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Abstract: Regardless of the newly diagnostic and therapeutic advances, coronary artery disease
(CAD) and more explicitly, ST-elevation myocardial infarction (STEMI), remains one of the leading
causes of morbidity and mortality worldwide. Thus, early and prompt diagnosis of cardiac dysfunc-
tion is pivotal in STEMI patients for a better prognosis and outcome. In recent years, microRNAs
(miRNAs) gained attention as potential biomarkers in myocardial infarction (MI) and acute coronary
syndromes (ACS), as they have key roles in heart development, various cardiac processes, and act
as indicators of cardiac damage. In this review, we describe the current available knowledge about
cardiac miRNAs and their functions, and focus mainly on their potential use as novel circulating
diagnostic and prognostic biomarkers in STEMI.

Keywords: microRNA; miRNA; miR; acute coronary syndrome; STEMI; myocardial infarction; MI;
cardiovascular diseases

1. Introduction

There is an increased incidence and prevalence of atherosclerosis and coronary artery
disease (CAD), which prolongs ischemic heart disease as one of the main causes of death
worldwide [1]. Destabilization and afterward rupture of arterial plaque can produce acute
coronary syndrome (ACS), which is classified into unstable angina, ST-segment elevation
myocardial infarction (STEMI), and acute myocardial infarction (AMI) [2]. Accordingly,
to the latest and fourth universal definition of myocardial infarction (MI), myocardial
injury is defined as a different disease entity along with myocardial infarction [3]. STEMI
is irreversible myocardial injury due to prolonged ischemia, and as the saying ‘time is
muscle’ remains relevant, early and rapid diagnosis of MI still represents an upmost priority.
Therefore, up-to-date cardiology guidelines highlight the pivotal need of rapid and early
diagnosis and appropriate recovery of coronary flow, using primary percutaneous coronary
angiography (PCI) or fibrinolytic therapy [4].

Because of the variable forms of debut, the first response at nitrate administration,
which was used for many years as a diagnostic pointer, proved less reliable as an indicator
of STEMI. Currently, the diagnosis is based on clinical symptoms, electrocardiogram
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modification, imaging evidence of cardiac cells ischemia, and circulating biomarker-level
change [5]. To give a short cardiac marker history, the first cardiac–protein biomarker
discovered and used in the 1980s and 1990s was creatine kinase myocardial band (CK-
MB) [6]. Then, in the early 2000s, cardiac troponins I/ T (cTns I/T) were introduced as
complementary to CK-MB, and soon after they were named as the new standard biomarker
for acute cardiac injury [7]. Since then, cTns continue to represent the gold standard
for MI diagnosis. However, even if they are still among the most widely used cardiac
biomarkers, their low positive predictive power and low disease specificity can lead to
incorrect diagnosis, as they are not completely specific to MI [8–10]. Additionally, the
improved sensitivity of high analysis assay cTns (hs-Tns) is associated with prolonged
time to correct diagnosis, undue interventions, and has diminished value in the first era
of disease development, and its prognostic role is less well-established. The downside of
this advancement is also an increased probability of false positive results, especially in the
elderly population due to frequent associated comorbidities, which further emanate the
need for new definition of acute pathological values in chronic diseases [11–13].

Thus, researchers are currently investigating new possible effective biomarkers for
STEMI diagnosis with use in clinical practice [14–16]. In consideration of their roles, steadily
growing research in life science of the expression pattern of cardiac tissue reveals that
microRNAs (miRNAs/miR) are up- or downregulated during myocardial injury, show-
ing their potential as biomarkers for AMI and ischemia–reperfusion injury (I/R) [17,18].
Accordingly, the gamut of new evidence lays out the potential role of miRNAs as novel
biomarkers in acute and chronic cardiovascular diseases such as stable CAD [17,19–22],
acute coronary syndromes (NSTEMI/STEMI) [23–26], or heart failure (HF) and cardiac
remodeling secondary to MI [27,28].

With this review, we hope to convey a better image behind miRNAs and their role
in myocardial infarction with predilection in STEMI disease; we discuss their potential
predictive and prognostic roles and future use as biomarkers for early assessment of MI in
clinical practice.

2. MiRNAs Superfamily

Noncoding RNAs (ncRNAs) such as miRNAs are currently under investigation as
potential additional or alternative biomarkers in cardiovascular diseases, showing promis-
ing results for implementation in clinical research [25,29,30]. The newly discovered long
noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have also circulating marker
features; however, their research is still at the beginning [31,32].

MiRNAs are endogenous noncoding short single-stranded RNA of 19–24 nucleotides
in length that negatively regulate post-transcriptional gene functions. Over 2000 miR-
NAs have been identified in the human genome; they can target almost 60% of all genes
which modulate the expression of around one third of all genes [21,33]. The structure of
miRNA is delineated by their particular nucleic acid sequences; it is highly preserved in
humans, animal, viruses, and plants, being first described in the 1990s during a study
of Caenorhabditis elegans, a free-living transparent nematode [34]. They are intracellularly
expressed and liberated extracellularly into plasma, saliva, breast milk, and urine, and are
transported by blood cells, apoptic bodies, exosomes, lipoproteins, micro vesicles, or are
connected with protein complexes [29,35]. Their vigorous stability to temperature changes
and their resistance to degradation by endogenous RNase activity renders miRNAs as
easy-to-use biomarkers in translational investigation and new tools for cardiac disease
diagnosis [36,37].

