h to understand how these genes change expression with so few chro-

matin accessibility changes. We find that RNA levels for almost half of these (501 genes) are

also altered in the E2F-only condition, but to a lesser degree than in the E2F + CycD condition.

For these genes, we also see accessibility changes when comparing E2F + CycD to the wild-

type control, but not when we compare E2F + CycD with E2F only (Fig 3E). This is because

these genes show similar accessibility changes in the E2F-only condition, even though their

RNA is more strongly altered in the E2F + CycD condition. This suggests that the dynamic

range for the RNA signal is much greater than that for FAIRE signal, and these genes may be

significantly differentially regulated at the RNA level under the E2F + CycD condition, even

though their accessibility has not significantly changed from the E2F-only condition.

Similarly, an additional 119 genes in this group are bona fide RB/E2F or dREAM/ Myb-

Muv B (MMB) target genes that are only mildly affected in the E2F-only condition and do not

pass our RNA-seq cutoff [9,55,56]. We find that overexpression of E2F + CycD leads this cate-

gory of genes to become more strongly and more rapidly induced than E2F alone, pushing

them past our threshold for significance under the E2F + CycD condition versus the E2F-only

condition. This category of genes may become strongly activated by the ectopic CycD/Cdk4

activity, facilitating the switch between repressive E2F complexes and E2F activator occupancy

at the same binding sites [57], and therefore, no changes in accessibility need to occur for acti-

vation of expression. We also find 42 genes involved in ribonucleoprotein complexes or ribo-

some biogenesis to be altered by E2F + CycD, some of which have been shown to be repressed
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directly by Rbf2 in an E2F-independent manner [56]. The addition of CycD/Cdk4 may lead to

derepression of these genes through phosphorylating Rbf2 and disrupting its chromatin bind-

ing, although at this time, the nature of these E2F-indpendent complexes and whether they

alter chromatin accessibility is unknown.

Fig 4. Distal enhancer accessibility of complex cell cycle genes is developmentally controlled and independent of

cell cycling status. (A) Expression of cell cycle genes is increased when we delay or bypass cell cycle exit (log2 fold

change for cell cycle genes versus ctrs expressing GFP). (B) Line plots of average FAIRE signal for cell cycle genes.

Accessibility at most cell cycle genes’ TSS is slightly decreased when cell cycle exit is delayed (44 h E2F expression, p-

value = 1.004 × 10−5, Mann-Whitney U Test). (C) Regulatory elements for simple cell cycle genes (orc6, pcna) remain

accessible independent of cycling status. Complex cell cycle genes (cycE, stg) lose accessibility at regulatory regions

independent of cycling status. (D) Expression of cycE and stg during metamorphosis (gray line, compared with 24-h

wings) and genetic manipulations (colored dots, compared with 24-h ctr wings). stg possesses higher barrier for

activation compared with CycE. Closed stg regulatory elements likely prevent stg expression in the late robust E2F-

expressing wings, whereas E2F + CycD/Cdk4 can overcome this proliferation barrier. (E) Dynamic distal wing

enhancers and TSS proximal regions for cycE and stg contain sites that bind E2F1, Su(H), and Yorkie based on ChIP in

cycling tissues. The underlying data in Fig 4D can be found within S4 Data. Cdk, cyclin-dependent kinase; ctr, control;

ChIP, chromatin immunoprecipitation; CycD, Cyclin D; CycE, Cyclin E; E2F, E2F transcription factor; FAIRE,

formaldehyde-assisted isolation of regulatory elements; FC, fold change; GFP, green fluorescent protein; orc6, origin

recognition complex subunit 6; pcna, proliferating cell nuclear antigen; stg, string; Su(H), Suppressor of Hairless; TSS,

transcription start site; wt, wild type.

https://doi.org/10.1371/journal.pbio.3000378.g004
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The remaining 354 genes affected specifically when cell cycle exit is bypassed are enriched

for GO terms involved in RNA metabolism (p< 9.81−6) and noncoding RNA (ncRNA) pro-

cessing (p< 4.76−5), and most of these genes (199) are down-regulated. We do not clearly

understand how these genes are regulated by the cell cycle at this time. We speculate that, for

these genes, adding CycD/Cdk4 activity could have direct or indirect effects on additional

transcriptional regulators that do not alter chromatin accessibility, possibly by acting through

or near promoter proximal sites, or CycD/Cdk4 activity could have effects on transcript stabil-

ity. Consistent with these ideas, this group of genes includes 35 transcription or RNA polymer-

ase II binding factors (e.g., DRE-binding factor [Dref], Mediator complex components,

retained, deadpan, extra-extra, teashirt, Activating transcription factor 3, salivary gland-
expressed bHLH, Nuclear factor I) and 17 regulators of RNA splicing and stability (such as part-
ner of drosha, Piwi-interacting RNA pathway components, lariat debranching enzyme, Small
ribonucleoprotein particle protein SmB, bruno 1). We also cannot rule out the possibility that

significant changes in RNA-seq signal may result from a small subset of cells in the wing that

change gene expression and accessibility but that cannot be captured by the limited dynamic

range of the chromatin accessibility signal from the whole tissue.

