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Background: Stereotactic radiosurgery (SRS) treatment planning requires accurate delineation of brain 
metastases, a task that can be tedious and time-consuming. Although studies have explored the use of 
convolutional neural networks (CNNs) in magnetic resonance imaging (MRI) for automatic brain metastases 
delineation, none of these studies have performed clinical evaluation, raising concerns about clinical 
applicability. This study aimed to develop an artificial intelligence (AI) tool for the automatic delineation of 
single brain metastasis that could be integrated into clinical practice.
Methods: Data from 426 patients with postcontrast T1-weighted MRIs who underwent SRS between 
March 2007 and August 2019 were retrospectively collected and divided into training, validation, and 
testing cohorts of 299, 42, and 85 patients, respectively. Two Gamma Knife (GK) surgeons contoured the 
brain metastases as the ground truth. A novel 2.5D CNN network was developed for single brain metastasis 
delineation. The mean Dice similarity coefficient (DSC) and average surface distance (ASD) were used to 
assess the performance of this method.
Results: The mean DSC and ASD values were 88.34%±5.00% and 0.35±0.21 mm, respectively, for the 
contours generated with the AI tool based on the testing set. The DSC measure of the AI tool’s performance 
was dependent on metastatic shape, reinforcement shape, and the existence of peritumoral edema (all  
P values <0.05). The clinical experts’ subjective assessments showed that 415 out of 572 slices (72.6%) in 
the testing cohort were acceptable for clinical usage without revision. The average time spent editing an  
AI-generated contour compared with time spent with manual contouring was 74 vs. 196 seconds, respectively 
(P<0.01).
Conclusions: The contours delineated with the AI tool for single brain metastasis were in close agreement 
with the ground truth. The developed AI tool can effectively reduce contouring time and aid in GK 
treatment planning of single brain metastasis in clinical practice.
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Introduction

Brain metastases, the most common intracranial tumors 
in adults, are neoplasms that originate in tissues outside 
the brain and then spread secondarily to the brain (1). An 
estimated 20–40% of patients with cancer will develop 
brain metastases, and the true incidence is likely higher, 
as such estimates are often limited to patients who are 
considered for treatment (2,3). Among all patients with 
newly diagnosed brain metastases, 49–53% have single 
metastasis (4,5). Stereotactic radiosurgery (SRS) is now a 
primary treatment option for patients with brain metastases, 
particularly those with a limited number of lesions (i.e., 1–3) 
(6,7). Various treatment units can perform SRS, including 
Gamma Knife (GK), CyberKnife, linear accelerator 
(LINAC)-based radiosurgery, and TomoTherapy (8). 
Additionally, certain types of SRS can also be used for a 
higher number of lesions. For instance, up to 15 lesions are 
widely acknowledged as being acceptable for treatment with 
SRS and GK as a primary management option.

Accurate tumor delineation based on magnetic resonance 
imaging (MRI) is the first step toward a precise radiation 
prescription in GK-SRS treatment planning (9). Currently, 
GK surgeons manually delineate brain metastases on 
each axial slice using GK-SRS planning software. This 
is a time-consuming, laborious, and subjective task (10). 
An automated brain metastases delineation tool could 
improve the efficiency and reliability of GK-SRS treatment 
planning.

In recent years, deep convolution neural networks 
(CNNs) have been widely applied in medical image 
segmentation, and many successes have been achieved 
(11-14). Nevertheless, the clinical evaluation of learning 
contouring quality has been limited (15). Multiple studies 
have explored automatic brain metastasis delineation based 
on CNNs in MRI (16-20). These studies reported an 
average Dice similarity coefficient (DSC) ranging from 0.67 
to 0.85 with the average false positives (FPs) per patient 
ranging from 3 to 20. A recent study reported a DSC of 
0.85±0.12 with FPs of 3±3 per patient but also a relatively 
low positive predictive value (PPV) of 67±3. None of these 
studies performed a clinical evaluation, leaving the clinical 
applicability of CNNs in this setting unclear (16).

This study investigated the use of the deep neural 
network for automatic single brain metastasis. We first 
constructed an artificial intelligence (AI) contouring tool 
based on a deep CNN (DCNN). The AI tool was trained on 
cohort of 341 patients, and its performance was validated on 

a separated testing cohort of 85 patients. Next, the clinical 
usability of the AI tool was evaluated by 2 experienced 
GK surgeons. Finally, the AI tool was compared with 3 
other qualified GK surgeons using 40 randomly selected 
patients from the testing cohort. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-22-1216/rc).