Circulating miRNAs act as posttranscriptional regulators of gene expression by
binding to the 3untranslated region (UTR) of the target gene, destabilizing the mRNA,
translation repression, and thereby inhibiting protein synthesis/translation. They par-
ticipate in many physiological and pathophysiological processes such as: the regulation
of signaling platelet pathways, gene regulation of eukaryotes, angiogenesis, and insulin
secretion [37–40]. MiRNAs are considered targets for personifying intervention and trans-
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lational therapy [41]. Under pathological conditions, cells can usually passively or actively
deliver microRNAs into circulation. In the midst of disease development, the characteristics
of plasma, tissue, and cell miRNA change, forming a specific profile similar to a “finger-
print” for prediction, diagnosis, and prognosis [42,43]. Cardio-enriched miRNAs, such as
miR-1, miR-195, miR-133, miR-126, miR-16, miR-590, miR-199, miR-143, miR-208a, miR-499,
miR- 27-b, miR-497, miR-126, miR-30-d, miR-208b, miR-15a/b, and miR-16-1/2, take part
in the regulation of cardiovascular system development [44]. Among them, miR-1 and
miR- 133, which have the highest expression levels in the heart, have controversial tasks on
cardiac cells as they promote cells proliferation and also inhibit cardiac differentiation [45].
On the contrary, miR-499 and miR-208 are found in lower concentrations in the heart; they
are more specific in cardiac injury than in skeletal muscle [46].

Given that miRNAs can upregulate gene expression by binding to the promoter re-
gions and target sites, many miRNA expression signatures are involved in oxidative stress,
inflammation, apoptosis, fibrosis, and cardiac remodeling of ACS-related pathways [47–70]
(Table 1). Nonetheless, every individual miRNA has its own particular role in cardiac
biogenesis and progression, ergo, burgeoning scientific research which explores the role of
miRNAs as novel diagnostic, prognostic biomarkers, and possible therapeutic targets in
MI (Figure 1), is eagerly desired [71,72].

Table 1. Different miRNAs and their influence on pathophysiological pathways involved in myocardial infarction or after
infarction.

miRNAs Cardiac Processes Biological Pathways Ref.

miR-378 Modulates cardiac fibrosis PCFL regulates cardiac fibrosis via miR-378/GRB2 pathway; [47]
miR-101 Cardiac fibrosis By decreasing c-Fos and its downstream TGF-β1 [48]

miR-208a Apoptosis By Upregulating Bax; [49]

miR-208a Promoted apoptosis and
oxidative stress

By regulation of protein tyrosine phosphatase receptor type G
and protein tyrosine phosphatase; non-receptor type 4 [50]

miR-208a Myocardial fibrosis via upregulation of endoglin; [51]

miR-208a Cardiac hypertrophy and
fibrosis Via upregulation of endoglin after activation by TGF-β1; [52]

miR-223 Cardiac fibrosis By negatively regulating RASA1 expression, and it mediates the
pro-fibrotic effects of TGF-β1 in vitro; [53]

miR-133a Apoptosis suppressor
By inhibiting TAGLN2, HSP60, HSP70, Apaf-1, caspase-3/8/9

expression, and promoting antiapoptotic protein Bcl-2 expression,
and by regulating caspase-9.

[54]

miR-133a Inhibits angiogenesis, By targeting SRF; [55]
miR-133a Inhibits angiogenesis, Via VEGFR2 and fibroblast growth factor receptor 1; [56]

Anti-apoptotic role
By inhibiting proapoptotic genes: death-associated protein kinase

2 (DAPK2), apoptotic protease activating factor 1 (APAF1),
caspase-9, Bcl-2-like 11, and Bcl-2-modifying factor (BMF);

[57]

MiRNA-23a Cardiac apoptosis By suppressing the expression of manganese superoxide
dismutase. [58]

miR-26a-5p Cardiac fibrosis Regulation of cardiac collagen I expression by targeting ULK1; [59]

miRNA-26b Relieves inflammatory
response

By suppression of mitogen-activated protein kinase (MAPK)
pathway through binding to Prostaglandin-Endoperoxide

Synthase 2 (PTGS2);
[60]

miRNA-144 Oxidative stress Through regulation of Forkhead Box O1; [61]

miRNA-24-3p Reduces apoptosis Via regulation of Keap1-Nrf2 pathway in response to
ischemia/reperfusion injury; [62]

miR-21 Attenuates inflammation Through targeting kelch repeat and BTB (POZ) domain
containing 7 and inhibiting p38 and NF-κB signaling activation; [63]

miRNA-143-3p Promotes fibrosis By activation of P38, ERK, and JNK pathways; [64]
miRNA27a,

miRNA-28-3p,
miRNA-34a

Contribute to oxidative
stress

By the inhibition of Nrf2 translation in chronic heart failure
post-MI; contributing to the dysregulation of the Nrf2/ARE

signaling pathway;
[65]
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Table 1. Cont.

miRNAs Cardiac Processes Biological Pathways Ref.

miRNA-320 Cardiomyocyte death and
apoptosis

By regulating small heat-shock protein 20 (Hsp20) protein
synthesis; [65]

miR-200a Reduce inflammation By targeting the Keap1/Nrf2 and β-catenin pathways; [66]
miR-6391, miR-671,

miR-558,
miR-1538

Apoptosis in the non-infarcted
areas

after MI

Regulation of the proteins involved in the synthesis and signaling
cascade of sphingolipids; [65]

miR-6391 Tissue remodeling Via regulation of the neurotrophin signaling pathway; [67]
miR-25, miR-3535,

miR-6391 Cardiac fibrosis Via downregulation of collagen organization. [68]

microRNA (miRNA); pro-cardiac fibrotic lncRNA (PCFL); growth factor receptor bound protein 2 (GRB2); myocardial infarction (MI);
transforming growth factor-β1 (TGF-β1); bcl-2-associated X-protein (Bax); RAS p21 protein activator (GTPase-activating protein) (RASA1);
serum response factor (SRF); vascular endothelial growth factor receptor 2 (VEGFR2); unc-51-like autophagy activating kinase 1; antioxidant
response element (ARE); nuclear factor-erythroid factor 2-related factor 2 (Nrf2); Kelch-like ECH-associated protein 1 (Keap1).
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Figure 1. The generation and delivery of miRNAs in circulation during STEMI. In response to
myocardial infarction, impaired cardiomyocytes release circulating miRNAs via protein complexes,
microvesicles, exosomes, apoptotic bodies, and/or by mesenchymal stem cells, and then are either
upregulated or downregulated. ST segment (ST); electrocardiogram (ECG); acute coronary syndrome
(ACS); ST-segment elevation myocardial infarction (STEMI); ribonucleic acid (RNA); microRNA
(miRNA); mesenchymal stem cells (MSCs).