Delaying cell cycle exit impacts a subset of genes involved in wing terminal

differentiation

In contrast to the minimal effects on cell cycle genes, the largest impact of delaying or disrupt-

ing cell cycle exit on chromatin was the loss of accessibility at over 1,000 genomic sites at 44 h

(S7 Fig). This could be caused by either chromatin remodeling to close accessible sites at 44 h

or a failure to open sites that should become accessible. To address which of these scenarios is

correct, we examined the dynamics of peaks influenced by E2F or E2F + CycD during the

wild-type time course (S8 Fig). Notably, peaks that are less accessible in E2F-expressing wings

are closed at 36 h but highly accessible at 44 h in wild-type wings. This suggests that delaying

or disrupting cell cycle exit results in a failure to open a specific subset of regulatory elements

between 36 h and 44 h. Our data suggest that this failure to open specific elements is due to the

ectopic E2F activity rather than ectopic proliferation itself, as there are strikingly few chroma-

tin accessibility changes between E2F and E2F + CycD wings at 44 h (Fig 3E).

The loci that fail to open when cell cycle exit is disrupted are located near genes enriched

for roles in cuticle formation and deposition and wing terminal differentiation. Consistent

with this, expression levels of genes involved in wing cuticle formation are reduced when cell

cycle exit is delayed or disrupted (Fig 5A), and chromatin accessibility at their potential regula-

tory elements is reduced (Fig 5B and 5C). Together, our results indicate that delayed cell cycle

exit and ectopic E2F activity compromise the opening and activation of a portion of the wing

terminal differentiation program.

To determine whether ectopic E2F activity impacts wing cuticle formation, we expressed

E2F or E2F + CycD in the dorsal layer of the wing epithelium beginning at 12 h APF using

Apterous-Gal4/Gal80TS. We examined the cuticle formation at 64 h by transmission electron

microscopy (TEM) (Fig 5D). Pupal wings are normally composed of two thin monolayers of

epithelial cells, and expression of E2F or E2F + CycD led to an obvious thickening of the epi-

thelium due to extra cell divisions in the dorsal side. The cuticle layer on the dorsal side of the

wing was much thinner than normal, and the effect on the cuticle was compartment autono-

mous, leaving ventral wing cuticle unaffected. We next examined the deposition of chitin, the

key component of insect cuticle, through calcofluor staining (Fig 5E). Chitin staining in the

dorsal wing, where E2F or E2F + CycD was expressed, was much weaker than in the ventral.
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Thus, ectopic E2F activity delays and disrupts the adult wing cuticle program in a compart-

ment-autonomous manner.

Disrupting cell cycle exit alters chromatin dynamics at specific ecdysone

target genes

Our findings suggest the existence of cross talk between cell cycle exit and the later terminal

differentiation gene expression programs. We next sought to identify the factors mediating

this cross talk. We noticed that several ecdysone target genes were amongst the genes impacted

by the delay or disruption of cell cycle exit (S8 Fig). Ecdysone signaling coordinates develop-

mental timing between tissues during metamorphosis. We systematically examined ecdysone

Fig 5. Compromising cell cycle exit impacts chromatin accessibility and gene expression at a subset of wing

terminal differentiation genes. (A) log2 fold changes in RNA and (B) line plots of average FAIRE signal for genes

involved in cuticle formation and differentiation. Preventing cell cycle exit reduces their expression and chromatin

accessibility (E2F + CycD/Cdk4 at 44 h, p-value = 0.0046, Mann-Whitney U Test). (C) Selected cuticle protein genes

exhibiting a failure to open potential regulatory elements at 44 h when cell cycle exit is delayed or bypassed. (D, E)

Representative TEM (D) and chitin staining (E) of 64-h wings that delayed or bypass cell cycle exit in the dorsal wing

epithelium using Apterous-Gal4/Gal80TS to activate E2F or E2F + CycD/Cdk4 expression during the final cell cycle.

Extracellular matrix formation and chitin deposition are disrupted when cell cycle exit is compromised. The

underlying data in Fig 5A can be found within S5 Data. Cdk, cyclin-dependent kinase; Cpr, Cuticular protein; Ctr,

control; CycD, Cyclin D; E2F, E2F transcription factor; FAIRE, formaldehyde-assisted isolation of regulatory elements;

FC, fold change; Gal80TS, temperature-sensitive Gal80; TEM, transmission electron microscopy.

https://doi.org/10.1371/journal.pbio.3000378.g005
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target genes and found that genes such as Blimp-1, Hormone receptor 3 (Hr3), and crooked legs
(crol) were expressed at significantly higher levels at 44 h when cell cycle exit was disrupted,

whereas the expression of E74EF, E75B, and E71CD was reduced (Fig 6A). During the normal

time course, Blimp-1, Hr3, and crol exhibit peak expression at 36 h and plummet by 44 h,

whereas E74EF, E75B, and E71CD normally peak at 44 h. Thus, the disruption of cell cycle exit

leads to a delay in the shutoff of Blimp-1, Hr3, and crol and delayed up-regulation of E74EF,

E75B, and E71CD. When we investigated chromatin accessibility at these genes, we found that

specific potential regulatory elements for Blimp-1 and Hr3 failed to close at 44 h when cell

cycle exit was disrupted, whereas specific potential regulatory elements at E75B and E74EF

failed to open (Fig 6B and 6C). Our results suggest a model in which ectopic E2F activity leads

to delays in chromatin remodeling at specific ecdysone target genes, delaying their proper

expression dynamics.