Methods

Ethics statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the ethics committee of West China Hospital 
of Sichuan University. The study was registered at clinical 
trial registration URL: https://www.chictr.org.cn (unique 
identifier: ChiCTR2100046265). Individual consent for 
this retrospective analysis was waived since patients were 
selected retrospectively and the MRI were completely 
anonymized before analysis.

Study population

We retrospectively collected the postcontrast T1-weighted 
MRI examinations of all patients who underwent GK-SRS 
for brain metastases at West China Hospital of Sichuan 
University between March 2007 and August 2019. Planning 
MRI axial sequences were acquired using a 1.5-T scanner 
(Siemens Healthineers, Erlangen, Germany) under the 
following parameters: in-plane resolution 0.449 mm ×  
0.449 mm, in-plane matrix 512×512, slice thickness 1 mm, 
and voxel size 0.449 mm × 0.449 mm × 1.000 mm.

A total of 1,899 examinations were collected, and the 
exclusion criteria for collection are presented in Figure 1. 
The final data set comprised 426 patients (247 males, 179 
females; mean age 57 years), who were then randomly 
separated into 3 nonoverlapping cohorts at a ratio of 
7:1:2: (I) a training cohort of 299 patients for AI model 
construction; (II) a validation cohort of 42 patients for 
optimization of the AI model hyperparameters; and (III) a 
testing cohort of 85 patients to test the performance of the 
AI model.

Manual delineation of contours

For all the 426 patients, the brain metastasis volume 

https://qims.amegroups.com/article/view/10.21037/qims-22-1216/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-1216/rc
https://www.chictr.org.cn
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Figure 1 Study flowchart. MRI, magnetic resonance imaging; GK-SRS, Gamma Knife stereotactic radiosurgery; AI, artificial intelligence.
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on T1-weighted MRI was first manually delineated by 
2 experienced GK surgeons (Chen J with 20 years of 
experience in GK planning and Wang XY with 15 years 
in experience of GK planning) via consensus. We chose 3 
adjacent slices showing the largest area of metastasis from 
each patient. All manual segmentations were performed 
using GK planning software (Leksell Gamma Plan, Elekta 
Group, Stockholm, Sweden), and each axial slice was 
manually segmented in turn. After manual segmentation, 
these MRI examinations were used to train and test the AI 
model.

Automated delineation

We developed a high-order attention (HA)-based CNN to 
extract representative features for the brain metastases in 
postcontrast T1-weighted MRI. Specifically, our network 
is based on the 2-dimensional (2D) CNN architecture of 
DeepLabV3+, which follows a typical encoder-decoder 
design (21), with a HA module inserted between the encoder 

and decoder (22). The HA module has adaptive receptive 
fields with dynamic weights, which can be applied to 
efficiently capture in-plane features. Since through-plane 
features are also crucial for contouring, our network was 
designed as a 2.5-dimensional (2.5D) architecture via the 
stacking of 3 adjacent slices into the 3 channels as its input. 
The output was the delineation result of the middle slice. 
The detailed architecture of our network is shown in Figure 2.

Network training

The minibatch size was fixed to 16, Adam optimizer was 
used to train the network (23), and the initial learning rate 
was set to 0.001. Before being input into the model, the 
original images were center-cropped to a size of 420×420. 
Data augmentation is a useful means to alleviating the 
problem of overfitting. During the training process, 
random rotation with a range of 0 to 45º was applied to 
the input image to augment the data. The training process 
was terminated if the validation loss did not improve after 
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10 epochs. The developed AI model was configured based 
on the PyTorch deep learning framework using Python 
(Python Software Foundation, Wilmington, DE, USA) (24).  
The backbone was determined via a heuristic search. 
All experiments were performed on a Linux operating 
system workstation with a CPU Intel Xeon E5-2620 v3 at  
2.4 GHz, 3 Nvidia Tesla P100 GPUs, and 64 GB of RAM.

AI model performance evaluation

The performance of the developed AI model was evaluated 
in the testing cohort (n=85). For objective evaluation, we 
adopted 2 quantitative evaluation metrics: (I) DSC was 
used to evaluate the volume of overlap between 2 contours 

according to the following formula (25): S G

S G

V V
DSC 2

V V
∩

= ×
∪

,  

where VS and VG denote the volume of the model’s 

segmentation results and ground truth, respectively. 
(II) The average surface distance (ASD) was used as a 
measure of the average distance between the surfaces 
of 2 contours according to the following formula (26): 

( ) ( )( )i Auto i Gti Gt i Auto

1ASD mean min d i,j mean min d i,j
2 ∈ ∈∈ ∈

= + ,  w h e r e  d ( i , j ) 

denotes the Euclidean distance between voxel i and voxel j 
measured in millimeters.

