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Cisplatin is one of the standard anti-cancer agents that are used to treat variety of solid
tumors. Nevertheless, due to the accumulation of cisplatin in the re
nal epithelial cells, nephrotoxicity was found to be the main side effect that limits its
clinical use. The current study was conducted to assess the potential nephroprotective
effect of dibenzazepine, a Notch inhibitor, against cisplatin-induced nephrotoxicity in rats
as well as the possible mechanisms underlying this nephroprotection. The rats were pre-
treated with 2 mg/kg dibenzazepine for 7 days before giving a single nephrotoxic dose of
cisplatin (7 mg/kg). Cisplatin induced acute nephrotoxicity, where blood urea nitrogen and
serum creatinine levels were significantly increased. Besides, lipid peroxidation was
markedly elevated and the levels of reduced glutathione and catalase were significantly
reduced. Also, the tissue levels of the pro-inflammatory mediators; IL-1β, TNF-α, and NF-
kB, were significantly increased in the cisplatin group. The pre-treatment with
dibenzazepine significantly mitigated the nephrotoxic effects of cisplatin, the oxidative
stress and inflammatory status as well as decreased caspase-3 expression, as compared
to the cisplatin group. Furthermore, the up-regulation of Notch-1 and Hes-1 was found to
be involved in cisplatin-induced nephrotoxicity and their expression was significantly
reduced by dibenzazepine. The nephroprotective effect of dibenzazepine was further
confirmed by the histopathological assessment. Moreover, dibenzazepine pre-treatment
of hela and PC3 cells in vitro did not antagonize the cisplatin anti-cancer activity. In
conclusion, these findings show that dibenzazepine provides protection against cisplatin-
induced nephrotoxicity. Moreover, the up-regulation of the Notch pathway was shown to
play a role in the pathogenesis of cisplatin-induced renal injury.
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INTRODUCTION

Cisplatin is one of the most noticeable successes in “the war on cancer” (Arany and Safirstein, 2003;
Wang and Lippard, 2005). It is an anti-tumor drug which represents one of the standard anti-cancer
agents used to cure many solid tumors (Dasari and Tchounwou, 2014). In spite of the positive effects
of platinum compounds, patients taking these agents experience severe side effects that restrict the
dose (Ruggiero et al., 2013). It was proved that the prominent dose-limiting side-effect of cisplatin is
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the renal toxicity that happens at doses lower than that could
damage other organs (Azu et al., 2010; Shahbazi et al., 2015;
Dugbartey et al., 2016). Despite using protective measures, the
consecutive cisplatin dosing results in cumulative and irreversible
nephrotoxicity (Crona et al., 2017). Remarkably, the oxidative
stress is actively involved in the pathogenesis of cisplatin-induced
acute renal injury and immensely drives to apoptotic cell death
both in vitro (Yang et al., 2019) and in vivo (Badawy et al., 2019;
Soetikno et al., 2019). Also, there are multiple suggestion about
the involvement of pro-inflammatory cytokines in the
pathogenesis of cisplatin-induced nephrotoxicity (Gao et al.,
2019; Güntürk et al., 2019; Iwakura et al., 2019; Michel and
Menze, 2019; Soetikno et al., 2019). Indeed, searching for other
pathways that may be engaged in the pathogenesis of cisplatin
renal injury is required for finding new promising protective
strategies against this deleterious effect.

The Notch pathway plays an important role in cell-cell
communication (Fortini, 2009; Jolly et al., 2015). Besides, the
Notch signaling was found to be deregulated in many types of
cancer (Moserle et al., 2010; Wu et al., 2010; Yin et al., 2010; Aster
et al., 2017; Meurette and Mehlen, 2018; Kontomanolis et al.,
2018). Indeed, this pathway is involved in the proliferation,
differentiation, and self-renewal of cancer stem cells which are
responsible for the chemo- and radio-resistance (Wang et al.,
2008). The Notch pathway gets activated upon ligand-receptor
interaction, which is followed by two enzymatic cleavages occur,
by the alpha- and the gamma-secretase, respectively (Muller et al.,
2007). It was shown that the Notch pathway regulates the
expression of multiple target genes, such as Hairy enhancer of
split (Hes-1) (Wu et al., 2012). Interestingly, this pathway was
found to play an important role in renal ischemia as well as
reperfusion injury-associated inflammation and apoptosis (Huang
et al., 2011). Also, the expression of the intracellular domain of
Notch-1 was shown to be significantly increased in the glomerular
epithelial cells in diabetic nephropathy (Niranjan et al., 2008).
Moreover, Notch was shown to play a role in streptozocin-
induced kidney injury (Jiandong et al., 2009). However, the
role of Notch signaling in the pathogenesis of cisplatin-induced
nephrotoxicity has not been investigated before.