Fig 6. Bypassing cell cycle exit disrupts chromatin dynamics at ecdysone target genes and alters their expression.

(A) Scatterplot of ecdysone-responsive genes in 44-h wings under conditions that bypass cell cycle exit versus normal

exit. Genes with significant changes in expression are labeled in red. (B, C) Chromatin regions of Blimp-1, Hr3, E74,

and E75 fail to close or open at 44 h when cell cycle exit is compromised. (D) Blimp-1 antibody staining of wings at 36

h and 40–42-h wings with normal cell cycle exit (Ctr) or bypassed cell cycle exit in the posterior (using engrailed-Gal4/

Gal80TS). Compromising cell cycle exit delays the activation of Blimp-1 in a compartment-autonomous manner. (E)

Peaks that fail to open at 44 h from cuticle-development genes harbor high-scoring Blimp-1 binding sites. The

underlying data in Fig 6A can be found within S6 Data. Cda5, Chitin deacetylase-like 5; Cpr, Cuticular protein; Ctr,

control; E2F, E2F transcription factor; Hr3, Hormone receptor 3; Gal80TS, temperature-sensitive Gal80; RPKM, reads

per kilobase of transcript, per million mapped reads; TEM, transmission electron microscopy; wt, wild type.

https://doi.org/10.1371/journal.pbio.3000378.g006
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We reasoned that these alterations in transcriptional regulators downstream of ecdysone

signaling could lead to the alterations in chromatin accessibility for wing terminal differentia-

tion genes when cell cycle exit is disrupted. Consistent with this, the Blimp-1 binding motif is

significantly enriched in FAIRE peaks that are differentially regulated under conditions that

delay or disrupt cell cycle exit (S9 Fig). Several genes important for cuticle development such

as Chitin deacetylase-like 5 (Cda5), Cpr50Ca, Cpr47Ec, and TweedleT (TwdlT) harbor high-

scoring Blimp-1 binding sites and are likely direct Blimp-1 targets (S9 Fig). Their peaks exhibit

temporal dynamics consistent with a model in which Blimp-1 either binds closed chromatin at

36 h and facilitates subsequent chromatin opening at 44 h or in which high Blimp-1 binding at

36 h somehow maintains closing that is lost when Blimp-1 levels plummet at 44 h (Fig 6E).

The temporal and spatial resolution of our FAIRE time course is not sufficient to distinguish

between these two scenarios. Interestingly, we also found a high-scoring Blimp-1 site in

E74EF, suggesting its temporal regulation is also dependent on Blimp-1.

We considered the possibility that our genetic disruption of cell cycle exit could have non-

autonomous effects that impact the timing or production of the ecdysone signal itself, leading

to alterations in chromatin remodeling at specific targets. We therefore tested whether our

manipulations of cell cycle exit impact Blimp-1 expression nonautonomously. For this, we

expressed E2F + CycD specifically in the posterior compartment of the pupa wing using the

Engrailed-Gal4/Gal80TS system. Under these conditions, only the posterior wing continues to

proliferate, whereas the anterior wing becomes postmitotic with the normal timing [25]. We

found that when we disrupted cell cycle exit in the posterior wing only, Blimp-1 protein levels

were reduced at 36 h but higher at 40–42 h, consistent with the delay in Blimp-1 activation we

observed by RNA-seq. Importantly, Blimp-1 levels were unaffected in the anterior wing, show-

ing the normal increase in Blimp-1 levels at 36 h and drop in levels at 44 h. This demonstrates

that disrupting cell cycle exit impacts the timing of ecdysone target gene expression in a com-

partment-autonomous manner (Fig 6D), consistent with our findings on compartment-spe-

cific effects on cuticle formation (Fig 5E). Our data are consistent with a model in which the

cis-regulatory DNA at genes encoding hormone-regulated transcription factors such as Blimp-

1 responds to ectopic cell cycles or E2F activity to coordinate cell cycle exit with later steps of

terminal differentiation downstream of the hormone pulses. This in turn leads to delays in

chromatin remodeling at their targets and altered expression dynamics of downstream wing

terminal differentiation genes (Fig 7).