3. miRNA in Myocardial Infarction and STEMI

miRNAs signatures were described having a role in MI for the first time more than
a decade ago [73,74]. Since then, evidence points out that miRNA levels in the plasma of
healthy subjects are almost undetectable, whereas in individuals with STEMI, a significant
increase was measurable one hour after the onset of ischemia. Additionally, patients with
suspected ACS had significantly increased levels of miRNAs, even in patients with initially
negative troponin [75–77]. Therefore, many known miRNAs, especially, miRNA-1, miRNA-
133 (both miRNA- 133a and miRNA-133b), miRNA-208, miRNA-208a, and miRNA-RNA
208b, are still being investigated in cardiac infarction [76–80].

3.1. miRNA-1, and miRNA-133

MiRNA-1 is one of the most highly conserved and expressed muscle-specific miRNA,
which has two members, miRNA-1-1 and miRNA-1-2, which form bicistronic clusters
with miR-133 [81]. Studies in embryonic stem (ES) cells reveal the role of miRNA-1 and
miRNA-133 in driving cardiac differentiation. Cardiac-specific overexpression of miR-
1 in the embryonic heart inhibits cardiomyocyte proliferation and prevents expansion
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of the ventricular myocardium [82]. Evidence shows that high levels of miR-133a and
low levels of miR-1 seem to attenuate ischemic reperfusion injury [83], while increased
microRNA-1 and microRNA-133a levels in the sera of patients with cardiovascular disease
indicate the existence of myocardial damage [84]. Circulating miR-1 at admission showed
incremental value in predicting left ventricle (LV) remodeling visualized with cardiac
magnetic resonance, with an area under the curve (AUC) value of 0.68 (95% CI: 0.56–0.78),
6 months after STEMI [85]. Upon investigating patients undergoing transcoronary ablation
of septal hypertrophy, other authors noted that plasma levels of miR-1, miR-133a, and
cardiac-enriched miR-208a were raised in the first 4 h of cardiac injury. This increase also
correlated with cTn levels; however, even if temporal release of ncRNAs may differ, a
combination of these biomarkers could act as diagnostic tools [86].

MiRNAs such as miR-1, miR-126, miR-223, miR-199, and miR-21 are highly expressed
in activated platelets by ischemia, therefore antiplatelet medication is affecting their plasma
levels. While some suggest that they may have not diagnostic value, they may, however,
play a predictive role in cardiovascular disease risk assessment [87,88]. Levels of platelet
miR-1, with an arrive peak level within the first 2 h after the start of myocardial ischemia,
seem to correlate with serum CK-MB concentrations [89]. In another research, circulating
cardiac-specific miR-1 emerged as a marker of cardiomyocyte injury and loss of myocardial
contractility, whereas endothelial-specific miR-126 concentration reflected endothelial
activation and damage in the most extreme stage of atherosclerosis, and in the acute
phase of AMI. Their values decreased after a follow-up period of 19.2 weeks [90]. Plasma
levels of miRNA-133a and -133b, which peaked at approximately 2 h after occurrence of
MI in STEMI [56], and circulating miR-122-5p/miR-133b ratio [91], may become specific
early prognostic markers in acute MI. MiR-1 predicted left carotid artery stiffness along
with miR-122, miR-132, and miR-133 in subclinical aortic atherosclerosis associated with
metabolic syndrome [92], and miR-1, miR-208a, miR-133a, and miR-499 were found highly
expressed in MI [93]. Both studies imply that when combined, these markers may have a
more substantial diagnostic or prognostic value than any single miR, and future follow-up
studies are needed to establish their clinical relevance. Moreover, a recent study revealed
that miR-133b could significantly differentiate patients with STEMI from non-STEMI,
and that he and miR-21 could become possible candidates of novel biomarkers in early
prediction of CAD [94].

Among other studies, researchers noted that miRNA-1 is also a potential marker of
cardiac injury in cardiogenic shock and is related to circulating glucose in STEMI patients,
while miRNA-124a and -133 are more specific markers of STEMI. In spite of these results,
they concluded that none of the miRNAs could be correlated to the extent of injury, progress
of the disease, or prognosis of patient outcome, and therefore have no potential in becoming
biomarkers of myocardial damage [95].

3.2. miRNA-208

Interestingly, miR-208a is cardiomyocyte-specific, not expressed by leucocyte, and
may have a key role in cell proliferation and migration [96]. Research shows that miR-208 is
associated with long-term prognosis following MI [97] and can be an independent predictor
of the no-reflow phenomenon in STEMI individuals undergoing primary coronary interven-
tion [98]. In a small size study, miRNA-208a was superior to cTnT in predicting occurrence
of in-hospital major adverse cardiac events (MACE), in MI diagnosis, and in predicting out-
comes of PCI-STEMI patients. The diagnosis performance of this microRNA is comparable
to the known used cardiac biomarkers: CK-MB, cTnT and to hs-cTnT (p = 1.000). Authors
believe that miRNA-208a is significantly better than routine biomarkers and is more specific
and reliable than miR-30e [99]. miR-208b was considerably raised in the AMI subjects
compared with healthy people, whereas miR-26a and miR-191 were decreased [100]. Re-
lease kinetics of circulating miRNA-208a were also observed in early phases of MI, the
peak being registered at 3 h after reperfusion (p < 0.001), while traditional biomarkers
such as cTnI and CK-MBmass reached the maximum concentrations at 6 h after reperfu-
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sion [101]. Moreover, peak values of miRNA-208b were well associated with the ejection
fraction and troponin I levels [102], and a recent meta-analysis identified a significant
association between miR-208 and mortality after AMI (HR 1.09, 95% CI 1.01—1.18) [103].
Cheng et al. [104] found that urine concentration of miRNA-1 was raised and peaked at
24 h in rat model, and in STEMI patients, 60% of them had increased levels, whereas urine
miRNA-208 can be found in only 25% of patients, suggesting that urine miRNA-208 might
not be an applicable biomarker. Additionally, the early expression of miR-423-5p in AMI is
significantly increased with subsequent normalization within 6 h, but levels of miR-1 and
miR-208a were not significantly different in the STEMI group than in the control group,
and no significant correlations between the expression level of miRNAs and any of the
echocardiographic parameters of LV were found [105]. These conflicting results can be
attributed to the sample size of the studies, quantification method, and probably due to
pre-analytical and methodological variances.