Additionally, we compared the following subgroups 
according to the above-described indices: metastasis shape 
(regular or irregular), metastasis location (supratentorial 
or infratentorial), ring-shaped reinforcement (present or 
absent), and peritumoral edema (present or absent) (27).

Statistical analyses

All statistical comparisons were performed using scikit-learn 
in Python (28). Descriptive statistics were analyzed using 
the independent samples t-test and the Mann-Whitney test 
(if data were not normally distributed). Pearson chi-squared 
test was applied for categorical data. A 2-tailed P value 
<0.05 was considered statistically significant.

Target delineation evaluation

In addition to quantitative evaluation, we further evaluated 
the applicability of the AI tool in clinical practice. 
Specifically, 2 experienced GK surgeons (Chen J and Wang 
XY) were assigned with grading each AI-generated contour 
via consensus according to the following criteria: 1 = no 
revision (the contour is flawless and completely acceptable 
for treatment), 2 = minor revision (the contour requires 
a few minor edits but will no significant clinical impact 
without correction), and 3 = major revision (the contour 
requires significant revision before treatment can proceed).

Subsequently, a professional GK surgeon committee 
consisting of 3 experts (Zhao JY, Zeng YM, and Chen 
W with 4, 5, and 8 years of experience in GK planning, 
respectively) was invited to perform further evaluations. 
First, 40 randomly sampled MRI examinations from the 
testing cohort were assigned to the 3 qualified surgeons for 
manual contouring. Then, the AI-generated contours of 
these 40 MRI examinations were distributed to the surgeons 
for editing after a minimum interval of 1 month. The GK 
surgeons were blinded to the ground truth contours, their 
manual contours, and those performed by their counterparts. 
DSC and ASD were employed to evaluate the contouring 
accuracy, and times taken for each step were also reported.

Feature concat

Shortcut connection

Three adjacent slices Predicted contour

HA module

4×

0.5×

0.5×

4×

0.5×

0.5×

Figure 2 The proposed 2.5D CNN with high-order attention 
module for single brain metastasis segmentation from postcontrast 
T1-weighted MRI. The green and orange boxes denote the feature 
maps output by the convolutional layer in the encoder and decoder, 
respectively. The blue box represents the feature maps output by 
the dilated convolutional layer, and the red box is the feature maps 
output by the global average pooling layer. The numbers beside 
the vertical arrows denote the up and down scales of the sizes of 
the features. HA, high order attention; concat, concatenation; 
2.5D, 2.5-dimansional; CNN, convolutional neural network; MRI, 
magnetic resonance imaging.
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Table 1 Patient characteristics and indications on postcontrast T1-weighted MRI

Parameter Entire cohort Training/validation cohort Testing cohort P value

No. of patients 426 341 85 –

Sex 0.20

Male 247 (58.0) 192 (56.3) 55 (64.7)

Female 179 (42.0) 149 (43.7) 30 (35.3)

Age (years) 57.47±11.10 57.60±11.43 56.94±9.71 0.66

Tumor volume (mL) 6.71±9.54 6.90±10.11 5.93±6.80 0.84

Tumor size (mm) 17.93±8.32 17.99±8.59 17.72±7.16 0.86

Metastasis shape 0.36

Regular 338 (79.3) 267 (78.3) 71 (83.5)

Irregular 88 (20.7) 74 (21.7) 14 (16.5)

Metastasis location 0.51

Supratentorial 353 (82.9) 280 (82.1) 73 (85.9)

Infratentorial 73 (17.1) 61 (17.9) 12 (14.1)

Ring-shaped reinforcement 0.63

Present 223 (52.3) 176 (51.6) 47 (55.3)

Absent 203 (47.7) 165 (48.4) 38 (44.7)

Peritumoral edema 0.66

Present 184 (43.2) 145 (42.5) 39 (45.9)

Absent 242 (56.8) 196 (57.5) 46 (54.1)

Primary tumor 0.91

Lung 310 (72.8) 244 (71.6) 66 (77.6)

Breast 35 (8.2) 30 (8.8) 5 (5.9)

Renal 16 (3.8) 13 (3.8) 3 (3.5)

Colon 10 (2.3) 8 (2.3) 2 (2.4)

Other known primary 24 (5.6) 20 (5.9) 4 (4.7)

Unknown primary 31 (7.3) 26 (7.6) 5 (5.9)

Data are either number of patients, with the percentage in parentheses, or average, with the standard deviation. P values were calculated 
using the χ2 for categorical variables and the Mann-Whitney test for numeric variables. A 2-tailed P<0.05 indicated a significant difference. 
MRI, magnetic resonance imaging.