Dibenzazepine (DBZ) is a gamma-secretase inhibitor that
interferes with the Notch signaling pathway and effectively
prevent the activation of all Notch receptors by inhibiting this
final enzymatic cleavage (Nowell and Radtke, 2017). Particularly,
the gamma-secretase inhibitors have been shown to have both anti-
inflammatory and anti-proliferative properties (Kang et al., 2009;
Piggott et al., 2011; Hans et al., 2012; Pan et al., 2012; Zhao et al.,
2019; Michelon et al., 2020). Notably, DBZ was found to have anti-
cancer activity in a variety of cancer cells (Nickoloff et al., 2003;
Curry et al., 2005; Van et al., 2005; Katoh, 2007; Shih and Wang,
2007; Al-Qawasmeh et al., 2009). Moreover, Xiao et al. (2014) had
found that DBZ attenuated the kidney fibrosis induced by the
unilateral ureter obstruction in mice. Accordingly, DBZ might be a
promising agent to ameliorate cisplatin-induced renal injury.

Therefore, the aim of the current research was to investigate,
for the first time, the potential nephroprotective effect of DBZ
against cisplatin-induced acute nephrotoxicity in rats. Also, the
probable mechanisms underlying this effect were explored;

particularly its effects on oxidative stress, inflammation,
apoptosis, and the Notch pathway signaling.

MATERIAL AND METHODS

Material
Cisplatin was purchased from Merk Ltd., Cairo, Egypt and
supplied as a clear liquid (1 mg/ml). Dibenzazepine was
purchased from Sigma Chemical Co. (St. Louis, MO, United
States). Cisplatin was injected intraperitoneally as a single dose of
7 mg/kg according to (El-Naga, 2014; Parhizgar et al., 2016).
Dibenzazepine was administered for 12 days. The dose was
selected as previously reported (Zheng et al., 2013) as well as
from the pilot experimental trials of the present study. All
chemicals and solvents were of the highest grade commercially
available.

The Animals
Male Sprague-Dawley albino rats (150–200 g) were obtained
from the breeding colony and then maintained at the animal
house of the National Organization for Drug Control and
Research (NODCAR, Giza, Egypt). Animals had free access to
food and water. They were maintained at 21–24°C and 40–60%
relative humidity with 12-h light–dark cycle. Animals were
subjected to 1 week adaptation period in the animal house
before the beginning of the experiments. Experimental
procedures were conducted in accordance with the
international ethical guidelines for investigations in laboratory
animals and were approved by the Research Ethical Committee of
Faculty of Pharmacy, Ain shams University, Cairo, Egypt (serial
number: Master No. 86).

The Cell Lines
PC3 and Hela human cancer cell lines were obtained frozen in
liquid nitrogen from American Type Culture Collection (ATCC).
The cell line was maintained in Faculty of Pharmacy, Al-Azhar
University, Cairo, Egypt by serial sub-culturing. Cells were grown
as “monolayer culture” in RPMI-1640 medium supplemented
with 10% (v/v) fetal bovine serum and 100 U/ml penicillin and
100 μg/ml streptomycin antibiotic. The cell lines were incubated
at 37°C in 5% CO2–95% air.

The In Vivo Part
The Experimental Design
Animals were divided randomly into four groups (ten animals per
group) and treated for 12 days as follows; the first group served as
control where rats received DMSO/corn oil mixture (1:9)
i.p., which was used as a vehicle for DBZ. The second group
was given the vehicle i.p., once daily for 12 days starting 7 days
before giving cisplatin (7 mg/kg i.p.) as a single dose to induce
nephrotoxicity. The third group was given DBZ at a dose of
(2 mg/kg; i.p) once daily for seven consecutive days followed by a
single i.p., injection of cisplatin (7 mg/kg) on the 8th day then
DBZ administration was continued till the 12th day. The fourth
group was given DBZ (2 mg/kg) i.p. once daily for 12 consecutive
days. At the end of the experiment, animals were sacrificed then
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blood samples were collected and serum was separated by
centrifugation for 20 min at 4,000 rpm using high speed
centrifuge (MPw-350, Warsaw, Poland), and used for
measuring blood urea nitrogen (BUN) and serum creatinine.
Kidney tissues were dissected out and washed with ice-cold saline.
Then, the tissues were homogenized and stored at −80°C till the
estimations of the oxidative stress, inflammatory, apoptotic
markers as well as the Notch signaling pathway. Additionally,
the rest of each kidney was fixed in 10% formol saline for the
routine histopathological examination.