3.3. Other miRNAs

miR-1-3p, miR-19b-3p, miR-208a, miR-223-3p, miR-483-5p, and miR-499a-5p are
promising biomarkers for AMI due to their satisfactory diagnostic accuracy and short
time window (within 4 h of the onset of symptoms) [106]. Circulating miR-19b-3p, miR-
134-5p, and miR-186-5p could also be considered promising novel diagnostic biomarkers
for the early phase of AMI [107]. Another study noted that miR-3113-5p, miR-223-3p,
miR-499a-5p, and miR-133a-3p may provide independent diagnostic biomarkers for sud-
den cardiac death (SCD), a combination of two miRNAs presented higher diagnostic
value (AUC = 0.7407–0.8667), and they could be further used to discriminate the causes of
SCD [108]. After evaluating 66 AMI patients, the receiver operating characteristic (ROC)
analysis indicated that miR-22-5p showed considerable diagnostic efficiency for predict-
ing AMI, while plasma miR-22-5p levels were significantly decreased in these patients.
Combining miR-122-5p and miR-22-5p raised the sensitivity (98.6%) while distinguishing
patients with AMI and healthy comparisons [109]. Another report found significantly
higher levels of miR-22-5p and miR-150-3p during the early stage of AMI, and that their
expression levels peaked earlier than cTnI. In this case, miR-150-3p was the only miRNA
investigated that was downregulated by medications for CAD and a combination of these
three miRNAs improved diagnostic efficacy [110].

Lower levels of miR-26a and miR-191 were found in the plasma of individuals with
acute MI [111]. Using cDNA synthesis and quantitative PCR, plasma levels of miR-21-5p
and miR-146a-5p were significantly elevated in patients with ACS [22]. Expressions of
miR-30d-5p, miR-146a-5p, and miR-23a-3p were statistically lower in patients with STEMI
compared with the control group patients. Downregulation of miR-23a-3p was significantly
negatively correlated with risk scores of APACHE II (Acute Physiology and Chronic Health
Evaluation II) and GRACE (Global Registry of Acute Coronary Events), promoting this
miRNA as potential new useful marker to assess short-term prognostic value and the
severity of STEMI [112]. ROC analysis indicated that miR-126-5p, miR-145-3p, and miR-
17-5p displayed more accurate diagnosis of AMI after PCI [113]. It is supposable that
circulating miR-126, miR-197, and miR-223 levels are influenced by antiplatelet therapy in
secondary prevention. Consequently, higher levels of microRNAs may mirror less-efficient
platelet inhibition [114].

Validated by quantitative PCR, the expression of miR-155, miR-145, and let-7c was
markedly reduced in patients with CAD compared with controls [115], while others ex-
hibited that miR-486 and miR-150 plasma levels were significantly higher in AMI patients
compared with healthy controls [116]. This current clinical trial (NCT03984123), which eval-
uates patients within the 48 h of STEMI post-PCI, noted that compared with baseline there
were increased levels of miR-150,-21,-208 (p < 0.05) and reduced malondialdehyde after
one or two cycles of bilateral brachial cuff inflation. Additionally, increased concentrations
of miR-144 were related to the carotid-femoral pulse-wave velocity reduction (r = 0.763,
p < 0.001) after the first cycle inflation [117].
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Overexpression of miR-486-5p reduced cardiomyocyte apoptosis and improved car-
diac function in rats by activating the phosphatidylinositol 3-kinase (PI3K)/ protein kinase
B (Akt) pathway [118]. In another study, miR-122-5p was the only miRNA to be meaning-
fully upregulated in the sera of both patients with stable CAD and unstable CAD [119].
It is noteworthy that miR-142-3p might be an independent predictor of no-reflow during
PCI in patients with STEMI [120]. After evaluating STEMI subjects treated with PCI who
underwent cardiovascular magnetic resonance (CMR) imaging at 1 week and 6 months
after STEMI, analysts discovered that miRNA-1254 predicted changes in left ventricle
volumes and left ventricle ejection fraction (LVEF) at 6 months after STEMI [121]. QRT-
PCR showed that plasma miR-941 level was elevated in the STEMI and the ACS group
compared with the stable angina (p < 0.01) and NSTEMI groups (p < 0.05) [122]. MiR-663b,
along with a signature consisting of several other miRNAs, has high statistical power in
AMI with an accuracy of 92.5% [123]. Using kinetic analysis, the study discovered a fast
time-dependent increase in miR-133a, miR-133b, miR-193b, miR-499, and miR-320a in
STEMI at admission and after revascularization (at 3, 6, 12 and 24 h). Among them, only
miR-320a was significantly associated with left ventricular (LV) adverse remodeling [124].