Fig 7. A model for the developmental coordination of cell cycle exit and chromatin accessibility. Potential

regulatory elements at complex cell cycle genes such as stg become inaccessible in a developmentally controlled

manner during robust G0. This may limit their activation in response to proliferative signals. Delaying or disrupting

cell cycle exit impacts the subsequent opening of chromatin at genes in the wing terminal differentiation program that

are potentially controlled via transcription factors downstream of ecdysone signaling. Cpr, Cuticular protein; cycE,

cyclin E; E2F, E2F transcription factor; stg, string.

https://doi.org/10.1371/journal.pbio.3000378.g007
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Discussion

Most chromatin and gene expression changes in the wing during

metamorphosis are independent of cell cycling status

A striking feature of the Drosophila wing during metamorphosis is the coordination between

the cell cycle and tissue morphogenetic changes. We hypothesized that the synchronous exit

from the cell cycle may impact chromatin accessibility and lead to widespread gene expression

changes to coordinate differentiation with cell cycle exit. However, this is not the case. When

we compromise cell cycle exit, we observe relatively few changes in chromatin accessibility.

We therefore conclude that the majority of chromatin accessibility dynamics during metamor-

phosis are developmentally programmed and occur coincident with cell cycle exit but are inde-

pendent of the transition from a proliferating to a postmitotic state.

Chromatin accessibility changes at a subset of cell cycle genes during

metamorphosis

Terminal differentiation and the transition from proliferation to a postmitotic state are usually

coupled during development. Cell cycle arrest has been proposed to be essential for terminal

differentiation in several cell types by promoting or maintaining the proper expression of late

differentiation genes [58–61]. Although studies in other contexts have shown that cell cycle

exit and overt terminal differentiation can be separable [15,62–65], in this study, we have com-

prehensively characterized the gene expression and gene regulatory mechanisms underlying

these two processes by examining the transcriptome and open chromatin landscape changes

during cell cycle exit. Our study reveals that during wing differentiation, chromatin accessibil-

ity and gene expression changes are temporally coordinated and that distal regulatory elements

at a subset of critical cell cycle genes (cycE, stg, e2f1) become inaccessible during terminal dif-

ferentiation, even when cell cycle exit is compromised (Figs 3,4).

We suggest that these changes in chromatin accessibility at essential and rate-limiting cell

cycle genes provide additional barriers to cycling and provide a molecular explanation for the

robust G0 state we observe after 36 h APF. Notably, the closed distal regulatory elements at

cycE, stg, and e2f1 in robust G0 contain sites known to bind Suppressor of Hairless (Su[H]),

E2F, and Yorkie in cycling tissues (Fig 4E) [66–68], in addition to predicted sites for transcrip-

tion factors of pathways that promote proliferation in undifferentiated wings. Their closing

likely explains why pupal wings after 36 h fail to proliferate in response to many hyperplastic

signals, including direct activation of Notch or Yorkie [69].

Although the distal pupal wing enhancers for cycE and stg remain inaccessible when we dis-

rupt cell cycle exit (Fig 4), ectopic E2F + CycD can reactivate cycE and stg expression at 44 h to

support continued cycling (Fig 4D). This is consistent with our previous finding that ectopic

CycE + Stg is required in addition to E2F to keep cells in the wing cycling past robust G0 or to

induce cell cycle reentry from an established postmitotic G0. We suggest that ectopic E2F

+ CycD acts through accessible TSS proximal regulatory sites to “short-circuit” robust G0 and

reactivate cycE and stg expression. Further work on these potential regulatory elements will be

required to examine why TSS proximal binding allows for activation of cycE and stg by E2F

+ CycD but not other regulators.

The addition of ectopic CycD is essential for the reactivation of stg expression at 44 h and

continued cycling. Ectopic E2F alone neither reactivates stg nor supports continued cycling,

despite increasing the expression of many other cell cycle genes (Fig 4). Why is adding CycD

required for reactivation of stg expression? The most common model for CycD function is that

it phosphorylates Rbf and weakens RB-mediated repression of E2F, thereby compromising
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DREAM repressive function. This would suggest that ectopic CycD may be needed to over-

come additional dREAM repressive barriers at specific targets. However, recent work has sug-

gested CycD activity may also play other roles to promote cell cycle entry from G0 [70].

Further work to examine how cycE and stg are activated in this context and the proteins that

facilitate this during metamorphosis will be necessary.

Our model is consistent with recent findings in C. elegans and other contexts that chroma-

tin remodeling plays an important role in ensuring cell cycle exit during differentiation

[19,71]. However, by specifically disrupting cell cycle exit rather than chromatin remodeling,

as in previous studies, we are able to largely uncouple terminal differentiation and cell cycle

arrest in the fly wing. This allowed us to distinguish changes in chromatin accessibility at a

subset of late differentiation genes that are dependent upon proper cell cycle arrest from those

throughout the majority of the genome, including cell cycle genes that are independent from

arrest.

Although we do not know the chromatin remodelers responsible for the closing of the distal

regulatory elements at cycE, stg, and e2f1, we do find conserved Ecdysone receptor (EcR) bind-

ing sites that exhibit peaks of EcR binding during pupal stages according to Model Organism

Encyclopedia Of DNA Elements (ModENCODE) data [72]. An attractive model is that the

strong peak of ecdysone occurring at 24 h triggers EcR complexes to recruit chromatin remo-

delers to subsequently modulate elements at differentiation genes and complex cell cycle genes

to coordinate differentiation with cell cycle exit. As our disruptions of cell cycle exit do not

seem to impact the pulse of ecdysone at 24 h, closing of chromatin via this mechanism would

proceed independent of cell cycling status and act to limit cell cycle entry even in the presence

of strong ectopic cell cycle activation.