The Assessment of Nephrotoxicity Markers
For all the experimental groups, the mortality rate and body
weights were recorded. In addition, the relative kidney weight was
calculated according to the formula: (kidney weight/total body
weight) × 100. Colorimetric assay kits (Biodiagnostics, Cairo,
Egypt) for the measurement of BUN and serum creatinine levels
were used in this study. All procedures were performed according
to the manufacturer’s instructions.

The Assessment of Oxidative Stress Markers
In the kidney homogenates of the different treatment groups, GSH,
MDA levels and catalase activity were assessed. The GSH was
assessed according to themethod described by (Ellman, 1959). Also,
lipid peroxidation was determined by estimating the level of
thiobarbituric acid reactive substances (TBARS) measured as
MDA, according to the method of (Satoh, 1978). Catalase
activity was assessed using catalase assay kit (Biodiagnostic,
Cairo, Egypt) in accordance with manufacturer’s instructions.

The Assessment of Protein Content
The protein content in the kidney homogenates was determined
according to the method of (Gornall et al., 1949).

The Assessment of Inflammatory Markers
The involvement of inflammation in cisplatin-induced
nephrotoxicity was assessed by measuring IL-1β, TNF-α, and
NF-KB tissue levels. The levels of (TNF-α and IL-1β) in kidney
homogenate of all groups were measured by using RayBio®RatTNF-α and RayBio®Rat IL-1β ELISA Kits (RayBiotech, Inc.,
United States), respectively. The manufacturer’s instructions
were precisely followed. The intensity of the color measured at
450 nm using a microplate reader is in proportion to the amount
of rat antigen bound in the initial steps. The samples
concentrations are then read off the standard curve.

Also, the kidney blocks were used for immunohistochemical
assessment of NF-kB. The slides were then blocked with 5%
bovine serum albumin in tris buffered saline for 2 h. The section
was then immunostained with the primary antibody (rabbit
polyclonal IgG to rat NF-kB p65) at a concentration of 1 μg/
ml containing 5% bovine serum albumin in tris buffered saline
and incubated overnight at 4 °C. After washing the slides with tris
buffered saline, the section was incubated with goat anti-rabbit
secondary antibody. Section was then washed with tris buffered
saline and incubated for 5–10 min in a solution of 0.02%
diaminobenzidine containing 0.01% H2O2. Counter staining
was performed using hematoxylin, and the slide was visualized

under a light microscope (Buchwalow and Böcker, 2002).
Immunohistochemical quantification of positive areas was
performed using ImageJ analysis software (ImageJ, 1.50i, NIH,
United States).

The Assessment of the Apoptotic Marker, Caspase-3
capase-3 level activity was detected in the kidney homogenates
using ELISA kit (Cusabio Life Science, Inc., China). The
manufacturer’s instructions were followed precisely and the
developed color was measured spectrophotometrically at
450 nm immediately.

The Assessment of Notch signaling Pathway
Notch-1 and Hes-1 levels in kidney tissue were detected using
quantitative reverse transcriptase polymerase chain reaction
(qRT-PCR). The procedure was carried out according to the
manufacturer’s instructions (Qiagen, United States).

The Histopathological Examination
For light microscopy, autopsy samples were taken from the
kidney of rats in the different groups and fixed in 10% formol
saline for 24 h. Washing was done in tap water then serial
dilutions of alcohol (methyl, ethyl and absolute ethyl) were
used for dehydration. Specimens were cleared in xylene and
embedded in paraffin at 56° in hot air oven for 24 h. Paraffin
bees wax tissue blocks were prepared for sectioning at four
microns thickness by sledge microtome. The obtained tissue
sections were collected on glass slides, deparaffinized and
stained by hematoxylin & eosin stain for examination by the
light microscope (Banchroft et al., 1996).

The In Vitro Part
The Cytotoxicity Assay
The cytotoxicity was determined using 3-(4,5-Dimethylthiazol-2-
yl)-2,5-Diphenyltetrazolium Bromide (MTT) Assay (Germain
et al., 2010) in order to assess the modulatory effect of DBZ
on cisplatin cytotoxic activity. In a 96-well flat-bottomed plate,
5,000 cells/150 μl of cell suspension were used to seed each well.
After treatment with various concentrations of drugs, MTT was
added to each well and incubated at 37°C. The resulting violet
formazan precipitate was solubilized and the absorbance was read
at 570 nm using a plate reader. Concentration-response curves
were generated and IC50 for each curve was calculated
(GraphPad Prism software, version 5).

