
1Scientific Reports | 6:19327 | DOI: 10.1038/srep19327

www.nature.com/scientificreports

Critical carbon input to maintain 
current soil organic carbon stocks in 
global wheat systems
Guocheng Wang1, Zhongkui Luo2, Pengfei Han1, Huansheng Chen1 & Jingjing Xu1

Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. 
Depending on local environmental conditions and management practices, typical C input is generally 
required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input 
for maintaining SOC at global scale with high resolution. Such information will provide a baseline map 
for assessing soil C dynamics under potential changes in management practices and climate, and thus 
enable development of management strategies to reduce C footprint from farm to regional scales. We 
used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level 
at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 
2.0 Mg C ha−1 yr−1, with large spatial variability depending on local soil and climatic conditions. Higher 
C inputs are required in wheat system of central United States and western Europe, mainly due to the 
higher current soil C stocks present in these regions. The critical C input could be effectively estimated 
using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil 
clay content.

Agricultural soils have been identified as having significant potential to sequester soil organic carbon (SOC) 
thereby mitigating climate change and maintaining soil productivity1,2. Significant efforts have been made to esti-
mate the potential of agricultural soil to sequester C under diverse environmental and management conditions3–6. 
The actual amount sequestered depends on management strategies (e.g., residue retention and fertilizer applica-
tion) and environmental conditions7–9. Regardless of management practices, increasing C input through residue 
retention and stimulating crop growth by nutrient intensification usually have to be achieved10–13. Across space 
and time, the required C input levels to maintain or increase soil C stock may vary widely depending on local 
soil and climatic conditions9,11,14. A detailed assessment of critical C input level targeting at certain soil C level 
will assist in designing effective management practices for C sequestration in agricultural soils and help different 
stakeholders assess the status of soil C under current farmers’ C input level and future potential management and 
climate changes.

In agricultural soils of different countries, soil C stock varies dramatically15. For example, in croplands of 
North American and European countries, the average SOC stock in the top 30 cm soil ranges from 56 to 67 Mg 
ha−1 and is comparable to or even exceeds the global average level of 54 Mg ha−1 16,17. In China and India, how-
ever, the C stocks are only one third or two thirds of the global average18,19. This difference among countries is 
mainly due to cultivation history, land use intensity and agricultural management practices. Diverse soil (e.g., 
baseline SOC content) and climatic conditions are the other two most important factors influencing SOC stock, 
not only at the national level but also at the local scale. It is recognized that, under similar other environmental 
conditions, soils with higher SOC stock will require higher amount of C input to maintain the SOC level, and vice 
versa14,20,21. However, detailed estimation of required C input, at high resolution, is lacking across the world crop-
lands, hindering development of specific management strategies to maximize the potential of agricultural soils to 
sequester C and assess the role of agro-ecosystems in climate change mitigation across scales.

Wheat is the third most produced cereals after maize and rice, and grown a larger area (~220 million hectares) 
than any other crops (http://faostat3.fao.org/home/E). Soil C dynamics in world wheat systems may substan-
tially contribute to CO2 fluxes from global agro-ecosystems. As such, we focused on the SOC dynamics in world 
wheat systems in this study. The objectives of this study were to i) quantify the critical C input level to maintain 
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current existing SOC level in world wheat systems at the resolution of 0.1° ×  0.1° using a soil C model (RothC), 
ii) understand that how and why the critical C input level varies across space, and iii) develop a simple approach 
to estimate critical C input at finer scales.

Results
Performance of the RothC model.  Among the 16 long-term experimental sites across the world’s 
wheat-growing regions (Fig. S1 and Table S1), the RothC model could generally simulate SOC change in the top 
30 cm soil at most sites under various management (Fig. S2), with the exception at Urumuqi (Fig. S2g), Zhangye 
(Fig. S2h) and Prague (Fig. S2i). Pooling all data, the model explained 95% of the variation of observed SOC with 
a relative mean deviation (RMD) of −1.43% (Fig. 1). These results indicate that the RothC model initialized and 
parameterized using our approach (see Methods and Materials) is robust to predict SOC changes at different sites 
under different management in world wheat systems.