Preventing cell cycle exit compromises a portion of the wing terminal

differentiation program

Our results reveal that most chromatin accessibility changes at potential regulatory elements

in fly wings are developmentally regulated and change independent of cell cycling status. How-

ever, compromising cell cycle exit does alter chromatin accessibility at a small subset of tempo-

rally regulated transcription factors that impact the proper timing of the wing cuticle

differentiation program (Fig 6). We find that compromising cell cycle exit somehow cell

autonomously delays the temporal gene expression and chromatin remodeling cascade down-

stream of ecdysone signaling in the wing (Fig 7). Our work implies an important role for

Blimp-1 in the wing cuticle differentiation program. Blimp-1 is directly induced by ecdysone

and is a transcriptional repressor that has been well studied for silencing ftz transcription factor
1 (ftz-f1) at the onset of metamorphosis, as well as regulating cuticle formation in the fly

embryo [73–75]. Here, we show that Blimp-1 is also highly expressed at 36-h-APF wings, fol-

lowing the second and highest pulse of ecdysone during metamorphosis. Blimp-1 is then

immediately silenced by 44 h. We found that dynamic chromatin regions that open at 44 h are

enriched for Blimp-1 binding sites. Some of these sites are potential regulatory elements for

cuticle genes and other ecdysone targets such as E74EF (S9 Fig). Because these regions are

closed when Blimp-1 is present and only open after Blimp-1 goes away, we propose that

Blimp-1 blocks the accessibility of these dynamic regulatory elements. Consistent with this

model, we also identified Blimp-1 binding sites at a dynamic open region at the ftz-f1 locus.

This region is transiently open at 6 h when Blimp-1 is absent and ftz-f1 is expressed, mirroring

the pattern of accessibility for the potential Blimp-1 site at E74EF at 44 h. Future work will

focus on revealing the proximal factor that acts on chromatin accessibility at Blimp-1 regula-

tory elements to link cell cycling status with the temporal wing differentiation program.
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Materials and methods

Fly stocks and genetics

FAIRE and RNA-seq samples with genetic manipulations are as follows:

w/ y, w, hs-FLP; tub>CD2>GAL4, UAS-GFP/ +; tub-gal80TS/ +
w/ y, w, hs-FLP; tub>CD2>GAL4, UAS-GFP/ UAS-E2F1, UAS-DP; tub-gal80TS/ +
w/ y, w, hs-FLP; tub>CD2>GAL4, UAS-GFP/ UAS-CycD, UAS-Cdk4; tub-gal80TS/

UAS-E2F1, UAS-DP
Transgenes are described in [69]. The tub>CD2>Gal4 is from [76], and UAS E2F1, DP,

CycD, and Cdk4 are from [77].

Crosses were set up at 25˚C. Second instar larva (L2) were heat shocked at 37˚C for 42 min

and then kept at 18˚C. White prepupae were collected for staging and kept at 18˚C until the

equivalent of 12 h APF at 25˚C. Then, pupae were shifted to 28˚C until the equivalent of 24 h

APF or 44 h APF at 25˚C for dissection. Pupae develop 2.2 times more slowly at 18˚C than at

25˚C and 1.2 times faster at 28˚C than at 25˚C. All time points were adjusted to equivalent

stages at 25˚C for figures.

Genotypes for TEM, chitin, and phosphohistone H3 (PH3) staining are as follows:

w/y, w, hs-FLP; Ap-GAL4, UAS-GFP/ +; tub-gal80TS/ +
w/y, w, hs-FLP; Ap-GAL4, UAS-GFP/ UAS-E2F1, UAS-DP; tub-gal80TS/ +
w/y, w, hs-FLP; Ap-GAL4, UAS-GFP/ UAS-CycD, UAS-Cdk4; tub-gal80TS/ UAS-E2F1,

UAS-DP
Crosses were set up and kept at 18˚C. White prepupae were collected and aged to the equiv-

alent of 12 h APF and then shifted to 28˚C until the equivalent of 24 h APF, 44 h APF (for PH3

staining), or 64 h APF (for TEM and chitin staining).

Genotypes for Blimp-1 antibody staining are as follows:

w/y, w, hs-FLP; en-GAL4, UAS-GFP/ +; tub-gal80TS/ +
w/y, w, hs-FLP; en-GAL4, UAS-GFP/ UAS-CycD, UAS-Cdk4; tub-gal80TS/ UAS-E2F1,

UAS-DP
w/y, w, hs-FLP; en-GAL4, UAS-GFP/ Blimp-1RNAi (BL 57479), UAS-DP; tub-gal80TS/ +
w/y, w, hs-FLP; en-GAL4, UAS-GFP/ +; tub-gal80TS/ whiteRNAi

Crosses were set up and kept at 18˚C. White prepupae were collected and shifted to 28˚C

until the equivalent of 36 h APF or 40–42 h APF for immunostaining.