The Statistical Analysis
Data are presented as mean ± SD. Paired t-test was used to
compare the change in weight in the same group before and
after receiving the treatment. Multiple comparisons were
performed using one-way ANOVA followed by either
Dunnett or Tukey–Kramer test for post hoc analysis, as
appropriate. The 0.05 level of probability was used as the
criterion for significance. All statistical analyses were
performed using the SPSS version 16 (Chicago, IL, United
States), while the graphs were drawn using a prism computer
program (GraphPad software Inc., V5, San Diego, CA, United
States).
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RESULTS

The In Vivo Part
The nephrotoxicity markers. No deaths were observed in the
control and dibenzazepine-only treated groups, while the mortality
rate was significantly increased to 40% in the cisplatin-injected
group. On the other hand, pre-treatment of cisplatin-injected rats
with dibenzazepine significantly reduced the mortality rate to 20%
only. Indeed, the group injected with cisplatin showed a significant
decrease in the body weight of rats by 17.3%, as compared to the
original body weight. However, no significant changes in body
weights were observed in all other groups. There was a significant
increase in relative kidney weight by 73.2% in the cisplatin-treated
rats, as compared to the control group. Notably, DBZ pre-
treatment greatly ameliorated cisplatin-induced changes in body
weight and relative kidney weight (Table 1).

Moreover, rats injected with cisplatin showed marked
elevations in the levels of serum creatinine and blood urea
nitrogen 650.8 and 563.6%, respectively, when compared to
the control rats. Notably, these levels were significantly
improved in the DBZ pre-treated group where serum
creatinine and blood urea nitrogen were significantly decreased
by 66.6 and 56.8%, respectively, when compared to the group that
received cisplatin only.

The oxidative stress markers. The effect of the different
treatment groups on GSH, MDA and catalase levels are shown
in Table 2. Reduced glutathione and catalase levels were
significantly reduced in cisplatin-injected rats by 50.3 and
58.1%, respectively, while MDA level was markedly increased
by 74.2%, as compared to control values. Notably, GSH and

catalase levels in rats pre-treated with DBZ showed a significant
increase reaching 70.4 and 95.5%, respectively, while MDA level
was decreased by 30.6%, as compared to the cisplatin group.
Moreover, GSH, catalase and MDA remains unchanged in rats
treated with DBZ only.

The inflammatory markers. The levels of the pro-
inflammatory markers, TNF-α and IL-1β, in renal tissues were
assessed in the different treatment groups (Figure 1). The
administration of cisplatin markedly increased tissue levels of
TNF-α and IL-1β by 504.6 and 651.4%, respectively, as compared
to the control values. This significant increase in the assessed pro-
inflammatory markers was reduced in the DBZ -pre-treated
group by 48.5 and 44.4%, respectively, as compared to the
cisplatin-treated rats. Besides, animals receiving DBZ only
showed no significant changes in TNF-α and IL-1β, as
compared to the control group.

The immunohistochemical analysis of NF-kB expression in
the renal tissues revealed that the control rats showed minimal
expression of NF-kB (Figures 2A,E). While, cisplatin markedly
induced NF-kB expression, where the area of immune-reactivity
reached 54% (Figures 2B,E). On the other hand, the DBZ pre-
treated group showed a significant reduction in NF-kB expression
by 70.4%, as compared to the cisplatin group (Figures 2C,E).
Furthermore, the animals that received DBZ only showed no
significant change in NF-kB expression, as compared to the
control group (Figures 2D,E).

Caspase-3. As shown in Figure 3, cisplatin-treated group
showed a significant increase in caspase-3 level by 483.7%, as
compared to that of the control rats. On the other hand, pre-
treatment of cisplatin-injected rats with DBZ significantly

TABLE 1 | The effects of pre-treatment with dibenzazepine on the mortality rate, body weight, relative kidney weight, serum creatinine, and blood urea nitrogen in the
cisplatin-injected rats.

Treated groups No of
dead rats

Body weight (g) Relative kidney
weight

Blood urea
nitrogen (mg/dl)

Serum creatinine
(mg/dl)Before treatment After treatment

Control 0/10a 192.00 ± 11.61 213.20 ± 24.09b 0.56 ± 0.05a 12.81 ± 0.65a 0.65 ± 0.03a

Cisplatin 4/10c 216.00 ± 10.81 178.70 ± 6.65b 0.97 ± 0.06c 85.01 ± 1.27c 4.88 ± 0.45c

Cisplatin/Dibenzazepine 2/10a,c 202.00 ± 3.50 227.20 ± 19.96b 0.72 ± 0.09a,c 36.65 ± 2.60a,c 1.63 ± 0.16a,c

Dibenzazepine 0/10a 256.20 ± 18.76 253.20 ± 33.91 0.60 ± 0.02a 15.60 ± 0.77a 0.79 ± 0.06a

Each value indicates the mean ± SD of six observations.
aSignificantly different from the control or cisplatin group, respectively at p < 0.05 using ANOVA followed by Tukey–Kramer, as a post-hoc test.
bStatistically significant when compared to the values obtained before treatment, p < 0.05 using paired t-test.
cSignificantly different from the control or cisplatin group, respectively at p < 0.05 using ANOVA followed by Tukey–Kramer, as a post-hoc test.