In this recent prospective observational study, authors objected a significant increase
in miR-423-5p and miR-320a at 12 h compared with baseline (p < 0.001), with a notably
decreasing levels from 12 to 24 h. As this is a small group study, results should be inter-
preted with caution; nonetheless, they underly the dynamic behavior of miRNAs (miR-21,
miR-122, miR-320a, and miR-423-5p) during the first 24h of the coronary event [125]. The
microarray analysis revealed miR-185 levels at discharge were significantly correlated with
the troponin-I and CK-MB values, and one month after STEMI they were associated with
a high wall motion score index and a low ejection fraction [126]. Li et al. [127] tried to
find the role of pmiRNAs in myocardial pathogenesis. They noted that STEMI subjects
had raised circulating levels of pmiR-150 and pmiR-223 and decreased levels of pmiR-126.
Among them, only pmi-R126 presented a correlation with plasma troponin I, showing
its potential as a novel biomarker for STEMI. In the same manner, pmiR-126 displayed
positive correlation with cTnI (p = 0.011); however, they concluded that its diagnostic value
is limited and more studies are needed. Other results exhibited that miR-126-3p along with
miR-223-3p are promising independent predictors of thrombotic events and can be used
for ischemic risk stratification after AMI [128].

3.3.1. miRNA-30 and miRNA-146

Both miRNA-145 and miRNA-30c correlated with the size of myocardial tissue infarc-
tion [129]. Using PCR, authors identified lower plasma miRNA-30e levels at admission,
which was an independent predictor of no-reflow in STEMI patients who underwent PCI,
positively correlated with LVEF, and negatively correlated with high-sensitivity CRP lev-
els [130]. Scientific research on rats showed that MiR-30e-3p is also involved in myocardial
injury induced by coronary microembolization via autophagy activation [129], and that
MiR-30e was poorly expressed in myocardial tissues of MI rodents [131]. When evaluating
89 STEMI patients with PCI, the low-sCD40L group had 3-fold higher levels of miR-19b at
admission compared with the healthy group, and higher miR-145, miR-19b, and miR-222, at
day 30, compared with stable angina patients [132]. Additionally, circulating concentration
of miR-145 was correlated with infarct size, cTnI and CK-MB levels, and showed value as
an independent predictor of cardiac events [133].

MiRNA-146a is considered a dominant negative regulator of innate immune response
by negative feedback regulation of TRL signaling. Raised expression of this miRNAs
indicates excessive inflammation [134]. Concentration of circulating miR-146a, miR-21,
CK-MB, cTnI, NT-proBNP, as well as higher eGFR, were markedly higher in subjects with,
than in those without of LV remodeling (p < 0.05) after STEMI. Interestingly, only the
combination of miR-146a and miR-21 were independent predictors of LV remodeling [135].
One study reveals that miR-146a-5p is significantly elevated in patients with ACS [22],
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while on the contrary, miR-146a-5p was also detected statistically lower in patients with
STEMI compared with the control group patients [112].

3.3.2. miRNA-449a

Interestingly, miR-449a is one of the miRNAs that has protective effects against
ischemia/reperfusion-induced apoptosis by inhibiting calcineurin-mediated dephospho-
rylation of dynmin-related protein-1. Knockdown of miR-499 persuaded myocardial
apoptosis and elevated the infarct size [136]. Increased levels of miR-449a are correlated
with AMI in rodent models and in humans [137], especially in the first days, followed
by a decline to undetectable levels and with a sensitivity (0.84 (95% CI: 0.70–0.92)) and
specificity (0.97 (95% CI: 0.87–0.99)) in AMI detection [103]. Upon evaluating patients with
stable CAD and STEMI vs. control, authors found after adjustment for risk factors elevated
miR499-5p levels and pointed out its role as an independent predictor of STEMI [138]. In
a small sample study of the Egyptian population, AMI patients had higher expressions
of the miR-499a (>105-fold, p < 0.001) variant, compared with hypertensive patients and
healthy controls [139]. All 77 evaluated STEMI patients had significantly higher levels of
miR-499-5p, miR-133a, and miR-133b [140]. Hs-cTnT in combination with miR-499, miR-1,
or miR-21 achieved significant higher diagnostic performance than hs-cTnT alone [75].

3.3.3. miRNA-20 and miRNA-26

The very recent Japan Collaborative Cohort Study for Evaluation of Cancer Risk
(JACC) explored the potential relationship between circulating miRNAs and the risk of
premature death. They discovered that miR-21 and miR-29a individual levels had a
significantly higher risk of total, cancer, and cardiovascular disease (CVD) death than those
with medium miR-21 and miR-29a levels. These results imply that miRNAs could be used
as biomarkers for early detection of high-risk individuals of cancer and CVD [141]. In a
secondary prevention framework performed on almost 900 patients diagnosed with CAD,
only elevated miR-12+ showed predictive properties for future CV death [142]. MiR-21
is elevated in ACS [75], and has been associated with cardiac injury and also with cardio
protection [87,94,143]. Its upregulation can attenuate cardiomyocyte apoptosis, the death
of ischemic cortical neurons, and it may induce cardiac hypertrophy and fibrosis [144].

miR-26 is noted to participate in the pathology and recurrence of MI, by regulating
miRNAs and other transcription factors which co-mediate this underlying processes. This
micro-RNA could be measured in patients as an indicator of acute myocardial infarc-
tion [145]. In this small study, patients with STEMI and oxygen-glucose deprivation (OGD),
had increased levels of creatine kinase (CK), creatine kinase-MB (CK-MB) and troponin
I associated with miR-26a downregulation. They also found lower circulating levels of
miR-26a in the infarct zone of the heart in comparison with the border and remote zones, in
STEMI-induced mice at day one [146]. In contrast, it was previously described that miR-26a
expression is raised in human patients with ACS and not lowered [147]. In conjunction,
these data imply that the levels of miRNAs such as miR-26a are dynamically regulated via
pathological mechanisms and different stimuli, at each stage of MI, acute, subacute, and
chronic phase.