Genotypes for PCNA reporter assay are as follows:

PCNA-EmGFP/ y, w, hs-FLP; +; act>CD2>gal4, UAS-RFP/+
PCNA-EmGFP/ y, w, hs-FLP; UAS-E2F1, UAS-DP /+; act>CD2>gal4, UAS-RFP/+
PCNA-EmGFP/ y, w, hs-FLP; +/UAS-CycD, UAS-Cdk4; act>CD2>gal4, UAS-RFP/

UAS-E2F1, UAS-DP
The PCNA-EmGFP line is described in [78]. Crosses were set up and kept at 25˚C. White

prepupae were collected and incubated to 26 h APF and then heat shocked at 37˚C for 12 min

and incubated at 25˚C until 42 h APF for dissection.

Enhancer-Gal4 reporters

Transgenic flies were crossed with UAS-GFP (cpr51A region, VT016704) or UAS-destabilized

GFP (stg region, BL45586, and e2f1 region, VT045332) and incubated at 25˚C. Then larval or

pupal samples (staged from white prepupae) were dissected and immunostained for GFP. The

cycE-GFP transgenic reporter was kindly provided by Dr. Sarah Bray [66]. Images were taken

with the same intensity and gain across time points for comparison.
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Sample preparation and data analysis for high-throughput sequencing

FAIRE samples and RNA samples were prepared as described previously [27]. FAIRE-seq

reads were aligned to the dm6 reference genome using Bowtie2 [79]. FAIRE-seq peak calling

was performed using MACS2 and PePr [80,81] with q-value threshold at 0.01, and only com-

mon peaks from both programs were utilized for further analysis. Z-scores were calculated

using the mean and standard deviation per chromosome arm. High-fidelity peaks were chosen

from peaks with maximal Z-score larger than 2. FAIRE-seq line plots were generated using

deepTools [82]. FAIRE-seq peaks were visualized using Integrative Genomics Viewer [83].

DNA-binding motifs used for enrichment analysis were obtained from FlyFactorSurvey [84].

Motif de novo discovery, comparison with known motif, and motif enrichment analysis were

done using the MEME tool, TOMTOM tool, and AME tool in MEME suite [85]. Annotation

of FAIRE peaks were carried out by assigning peaks to nearest TSS in R package ChIPpea-

kAnno [86]. RNA-seq reads were aligned to the dm6 reference genome using STAR and fur-

ther counted using HTSeq [87,88]. RPKM values of RNA-seq were calculated through

Cufflinks [89]. Differentially expressed genes were defined as those having RPKM> 1 in at

least one stage and changing by at least 2-fold between pairwise time points. GO analysis was

performed using Database for Annotation, Visualization, and Integrated Discovery (DAVID)

[90]. All the statistical comparisons are carried out in DEseq2 [91].

Immunostaining and microscopy

Immunostaining procedures were carried out as previously described [25]. Primary antibodies

used in this study include the following: anti-phospho-Ser10 histone H3, 1:2,000 rabbit (Milli-

pore #06–570) or mouse (Cell Signaling #9706); anti-GFP, 1:1,000 chicken (Life Technologies

A10262) or 1:1,000 rabbit (Life Technologies A11122); and anti-Blimp-1, 1:500 rabbit (Active

motif 61054). DNA was labeled by 1 μg/ml DAPI in 1× PBS, 0.1% Triton X for 10 min, and

chitin was stained by 50 μg/ml Fluorescent Brightener 28 (Sigma-Aldrich, F3543) in 1× PBS,

0.1% Triton X for 10 min. Images were obtained using a Leica SP5 confocal (chitin staining)

or Leica DMI6000B epifluorescence system. For comparisons of reporter expression at differ-

ent time points, we used the same exposure time and gain/laser intensity. The images we show

are representative images of expression patterns observed in all the wings, in which n = at least

2–5 for each stage. For the Blimp-1 staining, we performed an RNAi knockdown to verify the

staining was Blimp-1 (S10 Fig), and all quantified images include the unaffected compartment

as an internal control. For the Blimp-1 staining, we observed the phenotype shown 100% of

the time, in which n = at least three wings for each stage. For chitin staining, we included an

unaffected compartment as a stage-matched internal control and observed the phenotype

shown 100% of the time (n = at least three wings for each stage). Quantification for all fluores-

cence images is presented in S11 Fig. Details for the intensity measurements are explained in

the figure legend.

TEM

Tissue was incubated in Karnovsky’s fixative for at least 1 h at room temperature and then

overnight at 4˚C. Samples were washed with 20× volume Sorenson’s buffer 3× before postfix-

ing in 2% osmium tetroxide in Sorenson’s buffer for 1 h at room temperature. Tissue was

again washed 3× with 20× volume Sorenson’s buffer and then dehydrated through ascending

concentrations of acetone and embedded in EMbed 812 epoxy resin. Semithin sections were

stained with toluidine blue for tissue identification. Selected regions of interest were ultra-thin

sectioned to 70 nm in thickness and poststained with uranyl acetate and Reynolds lead citrate.