TABLE 2 | The effects of pre-treatment with dibenzazepine on the oxidative stress markers in the cisplatin-injected rats.

Treated groups GSH (mg/mg protein) MDA (nmol/mg protein) CAT (mg/mg protein)

Control 98.31 ± 4.68a 39.89 ± 1.35a 2.10 ± 0.23a

Cisplatin 48.90 ± 5.03b 69.50 ± 4.06b 0.88 ± 0.07b

Cisplatin/Dibenzazepine 83.35 ± 1.09a,b 48.25 ± 1.66a,b 1.72 ± 0.06a,b

Dibenzazepine 94.44 ± 3.23a 42.32 ± 2.48a 1.93 ± 0.04a

Each value indicates the mean ± SD of six observations.
aSignificantly different from the control or cisplatin group, respectively at p < 0.05 using ANOVA followed by Tukey–Kramer, as a post-hoc test.
bSignificantly different from the control or cisplatin group, respectively at p < 0.05 using ANOVA followed by Tukey–Kramer, as a post-hoc test.
GSH, glutathione; MDA, malondialdehyde; CAT, catalase.
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reduced caspase-3 levels by 43.2%, as compared to the cisplatin
group.

The Notch signaling pathway. Cisplatin-injected rats showed
a marked increase in the mRNA levels of Notch-1 and Hes-1 level
by 725 and 765%, respectively, as compared to the control values.
However, the Notch-1 and Hes-1 mRNA levels were significantly
reduced by DBZ pre-treatment by 71.4 and 79.8%, respectively, as
compared to the cisplatin treated rats. Compared to the control
values, animals that received DBZ only did not show any
significant change in the mRNA levels of Notch-1 and Hes-1
(Figure 4).

The kidney pathology. Table 3 and Figure 5 show the different
histopathological alterations observed in the kidney specimens
taken from the different treatment groups. The histopathological
examination of kidney sections of the control group showed normal
histological structure (Figures 5A,B), while in the cisplatin-injected
rats, degenerative changes and coagulative necrosis were noticed in
the lining epithelium of the tubules at the cortex and medulla with
the formation of eosinophilic casts in the tubular lumen (Figures
5C,D). In contrast, no degeneration or necrosis was observed in the
DBZ pre-treated group (Figures 5E,F). While the administration of
DBZ only showed no histopathological alteration in the glomeruli
and tubules at the cortex and the tubules in both corticomedullary
and medullary portions (Figures 5G,H).

The In Vitro Part
The Effect of Pre-Treatment With Dibenzazepine on
Cisplatin Cytotoxic Activity
The cell viability was expressed as the survival fraction compared
with the untreated control cells as shown in Figure 6. The MTT
assay revealed that the treatment of PC3 and Hela human cancer
cells with different concentrations of cisplatin for 24 h
significantly decreased the survival fraction of cells in a
concentration-dependent manner. Cisplatin IC50 was obtained
from the fitted survival curve and was found to be 4.6 and 2.3 μg/
ml for PC3 and Hela human cancer cells, respectively. It was
shown that the pre-treatment of PC3 and Hela cancer cells with
DBZ for 24 h, before cisplatin addition, did not alter cisplatin
cytotoxic activity.

DISCUSSION

The current study was the first one to investigate the potential
protective effect of DBZ against cisplatin-induced acute
nephrotoxicity in rats. Also, the probable mechanisms underlying
this nephroprotective effect were explored particularly; the effects on
the oxidative stress markers, inflammatory mediators, apoptosis as
well as Notch signaling pathway. This study showed that the total
body weight of rats injected with cisplatin at a dose of 7 mg/kg was
significantly reduced, as compared to the rats given the vehicle only.
The renal injury that was instigated by cisplatin wasmanifested by the
prominent increase in themortality rate, relative kidneyweight, BUN,
and serum creatinine levels, as compared to the control animals,
suggesting the occurrence of acute renal failure. The histopathological
findings demonstrated that the administration of cisplatin induced a
severe degenerative change. Also, coagulative necrosis was noticed in
the lining epitheliumof the tubules at the cortex andmedulla together
with the formation of eosinophilic casts in the tubular lumen. In the
present study, the results showed that the intraperitoneal
administration of DBZ (2mg/kg) prior to and after cisplatin
markedly attenuated cisplatin-induced changes in the body weight,
relative kidney weight, mortality rate, nephrotoxicity markers, and
the histological architecture of the kidney.