3.3.4. miRNA-155

miR-155 is upregulated in activated inflammatory cells, and it can modulate immune
responses through cell differentiation and cytokine cell generation [148]. Over the years,
many conflicting results regarding miRNA-155 have come forth [71]. One study described
that miRNA-155 expression is highly elevated in human muscle tissue after ischemia–
reperfusion injury, levels which were correlated with increased expression of TNF-α, IL-1β,
and leucocyte infiltration. The same research highlighted in MI-rodents how miRNAS-155
aggravates the inflammatory response via modulation of suppressor of cytokine signaling 1
(SOCS-1)-dependent generation of reactive oxygen species. RNA silencing of the direct miR-
155 target gene SOCS-1 abrogated this effect, showing its potential as a future therapeutic
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target [149]. MiRNA-155 seems to predict cardiac death within one year following hospital
discharge for acute MI [150]. Impaired downregulation of its expression at day 5 was
linked to subsequent adverse LV remodeling to STEMI, and it is positively associated with
the monocyte (day 5, p = 0.046) levels [151]. Based on the result of this small sample study,
we predict that a circulating biomarker such as miR-155 may be able to predict this STEMI
consequence and help instate preventive measures that target inflammation at an early
stage and could improve prognosis.

3.3.5. miRNAs in Plaque Vulnerability

ROC curve analysis showed that a combination of these 3 miRNAs, miR-744-3p,
miR-330-3p, and miR-324-3p, is associated with plaque rupture (PR) in STEMI patients
compared with control. They may have clinical utility as diagnostic markers for categoriza-
tion of plaque phenotype in STEMI, as independent predictors of PR, and for discriminating
between patients with PR and patients with plaque erosion [152]. Notably, they are consid-
erably enriched in the metabolism of bile, insulin, and thyroid hormone pathways, which
are associated with plaque vulnerability [153]. Moreover, a clinical study investigated
patients who underwent carotid endarterectomy and noted that miR-330-5p is associated
with carotid plaques instability [154]. Other studies related to plaque vulnerability dis-
played evidence in which high levels of miRNA-3667-3p are linked to coronary plaque
erosion in STEMI, and that MicroRNA-331 [155] and microRNA-151-3p could be novel
biomarkers in STEMI caused by plaque rupture [156]. Notably, miR-324-3p seemed to
raise the expression of insulin-like growth factor 1 (IGF1R), which was also associated with
plaque instability [157], and levels of levels of miR-324-5p in endothelial progenitor cells
derived from the peripheral blood of STEMI individuals were significantly lower compared
with the healthy volunteers [158]. Interestingly, evaluation of one-year outcomes in hyper-
glycemic STEMI patients subjected to thrombus aspiration before primary PCI showed that
hyperglycemic thrombi have resulted in increased miR33 expression and lower sirtuin 1
SIRT1, a member of the silent information regulator. This data points out the involvement
of the miR33/SIRT1 pathway in the highly pro-coagulable and pro-inflammatory state coro-
nary thrombi in hyperglycemic STEMI individuals [159]. Additionally, recent data show
that miRNA-9 overexpression inhibits vulnerable atherosclerotic plaque formation and
enhances vascular remodeling in the mouse model of acute coronary syndrome (ACS) [160].
Their involvement in plaque instability opens new pathways in visualizing miRNAs as
possible therapeutic targets to prevent plaque rupture and, subsequently, the onset of ACS.

4. Prognostic Role of miRNA in MI

We previous described the involvement of miRNAs in atherosclerosis, CAD, plaque
formation, erosion, and rupture. Some miRNAs could be a possible promoter for HF and
other adverse clinical outcomes. They not only exhibit a predictive role in cardiovascu-
lar events, but also can mediate post-MI events, with substantial value in appreciation
of ACS prognosis. Studies targeting miRNAs have investigated their prognostic func-
tion concerning the ability to predict left ventricular (LV) remodeling and cardiovascular
mortality [61,112,139,161,162].

Upon analyzing, researchers have found that patients with low levels of miR-101
or miR-150, and elevated levels of miR-16 or miR-27a, were at higher risk of flawed LV
contractility after STEMI [163], and that miR-150 has a strong individual relationship with
post-MI LV remodeling [164]. MicroRNA-133a and miR-133b were also evaluated in STEMI
prognosis [165], being positively associated with microvascular obstruction and worse
LV functional recovery [166]. MicroRNA-133a concentrations showed significant correla-
tions (p < 0.001) with all prognostic factors detected by CMR (infarct size, microvascular
blockage, myocardial salvage index). Even if major acute cardiovascular events (MACE)
occurred significantly more often in the miR-133a group, its concentrations were unable
to independently predict clinical events [167]. Others showed that the miR-122-5p/133b
ratio may be a new prognostic biomarker for the early identification of STEMI patients at
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a higher risk of developing MACE after undergoing PCI intervention [91]. While varied
levels of miR-184 showed a positive correlation with MACE [168], miR-192, miR-194, and
miR-34 were significantly higher in the sera of patients who later developed HF [169], both
results displayed the promising role of these miRNAs as prognostic biomarkers in MI.

This multicenter, prospective SPUM-ACS-Cohort showed that miR-26b-5p, miR-320a,
and miR-660-5p are associated with adverse cardiovascular outcomes in STEMI subjects,
discriminated for MACE, and increased risk prediction when added to the Global Registry
of Acute Coronary Events (GRACE) score. For the first time, researchers performed a
miRNA profiling and validation approach to assess miRNAs related to adverse prognosis
in MI [170]. Related to prognosis, raised levels of miR-133a, miR-208b, miR-197, and miR-
223, were strong predictors of the risk of cardiovascular death in patients with ACS [142],
and miR-208b, miR-34a, and miR-499-5p were highly associated with increased risk of
death/HF in MI subjects [171]. In addition, miR-1 and miR-499 presented high accuracy in
discriminating sudden cardiac death from AMI [172] while, elevated circulating miR-328
and miR- 134 levels were correlated with a high risk of death or HF within 6 months
of AMI [173]. Other miRNAs such as, circulating miR-30a-5p and miRNA-148 exhibit
potential as a prognostic biomarker in MI. MiR-30a-5p levels predicts LV dysfunction
and HF onset after acute MI [174], and miRNA-184 has a dynamic evolution before and
after PCI treatment for AMI, being correlated with recent ventricular remodeling indexes
and the future occurrence rate of MACE [168]. The large AtheroGene study concluded
that single miRNAs could predict mortality in secondary prevention settings, improving
various model performance measures, and can represent valuable biomarkers for risk
estimation in ACS [175].