Results

A total of 426 patients were included in the study, with 
the flowchart of patient inclusion being shown in Figure 1  
and the patients’ characteristics being shown in Table 1. 
No significant differences were found regarding sex, age, 
tumor volume, tumor size, metastasis shape, metastasis 
location, presence of ring-shaped reinforcement, presence 

of peritumoral edema, and primary tumor between the 
training-validation cohort and the testing cohort.

The quantitative evaluation results are summarized 
in Table 2. Compared to the ground truth contours, the 
AI tool had a mean DSC score of 88.34% [standard 
deviation (SD) 5.00%] and a mean ASD of 0.35 mm (SD 
0.21). Figure 3 shows the illustrative examples of the best, 
median, and worst segmentation results using the AI tool. 
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Table 2 Performance of the AI tool in the testing cohort

Groups
DSC (%) ASD (mm)

Mean ± SD P value Mean ± SD P value

Total (n=85) 88.34±5.00 – 0.35±0.21 –

Metastasis shape 0.01 0.01

Regular (n=71) 88.98±4.64 0.33±0.21

Irregular (n=14) 85.07±5.45 0.45±0.19

Metastasis location 0.38 0.32

Supratentorial (n=73) 88.61±4.81 0.33±0.16

Infratentorial (n=12) 86.69±5.76 0.45±0.38

Ring-shaped reinforcement <0.01 0.17

Present (n=47) 90.16±4.26 0.36±0.17

Absent (n=38) 86.08±4.92 0.33±0.25

Peritumoral edema <0.01 0.57

Present (n=39) 90.52±4.10 0.35±0.15

Absent (n=46) 86.49±4.95 0.35±0.24

P values were calculated using the Mann-Whitney test. A 2-tailed P<0.05 indicated a significant difference. AI, artificial intelligence; DSC, 
Dice similarity coefficient; ASD, average surface distance; SD, standard deviation.

In these examples, the autosegmented contours using the 
AI tool were close to the ground truth contours although 
inconsistencies were present. These results indicate an 
excellent concordance between our AI model and human 
experts for brain metastasis contouring.

In the subgroup analyses (Table 2), the AI achieved a 
comparable performance with the metastasis location 
in terms of mean DSC (supratentorial area: 88.61%; 
infratentorial area: 86.69%; P=0.38) and mean ASD 
(supratentorial area: 0.33 mm; infratentorial area: 0.45 mm;  
P=0.32). However, significant differences were observed 
between the type of metastasis shape in terms of mean 
DSC (regular: 88.98%; irregular: 85.07%; P=0.01) 
and mean ASD (regular: 0.33 mm; irregular: 0.45 mm; 
P=0.01). For different enhancement shapes, the AI tool 
achieved a significantly larger mean DSC in the ring-
shaped enhancement tumors than in the none ring-shaped 
enhancement tumors (90.16% vs. 86.08%; P<0.01). There 
was also a significant difference mean DSC between the 
tumors with peritumoral edema and tumors without 
peritumoral edema (90.52% vs. 86.49%; P<0.01). In 
contrast, we did not observe differences for ASD between 
the different enhancement shapes and the tumors with 
edema and tumors without peritumoral edema.

The predicted contours of 572 slices from 85 patients 
from the test set were subjectively evaluated by the GK 
surgeon committee (Wang XY and Chen J). We chose 3–9 
slices from patients depending on the size of metastasis. The 
majority (514/572, 89.9%) of the AI-generated contours 
were evaluated as “No revision” (415/572, 72.6%) or “Minor 
revision” (99/572, 17.3%). Only 58 slices were assessed as 
requiring “Major revision”.