They were examined using a JEOL JEM-1400 Plus TEM at 80 kV. TEM images showing the
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phenotype are representative images. We embedded three wings for sectioning and observed

the phenotype shown in all wings.

Supporting information

S1 Fig. Gene expression is dynamic during metamorphosis. (A) The heatmap shows RNA

log2 fold change (compared with L3) for the indicated stages. The pattern of RNA changes

during metamorphosis is separated into 18 k-means clusters. (B) Line plots of the log2 fold

change versus L3 for the indicated RNA clusters. Each gene is represented by a single gray line,

and the average of all genes for the given cluster is plotted in red line. GO term enrichments

are also shown along with their adjusted p-values. During metamorphosis, differentiation-

related genes such as cuticle development are activated, whereas cell cycle genes are repressed.

The underlying data for this figure can be found within S7 Data. GO, Gene Ontology.

(TIF)

S2 Fig. Locations of dynamic versus static open chromatin. (A) Pie charts of the proportion

of dynamic peaks and static peaks for each stage examined. Peaks without significant changes

(<2-fold) between neighboring time points were defined as “static.” Peaks bearing changes

>2-fold were defined as “dynamic.” (B, C) Radar charts display the distribution of indicated

dynamic (B) and static (C) peak categories in different distances to TSS. (D, E) Radar charts

display the distribution of indicated dynamic (D) and static (E) peak categories in cds, intron,

nc genes, proximal promoter (−500 bp to 150 bp of TSS), UTRs, and intergenic regions. For

dynamic peaks, “closing” is defined as peaks that decrease in accessibility by>2-fold compared

with the previous stage; conversely, “opening” indicates peaks that increase in accessibility by

>2-fold compared with the previous stage. The underlying data for this figure can be found

within S7 Data. cds, coding sequence; nc gene, noncoding gene; TSS, transcription start site.

(TIF)

S3 Fig. The majority of dynamic open chromatin is associated with gene activation rather

than gene repression. Scatterplots of FAIRE peaks and corresponding genes with significant

changes between two sequential stages. Significance is defined by 2-fold changes and adjusted

p-values less than 0.05. FAIRE, formaldehyde-assisted isolation of regulatory elements.

(TIF)

S4 Fig. Coordination of RNA and FAIRE peak changes grouped by RNA clustering. Trajec-

tories of average changes between genes and their corresponding FAIRE peaks over the six

stages for each of the 18 RNA clusters. Boxplot of the Pearson correlation coefficients between

RNA and FAIRE for each RNA cluster is shown. The underlying data for this figure can be

found within S7 Data. FAIRE, formaldehyde-assisted isolation of regulatory elements.

(TIF)

S5 Fig. Coordination of RNA and FAIRE peak changes grouped by FAIRE peak clustering.

Trajectories of average changes between FAIRE peaks and their corresponding genes over the

six stages for each of the 18 FAIRE clusters. Boxplot of the Pearson correlation coefficients

between RNA and FAIRE for each FAIRE cluster is shown. The underlying data for this figure

can be found within S7 Data. FAIRE, formaldehyde-assisted isolation of regulatory elements.

(TIF)

S6 Fig. Two stages of G0 in differentiating wings. (A) E2F or E2F/CycD/Cdk4 (bypass) was

overexpressed in the dorsal layer of wing epithelia under the control of Apterous-Gal4/Gal80ts

from 12 h APF. The 24-h and 44-h wings were immunostained against PH3. (B) The number

of PH3 spots of each wing is counted, and five wings for each genotype are quantified. (C) Cell
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cycle profile of the FAIRE samples that bypassed robust G0 by E2F/CycD/Cdk4 was examined

by FACS. p-Values were determined by an unpaired t test; ����< 0.0001, ���< 0.001. The

underlying data for this figure can be found within S7 Data. APF, after puparium formation;

Cdk, cyclin-dependent kinase; CycD, Cyclin D; E2F, E2F transcription factor; FACS, Fluores-

cence-activated cell sorting; FAIRE, formaldehyde-assisted isolation of regulatory elements;

Gal80TS, temperature-sensitive Gal80; PH3, phosphohistone H3.

(TIF)

S7 Fig. RNA-seq and FAIRE-seq changes when G0 is delayed (E2F expression wings) or

bypassed (E2F/CycD/Cdk4 expression wings). MA plots of RNA (A) and FAIRE (B) changes

of 24- and 44-h wings compared with control. Genes and peaks that are significant in changes

with 2-fold difference and adjusted p-value less than 0.05 are labeled in red. Cdk, cyclin-depen-

dent kinase; CycD, Cyclin D; E2F, E2F transcription factor; FAIRE, formaldehyde-assisted iso-

lation of regulatory elements; FAIRE-seq, FAIRE sequencing; MA plot, scatter plot onto M

(log ratio) and A (mean average) scales; RNA-seq, RNA sequencing.