Considering the present data, high miRNA expression may be an independent risk
factor for patients with MI and could be a promising prognostic biomarker for post-MI and
implicitly STEMI, MACE and sudden cardiac death, assessment [162,176]. A systematic
review and meta-analysis highlighted the barriers behind the use of miRNAs as prognostic
markers and do not support use of miRNAs for prognostication post-ACS beyond tradi-
tional cardiovascular risk factors, stratification tools, and existing risk scores [78]; therefore,
further scientific research and larger prospective studies using normalized tests for miRNA
are warranted to validate our conclusion.

5. Discussion

Since they were first discovered, continuously and rigorous research tried to find the
precise role of miRNA in different known pathologies including cardiovascular disease. As
observed, they detain key functions in cardiac biogenesis, development, and progression,
and given their stable structure and rapid circulation release after myocardial injury, they
were proposed as potential future biomarkers in ACS. More specifically, older and recent
evidence point out the potential role of miRNAs as novel biomarkers not only in STEMI,
but also in STEMI’s secondary complication such as LVR or HF (Table 1), [13–179], or even
their use as promising new therapeutic targets [180,181] (Table 2).
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Table 2. Current information on the role of various miRNAs in STEMI.

Subjects
Enrolled Animal Detection

Method
Marker

Comparison Salient Findings Year Ref.

33 STEMI vs.
controls

C57BL/6
female mice qRT–PCR cTnI

-Upregulation of miR-1, -133a,
-133b, and -499-5p plasma levels,

both in humans and mice;
-miR-122 and -375 lower than

control only in STEMI patients;

2010 [56]

397 STEMI vs.
113 NSTEMI vs.

87 control
- qRT–PCR hs-cTnT

-A total of 3 h after onset of pain,
miR-499 was

positive in 93% of patients and
hs-cTnT in 88% of patients

(p −0.78); miR-499 and hs-cTnT
provided comparable diagnostic
value with areas under the ROC

curves of 0.97;

2012 [93]

STEMI vs.
control

Rat model of
AMI qRT–PCR serum TnI

- A total 50-fold increase in miR-1
level in urine from rats at 24 h

after AMI (p < 0.0001; in humans:
a positive correlation serum TnI
and urine miR-1 levels (r = 0.70;

p < 0.05), 5 patinets had very low
levels of miR-208 in urine;

2012 [104]

237 STEMI
post-pPCI - qRT–PCR

CK-MB
NT-

proBNPcTnI

- miR-21 correlated with cTnI
(p < 0.0001), but not with CK-MB

(p = 0.064)/ NTproBNP
(p = 0.0665); miR146a (odds ratio,
OR = 2.127, p < 0.0001), miR-21

(OR = 1.119, p < 0.0001) predictors
of LVR;

2015 [135]

77 STEMI, 21
NSTEMI vs. 23

control

qRT–PCR and
ELISA cTnI

- miR-133b and miR-499-5p were
significantly higher in the early
phase (the first 4 h) (p < 0.05);

2015 [140]

50 STEMI, 50
stable CAD vs.

50 control
- qRT–PCR -

- miR499-5p independent
predictor of STEMI (OR = 3.03,

p = 0.001); MiR15a-5p,
miR146a-5p, and miR16-5p had

AUCs of 0.67, 0.65, and 0.68,
respectively;

2016 [139]

16 STEMI vs. 27
NSTEMI - qRT–PCR -

- miR-134 s 3.83-fold higher in the
STEMI with IRA occlusion group

(p < 0.025); significantly higher
hs-TnT levels, compared with

NSTEMI;

2016 [178]

5 STEMI, 5
NSTEMI vs. 5

controls
- qRT–PCR -

- plasma miR-941 level was
elevated 2.28-fold in STEMI
compared with non-CAD

(p < 0.05);

2017 [122]

20 STEMI vs. 8
control - qRT–PCR -

- miR-155 (day 5) was higher in
patients with adverse LVR,

compared with patients without
adverse LVR; its levels were

associated to relative change in
end-diastolic volume (ρ = 0.490,

p = 0.028);

2017 [151]

9 STEMI, 5
NSTEMI vs. 12

controls
- sRNA-seq and

qRT–PCR -

- miR-134-5p, miR-15a-5p, and
let-7i-5p significantly

downregulated (5-fold, 7-fold and
3.5-fold, respectively);

discriminatory power was highest
with let-7i-5p (AUC = 0.833);

2018 [76]
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Table 2. Cont.

Subjects
Enrolled Animal Detection

Method
Marker

Comparison Salient Findings Year Ref.

225 STEMI
post-pPCI - qRT–PCR hs-CRP

- miRNA-30e yielded AUC of
0.914 (95% CI: 0.870–0.957;

sensitivity 1
4 82.7%, specificity 1

4
88.6%, p < 0.001)—independent

predictor of the no-reflow
phenomenon during pPCI STEMI

patients;

2018 [98]

70 STEMI - qRT–PCR -

- miRNA-1254 was associated
with decreasing LVESVI (p = 0.006)

and significant positive
association with increasing LVEF

during follow-up (p < 0.001);

2018 [121]

20 STEMI, 18
NSTEMI-
TASH, vs.

control

- qRT–PCR

cMyBP-C
hs-cTNI/T

CK-MB
CK

- miR-208b and
miR-499(p < 0.0001) had the

highest correlation with hs-cTnT;
miRNAs failed to identify cases
presenting with low troponin

value;

2019 [25]

62 STEMI vs. 26
controls - qRT–PCR -

- miR-30d-5p, miR-146a-5p, and
miR-23a-3p were, respectively,

1.581-fold, 4.048-fold, and
4.857-fold lower in patients with

STEMI (<0.001)

2019 [112]

40 STEMI - qRT–PCR -

-miR-28a diagnostic accuracy for
MI (AUC = 0.926); after primary
PCI, miR-208a it was superior to
cTnT in prediction of no-reflow