We compared the AI-generated contours with those of 
3 qualified GK surgeons (S1: Zhao JY; S2: Zeng YM; S3: 
Chen W), with the ground truth contours being delineated 
by the 2 experienced GK surgeons (Chen J and Wang 
XY). In terms of DSC, the AI tool outperformed 2 of the 3 
experts (AI tool: 88.09%; S1, S2 and S3: 85.92%, 86.32% 
and 86.75%; all P<0.05) and achieved comparable results to 
the other one. In terms of ASD, our AI tool outperformed 
1 of the 3 experts (mean ASD: 0.37 vs. 0.45 mm; P=0.03) 
and achieved comparable results to the other 2. Next, we 
evaluated the effectiveness and efficiency of our AI tool for 
assisting manual contouring, and the results are presented 
in Table 3 and Figure 4. We observed that 2 of 3 radiologists 
achieved better performance under AI assistance compared 
with manual contouring only in terms of mean DSC 
(S1: 88.00% vs. 85.92%, P<0.05; S3: 89.18% vs. 86.75%, 
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Figure 3 Illustrative contouring examples of the AI tool and human experts through the lower, middle, and upper 3-dimensional sections 
within the tumor. Red contours denote the human experts delineated ground truth, and the green contours denote the AI-generated 
contours. MRIs were obtained in patients with Dice similarity coefficients of 0.77 (A), 0.85 (B), and 0.96 (C). MRI, magnetic resonance 
imaging; AI, artificial intelligence.

P<0.05) and mean ASD (S1: 0.38 vs. 0.45, P<0.05; S3: 0.32 
vs. 0.40, P<0.05). The main advantage of AI assistance is 
that it can greatly save contouring time. The average time 
spent editing an AI-generated contour compared with 
the time spent with manual contouring was 74 vs. 196 
seconds (P<0.01), corresponding to a time savings of 60%  
work hours.

Discussion

In this study, an AI contouring tool was developed for single 
brain metastasis segmentation on a large set of postcontrast 
T1-weighted MRI examinations from 426 patients, and its 
ability to delineate single brain metastasis was validated via 
a comparison against qualified GK surgeons.
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The developed AI tool achieved excellent results, 
showing a mean DSC score of 88.34% (SD 5.00%) and 
a mean ASD of 0.35 mm (SD 0.21). In the subgroup 
analysis, we found that the metastasis shape, presence of 
ring-shaped reinforcement, and presence of peritumoral 
edema highly associated the performance of the AI tool 
(all P values <0.05). The AI tool can be easily used to 
segment metastases with a regular shape (round or oval) 

but showed limited performance for metastases with an 
irregular shape in both the DSC and ASD assessment. 
This can be explained by the fact that metastases with an 
irregular shape, characterized by rugged borders without 
order and interlacing with peritumoral edema, are difficult 
for neural networks to learn features from. Moreover, as 
the training of neural networks is data driven, the small 
number of patients with irregular metastasis shapes also 

Table 3 Comparison of manual delineation with AI-assisted delineation on 3 qualified GK surgeons. Forty patients were randomly sampled from 
the testing cohort for this comparison

Variables
DSC (%) ASD (mm) Time (s)

Mean ± SD P value Mean ± SD P value Mean ± SD P value

AI tool 88.09±5.12 – 0.37±0.16 – – –

S1 <0.01 0.01 <0.01

Manual delineation 85.92±6.08 0.45±0.23 212.78±102.65

AI-assisted delineation 88.00±5.23 0.38±0.23 77.85±54.00

S2 0.30 0.20 <0.01

Manual delineation 86.32±6.20 0.44±0.24 184.45±65.54

AI-assisted delineation 87.74±5.17 0.37±0.18 62.80±43.92

S3 0.03 0.03 <0.01

Manual delineation 86.75±6.65 0.40±0.22 189.93±62.92

AI-assisted delineation 89.18±3.21 0.32±0.15 82.55±38.33

P values were calculated using the Wilcoxon signed-rank test. A 2-tailed P<0.05 indicated a significant difference. AI, artificial intelligence; 
GK, Gamma Knife; DSC, Dice similarity coefficient; ASD, average surface distance; SD, standard deviation.
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Figure 4 Clinical evaluation results of 3 qualified GK surgeons. (A) DSC distributions of manual contours, post-AI-assisted contours, and 
AI-generated contours. (B) ASD distributions of manual contours, post-AI-assisted contours, and AI-generated contours. The green box 
denotes the result between the manual contours of radiologists and the ground truth contours. The red box represents the result between 
the post-AI-assisted contours of the radiologists and the ground truth contours. The blue box denotes the result between the AI-generated 
contours of the radiologists and the ground truth contours. DSC, Dice similarity coefficient; ASD, average surface distance; GK, Gamma 
Knife; AI, artificial intelligence.