The second step was conducted to study the mechanisms
underlying the nephroprotective effects of DBZ, including its
effects on the oxidative stress, inflammation, apoptosis as well as
the Notch signaling pathway. The previous study conducted by
(Demkow et al., 2011) reported that cisplatin induces its acute
kidney injury through the induction of pro-oxidant/antioxidant
imbalance. This status increases the free radicals production and
decreases the antioxidants production, where the free radicals
damage the lipid components of the cell membrane via the
peroxidation and denaturation of its proteins (Chtourou et al.,
2015). The findings of this study denoted that the reduction in the
renal GSH levels, the increase in MDA levels besides the
reduction of catalase enzymatic activity are involved as signs
of injury affirming the oxidative stress triggered by cisplatin
treatment. Immensely, these signs are confirming the results
previously stated in a number of studies (Omar et al., 2016).

FIGURE 1 | The effect of dibenzazepine on the expression of (A) tumor necrosis factor and (B) interleukin -1 beta in renal tissues in cisplatin-injected rats. Data
presented as% of control value (n � 6 rats, per group). a or b: Statistically significant from the control or the cisplatin group, respectively, p < 0.05 using ANOVA followed
by Tukey-Kramer as post-hoc test.
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Notably, the pre-treatment of cisplatin-injected group with
DBZ ameliorated the oxidative stress by significantly increasing
GSH and catalase levels and lowering MDA levels in the kidney
homogenate. These findings were in accordance with previous
studies showing that agents with anti-oxidant activity, such as
selenium, onion oil, hesperidin and rutin, have potential
protective effects against cisplatin-induced nephrotoxicity (Pan
et al., 2009; Kamel et al., 2014; Kamel et al., 2015; Badawy et al.,
2019; Soetikno et al., 2019).

The Notch-1 signaling pathway plays an important role in the
regulation of lipid oxidation. So, the inhibition of gamma-
secretase or Notch signaling pathway can modulate the
expression of fatty acid oxidation genes and may provide
therapeutic strategies to prevent and treat fatty liver disease

associated with obesity (Song et al., 2016). It was found that in
Alzheimer disease, hydrogen peroxide induced the up-regulation
of Notch-1 possibly due to the activation of enzymes involved in
Notch-1 cleavage and gamma-secretase activation (Shen et al.,
2008). Accordingly, it was expected that the pharmacological
inhibition of gamma-secretase activity will be worthy (Xu et al.,
2009; Borghese et al., 2010).

In addition to the oxidative stress, inflammation was proven to
play an essential role in the pathogenesis of cisplatin-induced
renal injury. Previous studies showed that the expression of
inflammatory cytokines is elevated in the kidney after cisplatin
injury (Miller et al., 2010). The levels of several pro-inflammatory
cytokines, such as TNF-α and IL-1β, were found to be elevated in
the urine of cisplatin-treated mice (Gao et al., 2019; Güntürk

FIGURE 2 | The effect of dibenzazepine (2 mg/kg/day given i.p.) on NF-kB positive cells expression of kidney {X 400}. (A) Photomicrograph of kidney section of control
group showing no expression of NF-kB. (B) Photomicrograph of kidney section of cisplatin group showing high immune-reactivity in the glomerular tuft and proximal tubules.
(C)Photomicrograph of kidney section of pre-treatedwith DBZ group showing very low immune-reactivity in the glomerular tuft and proximal tubules. (D)Photomicrograph of
kidney section of DBZ only showing no expression of NF-kB. (E) Quantitative image analysis for immunohistochemical staining expressed as area percent across 10
different fields for each rat section. Values are given asmean ± SD of six observations, a or b: Statistically significant from the control or the cisplatin group, respectively at p <
0.05 using ANOVA followed by Tukey–Kramer as a post-hoc test. DBZ, dibenzazepine. *Scale bar for all the previous photomicrographs is 25 μm.
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et al., 2019; Iwakura et al., 2019; Michel and Menze, 2019;
Soetikno et al., 2019). In this study, the cisplatin-treated group
showed a marked increase in pro-inflammatory cytokines tissue
levels; IL-1β and TNF-α. On the other side, DBZ exerted anti-
inflammatory effects where the group that received DBZ pre-
treatment showed a significant decrease in the kidney contents of
the assessed pro-inflammatory markers. Particularly, gamma-
secretase inhibitors have been shown to have both anti-
inflammatory and anti-proliferative properties (Kang et al.,
2009; Piggott et al., 2011; Hans et al., 2012; Pan et al., 2012;
Zhao et al., 2019; Michelon et al., 2020). These include the
inhibition of macrophage and T cell infiltration, M1/M2
transition and cytokine expression (Jiandong et al., 2009;
Piggott et al., 2011; Hans et al., 2012). Indeed, the treatment
with anti-inflammatory agents is a promising strategy in reducing
cisplatin-induced renal dysfunction and decreasing the
histological evidence of injury (El-Naga, 2014; El-Naga and
Mahran, 2016; Gao et al., 2019; Güntürk et al., 2019; Iwakura
et al., 2019; Michel and Menze, 2019; Soetikno et al., 2019).