(TIF)

S8 Fig. Bypassing cell cycle exit disrupts the temporal dynamics of chromatin accessibility

at a subset of genes. (A, B) The heatmap shows the temporal dynamics during normal devel-

opment for the peaks that are more accessible or less accessible at 44-h wings expressing E2F/

CycD/Cdk4, plotted as a fraction of the maximum FAIRE rpkm value. Compromising G0

leads to the failure of proper closing of 36-h peaks as well as delayed opening of 44-h peaks.

(C) Overlap between peaks that normally open at 36 h in wild-type and peaks more accessible

at 44 h bypassed wings. (D) Overlap between peaks that normally open at 44 h in wild-type

and peaks less accessible at 44 h bypassed wings. The underlying data for this figure can be

found within S7 Data. Cdk, cyclin-dependent kinase; CycD, Cyclin D; E2F, E2F transcription

factor; FAIRE, formaldehyde-assisted isolation of regulatory elements; rpkm, reads per kilo-

base of transcript, per million mapped reads.

(TIF)

S9 Fig. Compromising G0 disrupts the temporal dynamics of potential Blimp-1 targets.

(A) The Blimp-1 motif is enriched in the dynamic peaks disrupted by E2F or bypass found by

AME analysis. (B) A list of genes containing peaks that fail to open at 44 h with high-scoring

Blimp-1 binding sites. (C) Chromatin accessibility changes at E74EF and ftz-f1 loci with

Blimp-1 binding sites are shown. (D) Expression changes of Blimp-1, ftz-f1, and E74EF during

normal development. The underlying data for this figure can be found within S7 Data. AME,

Analysis of Motif Enrichment; E2F, E2F transcription factor; ftz-f1, ftz transcription factor 1.

(TIF)

S10 Fig. Validation of Blimp-1 reagents. (A) Blimp-1 antibody staining in wild-type L3, 6-h,

and 36-h wings corresponds to the gene expression changes of Blimp-1. (B) Expressing Blimp-

1RNAi in the posterior wings by engrailed-Gal4/Gal80TS from 0 h APF reduces the level of

Blimp-1 protein at 36-h wings. APF, after puparium formation; Gal80TS, temperature-sensitive

Gal80; Blimp-1RNAi, RNA interference against Blimp-1.

(TIF)

S11 Fig. Quantification of fluorescent images. This figure provides quantification for GFP

reporters in Fig 2, fluorescent staining for chitin (Fig 5), and immunofluorescence for Blimp-1

(Fig 6). Images for GFP reporters were taken with the same exposure and gain at each stage

(A). GFP intensity was measured from five to six comparable regions of two to five wings for

each time point. All reporters exhibit significant changes in fluorescence intensity through
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one-way ANOVA test (Cpr51A p-value: <0.0001, stg p-value:<0.0001, e2f1 p-value: 0.0232,

cycE p-value: 0.0005). (B) Chitin staining was compared between the dorsal and ventral epithe-

lium for each wing, and the ratio was calculated with wild-type control wings set to 1. N = 3–5

wings for each genotype. Chitin signal is significantly affected by manipulating cell cycle exit

(one-way ANOVA test, p-value: <0.0001). (C) Blimp-1 staining intensity was compared

between posterior and anterior compartments of each wing, and the ratio (P:A) was calculated.

N = 3–4 wings for each genotype. Bypassing cell cycle exit significantly delays the temporal

regulation of Blimp-1 protein (36 h p-value: 0.0011; 41 h p-value: 0.0006, unpaired t test). The

underlying data for this figure can be found within S7 Data. cycE, Cyclin E; Cpr51A, Cuticular

protein 51A; E2F, E2F transcription factor; GFP, green fluorescent protein; P:A, posterior:

anterior ratio; stg, string.

(TIF)

S1 Table. FAIRE RPKM for high-confidence peaks in the wild-type time course and trans-

genic lines. FAIRE, formaldehyde-assisted isolation of regulatory elements; RPKM, reads per

kilobase of transcript, per million mapped reads.

(XLSX)

S2 Table. RPKM for the RNA-seq time course. RNA-seq, RNA sequencing; RPKM, reads per

kilobase of transcript, per million mapped reads.

(XLSX)

S3 Table. RNA-seq fold changes for all RNA-seq comparisons. RNA-seq, RNA sequencing.

(XLSX)

S1 Data. Contains numerical data pertaining to Fig 1A–1D.

(XLSX)

S2 Data. Contains numerical data pertaining to Fig 2A, 2B and 2E.

(XLSX)

S3 Data. Contains numerical data pertaining to Fig 3E and 3D.

(XLSX)

S4 Data. Contains numerical data pertaining to Fig 4A and 4D.

(XLSX)

S5 Data. Contains numerical data pertaining to Fig 5A.

(XLSX)

S6 Data. Contains numerical data pertaining to Fig 6A.

(XLSX)

S7 Data. Contains numerical data pertaining to S1A and S1B, S2B–S2E, S6B, S8A and S8B,

S9D and S11A–S11C Figs.

(XLSX)
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