(AUC difference of 0.231,
p = 0.0233) and MACE (AUC
difference of 0.367, p = 0.0053;

2020 [99]

80 STEMI - PCR
CK–MB

NT-proBNP
troponin T

-miR-1 expression predicted LV
remodeling with AUC value of

0.68 (95% CI: 0.56–0.78);
2020 [85]

15 STEMI vs. 11
US/NESTEMI
vs. 54 control

- qRT–PCR -

- Both miRNAs differentiated
STEMI from NSTEMI with

miR-133b AUC 0.80 with >75.6%
sensitivity and specificity; AUC
for miR-21 was 0.79 with >69.4%

sensitivity and specificity;

2020 [94]

42 STEMI
post-pPCI vs.

14 control
- qRT–PCR CK

- miR-29a, miR-29b, miR-324,
miR-208, miR-423, miR-522, and

miR-545 was differentially
expressed before pPCI in STEMI;

miR-320a as an independent
predictor of LVAR (p < 0.045);

2020 [120]

270 STEMI
post-pPCI - qRT–PCR -

- Increased miR-150,-21,-208
(p < 0.05); raised miR-144 was

related to PWV reduction
(r = 0.763, p < 0.001);

2021 [117]

41 STEMI vs. 17
control - qRT–PCR -

- miR-744-3p, miR-330-3p, and
miR-324-3p distinguishing

between PR and PE;
2021 [152]

qRT-PCR quantitative real time polymerase chain reaction (qRT –PCR); small RNA sequencing (sRNA-seq); CK-MB creatine kinase MB ;
cardiac Troponin I (cTnI); high sensitivity troponin (hs-Tns); cardiac myosin-binding protein C (cMyBP-C); area under the curve (AUC);
primary percutaneous coronary intervention (pPCI); transcoronary ablation of septal hypertrophy (TASH); infarct-related artery (IRA)
occlusion; major adverse cardiac events (MACE); acute myocardial infarction (AMI); carotid-femoral pulse-wave velocity (PWV); left
ventricular adverse remodelling (LVAR); lef ventricle end-systolic volume index (LVESVI); left ventricule ejection fraction (LVEF).
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More than that, miRNAs have the potential to be used in the differential diagnosis of
ACS [17,182] with: unstable angina [183], NSTEMI [94,184], and acute myocarditis [185].
Exploration of patients with STEMI and patients with Takotsubo cardiomyopathy (TTC),
established that miR-133a was substantially increased subjects with STEMI compared with
those with TTC. A unique signature comprising miR-1, miR-16, miR-133a, and miR-26a,
differentiated TTC from STEMI patients (AUC 0.881, 95% CI 0.793–0.968, p < 0.0001) with a
sensitivity of 96.77% and a specificity of 70.37% [186]. MiR-1 and miR-133a have also been
previously reported to be slightly alleviated in patients with unstable angina and TTC,
while their expression is strongly upregulated in STEMI subjects [84]. Very recently, after in-
vestigating coxsackievirus-induced myocarditis mice models and a cohort of humans with
myocarditis, STEMI, and NSTEMI vs. controls, authors identified the human homologue
(hsa-miR-Chr8:96) that could be used to distinguish patients with myocarditis from those
with MI [187]. The presented information layout the possibility of using miRNA analysis
for the differential diagnosis of ACS. We must, however, interpret these results with caution,
considering limitations of the studies, selection, small sample size, variable normalization
of data, and adjustment for confounders. Additionally, anticoagulants, antiplatelet drugs,
and other medication therapies affect plasma miRNA profiles [63,64,91].

It is well known that STEMI is mainly an electrocardiographic diagnosis; however, as
miRNA are involved in atherosclerosis with subsequent plaque formation, erosion, and
rupture [152–160], they perhaps would rather be more useful in the potential detection of
vulnerable plaque as a generator of myocardial damage and STEMI. The levels of circulating
miRNA are elevated early after the onset of chest pain when there is no upregulation in
serum creatine phosphokinase or cTnT, and because some of the biggest advantages
for using miRNAs as biomarkers is their stability and bioavailability [36,37], maybe an
overreach future idea may include the development of rapid at-home devices that can
scan a small blood sample to determine miRNAs levels, for prediction of near future acute
cardiac events. Although the accuracy of a single miRNA in detecting cardiac injury is
poor, a panel of multiple miRNAs or a combination with cardiac troponin may improve
the diagnostic power. Besides their potential use as diagnostic biomarkers, researchers
focus more on their potential as prognostic markers for adverse myocardial effects, sudden
death, and risk assessment [163–177].

Overall, even if these biomarkers have shown good sensitivity for MI, most of them
are missing the specificity and diagnostic efficacy in comparison with cardiac troponins.
Current miRNA assays (RT-qPCR and microarray) lack sensitivity for early detection of
miRNA and are currently quite expensive and extremely time-consuming, limiting the
clinical use of the results. Blood-based immunoassay, which can be immediately integrated
into standard diagnostic procedures, and grant a more sensitive detection and earlier
rule-in and rule-out of myocardial injury, is desired.

Based on the current knowledge displayed so far, it is safe to declare that larger
multicenter trials are required to establish whether they actually offer additional benefits
over the existing diagnostic and prognostic biomarkers in ACS-STEMI.

6. Conclusions

While this field has already been extensively studied, a need to upgrade and comple-
ment existing biomarkers for CAD and ACS is imperative. With this purpose, we believe
that miRNAs own predictive biomarker potential in atherosclerotic context and potential
prognostic role in ACS such as STEMI. Perhaps a combination of new more sensitive
miRNAs, in addition to cardiac troponins, could improve risk assessment of future acute
cardiac events post-cardiac injury. Furthermore, refinement of current approaches and
development of new protein assays and devices, that fasten and improves detectability of
myocardial injury, could extend the range of early paraclinical diagnosis of MI, improve
risk stratification, and long-term prognosis.
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