Furthermore, the present investigation shows another
explanation for the renoprotection effect conferred by DBZ that
is linked to the suppression of NF-κB, which was elevated in the
cisplatin-injected group. Indeed, the NF-κB plays an important role
in various biological processes, including immune response,
inflammation, regulation of cell differentiation, proliferation and
survival (Gerondakis et al., 1999; Pasparakis et al., 2006). As a
consequence, dysregulation of NF-κB activity is linked to

inflammatory disorders, autoimmune and metabolic diseases, as
well as cancer (Kumar et al., 2004; Courtois and Gilmore, 2006). In
current study, cisplatin-treated group showed amarked elevation in
NF-κB immune-reactivity. Nevertheless, this was significantly
attenuated in the group that received DBZ pre-treatment.

Upon investigating the cellular pathways of cisplatin injury to
kidney, apoptosis was found to be considerably involved. Indeed, the
intrinsic mitochondrial pathways as well as death receptors pathways
are activated in renal cells by cisplatin injection (Oh et al., 2014;
Topcu-Tarladacalisir et al., 2016). The relationship between cisplatin
dose and caspase-3 activity induction was evaluated by Lau (1999).
This study showed that following the exposure to cisplatin for 12 h,
there was a dose-dependent increase in caspase-3 activity induction.
However, the induced caspase-3 activities began to decline as the
cisplatin concentration was increased beyond 50mM. These data
indicate that cisplatin treatment results in a significant increase in
caspase-3 enzymatic activity. Our results showed that cisplatin
injection in rats triggered apoptotic cell death that was represented
by significantly enhancing the active form of the executive caspase,
caspase-3, in renal tissues.Moreover, the effect of cisplatin on the level
of capsase-3 enzyme was notably reduced by DBZ pre-treatment.

Finding new pathways thatmay be involved in the pathogenesis of
cisplatin renal injury seems to be very promising for solving this
problem. The Notch signaling pathway is found in many cell types
(Artavanis-Tsakonas et al., 1999; Fortini, 2009). Recently, the
activation of Notch signaling pathway was found to be
participating in the pathogenesis of many types of cancer such as
T-cell leukemia, lymphoma, medulloblastoma and colorectal,
pancreatic, mammary, ovarian, lung, gastric, cervical and breast
carcinoma (Moserle et al., 2010; Wu et al., 2010; Yin et al., 2010;
Meurette andMehlen, 2018; kontomonalis et al., 2018). Accordingly,
applying Notch inhibitors may be promising in the treatment of such
diseases. Besides, small molecule inhibitors for gamma-secretase
activity have been actively investigated, over the past decades, for
their potential to block the generation of Aβ-peptide that is associated
with Alzheimer’s disease (Bateman et al., 2009). Because gamma-
secretase inhibitors are also able to effectively inhibit Notch receptor
signaling, several forms of gamma-secretase inhibitors, including N-
[N-(3,5-difluorophenacetyl)-l-alanyl]-Sphenylglycine t-butyl ester
(DAPT), compound E, and IL-X (cbz-IL-CHO) MRK-003 and
DBZ, have been tested for the treatment of tumor and
cardiovascular diseases (Aoyama et al., 2009; Kang et al., 2009;
Acharya et al., 2011).

FIGURE 3 | The effect of dibenzazepine on caspase-3 levels in renal
tissues in cisplatin-injected rats. Data presented as % of control value (n � 6
rats, per group). a or b: Statistically significant from the control or the cisplatin
group, respectively, p < 0.05 using ANOVA followed by Tukey-Kramer
as post-hoc test.

FIGURE 4 | The effect of dibenzazepine on the mRNA levels of (A)Notch-1 and (B)Hes-1 in renal tissues in cisplatin-injected rats. Data presented as% of control value
(n � 6 rats, per group). a or b: Statistically significant from the control or the cisplatin group, respectively, p < 0.05 using ANOVA followed by Tukey-Kramer as post-hoc test.
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TABLE 3 | The severity of histopathological alterations in the kidney specimens taken from the different experimental groups.

Histopathological alteration Control Cisplatin Cisplatin/Dibenzazepine Dibenzazepine

Degenerative change (R.T) − +++ − −
Coagulative necrosis (R.T) − +++ − −
Renal casts − ++ − −
Congestion in the glomerular tufts − ++ + −
Congestion in blood vessels − + + −
+++ Severe ++ Moderate + Mild - Nil.