Zhao et al. An automatic tissue delineation model for brain metastasis6732

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6724-6734 | https://dx.doi.org/10.21037/qims-22-1216

might have contributed to these results. We plan to 
collect more data related to irregular metastasis shape to 
validate this finding. Experimental results also indicated 
that the segmentation performance highly depended on 
the reinforcement shape and the presence of peritumoral 
edema in the DSC assessment but not in ASD assessment. 
This probably occurred because in metastases with ring-
shaped enhancement or edema, it is easier for GK surgeons 
to mark the boundary precisely, leading to less diffusion 
and much clearer boundaries. With more accurate 
boundary markers, the DCNN can learn the features 
more accurately. Although the marking precision between 
metastasis with and without ring-shaped enhancement 
or edema differed, the AI tool showed no difference in 
performance in terms of the ASD assessment. This is likely 
because the assessment accuracy of ASD was lower than 
that of DSC for this task.

Brain metastasis contouring is tedious, laborious, 
and time-consuming for GK planning. Thresholding 
is an additional tool that may help an experienced 
user to make the segmentation of brain metastases 
fairly rapid and relatively uniform depending on the 
thresholding parameters. However, it is not wildly used 
in clinical platforms. Several studies have paid examined 
autosegmenting brain metastases, but there was no 
clinical evaluation performed in these studies (16-20). 
Quantitative evaluation metrics can only evaluate the 
overall performance, treating every pixel with the same 
importance, which is different from clinical practice. Thus, 
there remains questions concerning the clinical applicability 
of these studies in the real world. In this study, the AI tool 
results in the testing cohort were subjectively evaluated by 2 
experienced physicians via consensus. Approximately 89.9% 
of predicted contours were evaluated as “No revision” or 
“Minor revision”. In addition, our AI tool outperformed 
2 of the 3 qualified physicians (both P values <0.05). By 
allowing the 3 physicians to delineate brain metastases 
based on the contours generated initially with our AI 
tool, the contouring time was reduced by 60%, with the 
contouring accuracy being improved. The resulting time 
savings could also be useful for streamlining therapeutic 
strategies that require timely contouring interventions, such 
as in neoadjuvant SRS (29). These findings suggest that our 
AI tool can be useful in performing single brain metastasis 
contouring for GK planning in clinical practice.

This study presents several unique aspects compared 
with previous studies for automatic brain metastasis 
delineation. First, on this study, we analyzed the effect of 

the peritumoral edema on segmentation performance, and 
our dataset contained not only regular (round or oval) but 
also irregular metastasis shapes, which is more reflective 
of real-world patients. Experimental results showed that 
both metastasis shape and peritumoral edema significantly 
associate segmentation performance (all P values <0.05).

Several limitations to our study should be noted. First, 
the dataset used was collected from a single institution, 
and thus additional data from multiple institutions and 
multiple manufacturers should be collected to validate the 
developed AI tool. Second, as shown in Table 1, the majority 
of brain metastases included in our study were regular in 
shape, located in the supratentorial region, and originated 
from lung tumors. This may limit the external realism 
and generalizability of our AI tool to brain metastases 
with different shapes, locations, and primary tumors. 
Future studies with larger and more diverse datasets are 
needed to validate the performance of our AI tool and 
expand its application to a wider range of brain metastases. 
Furthermore, this study was performed on single brain 
metastasis, and the development of an autosegmenting 
tool for multiple brain metastases is still required. A fairly 
recent study reported a PPV of 58%, a sensitivity of 85%, 
and a DSC of 0.85 of the entire segmentation mask for each 
patient, which may not be helpful in clinical practice (16).  
We will focus on validating the utility of AI for multiple 
brain metastasis contouring in clinical applications, 
especially given the increasingly common trend of SRS 
being preferred over whole brain radiotherapy even in this 
scenario (30,31).

Conclusions

In this study, we developed an AI model to automate tissue 
delineation for single brain metastasis of the GK plan. 
The AI model demonstrated a high contouring accuracy 
comparable to that of human experts. The contouring 
results of AI model were evaluated by human experts, and 
most were deemed to be directly usable in clinical practice 
without need of revision. Thus, the AI model can effectively 
reduce contouring time and aid in treatment planning of 
single brain metastasis for SRS. Future work will focus on 
the development and validation of the automatic contouring 
tool for multiple brain metastases.
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