FIGURE 5 | The representative photomicrographs of kidney sections stained with hematoxylin–eosin stain: (A,B) Sections taken from kidneys of the control group
showing normal glomeruli (g) and tubules (t) at the cortex portion and normal histological structure of the tubules (t) at the corticomedullary portion as well. (C,D) Sections
taken from kidneys of the cisplatin group showing necrosis of epithelial lining renal tubules and presence of renal cast in the lumen of renal tubules as well as atrophy of
glomerular tuft and distension of Bowman’s space (arrow). (E,F) Sections were taken from kidney specimens of rats treated with dibenzazepine and cisplatin
showing no degeneration or necrosis where only mild congestion in blood vessels (v) and glomerular tufts (g) were observed. (G,H) Sections taken from kidney
specimens of rats treated with dibenzazepine only showing normal histological structure of the glomeruli (g) and tubules (t) at the cortex.

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 5678528

Abd El-Rhman et al. Dibenzazepine Attenuates Cisplatin Renal Injury

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


The notch pathway was shown to be critically involved in some
renal disorders (Huang et al., 2011). Nevertheless, the possible role of
the Notch pathway in cisplatin nephrotoxicity has not been studied
before, which was found to be an interesting point to be explored. In
this study, the mRNA levels of Notch-1 receptor and Hes-1 were
markedly elevated in the cisplatin-injected group. Being a gamma-
secretase inhibitor, the DBZ pre-treatment significantly attenuated
the increase in the translational levels of the assessed Notch pathway
molecules. Also, the TNF-α stimulated NF-κB signaling, in
collaboration with the basal Notch signals, affects the expression
of the Notch targets. Mechanistically, TNF-α induces the
phosphorylation of histone H3 at the Hes1 promoter. Also, a
crosstalk between TNF-α/NF-κB and Notch was found to sustain
the intrinsic inflammatory profile of the transformed cells (Maniati
et al., 2011). In addition, Hes-1 was shown to induce NF-κB gene
transcription, which links the Notch pathways signaling with
inflammation (Cao et al., 2010). Furthermore, for studying the
modulatory effects of DBZ on cisplatin cytotoxic activity, DBZ
was used at a concentration that inhibits only 5% of the cancer
cells which was calculated to be 10 μM. From the concentration-
response survival curves, it was found that the pre-treatment with
DBZ for 24 h showed no significant changes in cisplatin cytotoxicity
on PC3 and Hela cancer cells.

In conclusion, all these results suggest that DBZ exerts a
promising nephroprotective effects against cisplatin-induced
acute renal injury in rats, where it greatly improved the
nephrotoxicity markers. These protective effects of DBZ were
achieved by reducing oxidative stress, inflammation and
apoptosis. Interestingly, the Notch signaling pathway was shown
to get activated upon cisplatin administration, a result which was
reversed by DBZ. Additionally, cisplatin cytotoxic activity was
preserved by the pre-treatment with subtoxic concentration of
DBZ, in vitro, in PC3 and Hela human cancer cell lines.

Taken together, these findings indicate that the use of DBZ
may provide nephroprotection without affecting cisplatin
cytotoxic activity. The pre-treatment of cisplatin-injected rats
with DBZmarkedly reduced the oxidative stress, inflammation as

well as apoptotic markers. Moreover, these findings reflect, for the
first time, the possible role that the Notch pathwaymay be playing in
the pathogenesis of cisplatin nephrotoxicity. This paves the way for
further investigations of the Notch pathway in cisplatin-induced
nephrotoxicity in more mechanistic details. Also, these findings
make it promising to try other Notch inhibitors for their possible
nephroprotective properties in future studies.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The animal study was reviewed and approved by The Ethical
Committee of Faculty of Pharmacy, Ain shams University.

AUTHOR CONTRIBUTIONS

RE-N designed the experiments. RAE-R performed the
experiments. RE-N and AG supervised the experimental part
RAE-R, RE-N, and AG analyzed the data. RAE-R contributed the
reagents/materials/analysis tools. RAE-R, RE-N, and AG wrote
the manuscript. MT and SH revised the manuscript.

ACKNOWLEDGMENTS

The authors would like to thank Prof. A. Bakear (Pathology
Department, Faculty of Veterinary Medicine, Cairo University,
Cairo, Egypt) for his assistance in the histopathological
examinations.

FIGURE 6 | A) Cytotoxicity of various concentrations of cisplatin alone or in combination with 10 μMdibenzazepine in PC3 cancer cell line. ap < 0.05: Statistically significant
when compared to the control value using ANOVA followed by Dunnett test as post-hoc test. (B) Cytotoxicity of various concentrations of cisplatin alone or in combination with
10 μM dibenzazepine in Hela cancer cell line. ap < 0.05: Statistically significant when compared to the control value using ANOVA followed by Dunnett test as post-hoc test.
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