Global pattern of critical C input to maintain SOC (Cmaintain).  Figure 2 shows the map of Cmaintain in 
world wheat systems at the 0.1° ×  0.1° resolution. Globally, average Cmaintain was estimated to be 2.0 Mg C ha−1 
yr−1, with the majority of Cmaintain (~75% of the studied regions) is less than 3 Mg C ha−1 yr−1 except some areas 

Figure 1.  Modeled vs. observed SOC under 30 treatments at 16 sites. Dashed line is the 1:1 line. n is the 
sample size. RMD is the relative mean deviation. GB: Gibson; TL: Tarlee; LB: Lethbridge; FQ: Fengqiu; HB: 
Harbin; SN: Suining; UM: Urumuqi; ZY: Zhangye; PG: Prague; BL: Bad Lauchstädt; LH: Ludhiana; UT: Ultuna; 
BD: Broadbalk; GK: Grakov; OK: Oklahoma State Uni.

Figure 2.  Critical carbon input rate to maintain current SOC level in world wheat systems. Map 
constructed in ESRI ArcMAP 10.1. Base image is obtained from the SEDAC database44.



www.nature.com/scientificreports/

3Scientific Reports | 6:19327 | DOI: 10.1038/srep19327

in Europe (Fig. 2 and Table 1). Continentally, the average Cmaintain in Europe was 3.1 Mg C ha−1 yr−1, and higher 
than that in Asia, Africa, South America, North America and Oceania (ranging from 1.1–2.2 Mg C ha−1 yr−1; 
Table 1). Nationally, the national average Cmaintain was higher in the United States, France, Germany and Ukraine 
(e.g., ≥ 2.5 Mg C ha−1 yr−1) than that in the rest of the world’s 10 largest wheat-producing countries (Table 1).

Variability of Cmaintain.  Across the world wheat-growing regions, large spatial variability existed in Cmaintain, 
and the variability could be explained by local-scale variables including the amount of current existing SOC 
stock (SOC0), soil clay content (Clay), mean annual temperature (MAT) and precipitation (MAP) (Fig. 3). Under 

Region

C input (Mg ha−1) C0
b (Mg 

ha−1)
MATc 
(°C)

MAPd 
(mm)Cmaintain

a Current Available

Continent

World 2.0 ±  1.6 2.2 4.7 54 13.9 0.8

Asia 1.2 ±  1.0 1.8 4.7 47 15.6 0.8

Europe 3.1 ±  1.8 2.6 5.3 67 9.2 0.6

Africa 1.5 ±  1.1 1.3 3.7 40 23.5 0.9

North America 2.2 ±  1.4 2.2 4.4 56 10.7 0.8

South America 1.7 ±  1.5 2.3 4.4 51 18.8 1.1

Oceania 1.1 ±  0.6 1.4 2.8 30 17.1 0.5

The top 10 wheat-producing countries

China 1.5 ±  1.1 2.9 7.5 49 11.6 0.8

India 1.0 ±  0.9 2.1 4.9 37 26.1 1.1

USA 2.6 ±  1.4 2.2 4.5 58 12.1 0.8

Russia 1.9 ±  1.2 1.3 2.8 67 5.2 0.5

France 2.9 ±  1.3 4.7 9.9 60 11.8 0.8

Canada 1.3 ±  0.8 1.9 4.2 55 3.3 0.5

Germany 4.5 ±  2.5 5.3 10.8 82 9.6 0.7

Pakistan 0.8 ±  0.6 1.8 4.4 21 23.8 0.4

Australia 1.1 ±  0.6 1.4 2.7 30 17.2 0.5

Ukraine 3.6 ±  1.2 2.1 4.3 73 9.8 0.5

Table 1.   The C input, soil and climate information in global wheat-growing areas. aValues show the 
mean ±  SD of the model estimates in the corresponding region. bThe current existing soil organic carbon stock. 
cThe mean annual temperature. dThe mean annual precipitation.

Figure 3.  Coefficients for the regression model to predict critical C input to maintain current  
SOC (Cmaintain, Mg C ha−1 yr−1). The fitted model is: α β γ= × ( + × + ×C SOC Cl Tmaintain 0
δ ε+ × + × × )P T P , where SOC0 is the current SOC stock (Mg C ha−1); Cl, T and P are the standardized 

(z-score) values of soil clay fraction (%), mean annual temperature (°C) and precipitation (m); T ×  P is the 
temperature-precipitation interaction. All the coefficients were significant at P <  0.0001, and the R2 of the whole 
model was 0.90. Error bars show 1 SE, which are very small for all the coefficients.
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otherwise similar environmental conditions, Cmaintain increased with SOC0. Given SOC0 and Clay, Cmaintain were 
higher in regions with higher temperature and rainfall. Given SOC0, MAT and MAP, however, Cmaintain were 
higher in soils with lower clay fractions. The temperature-precipitation interaction also significantly influences 
the prediction of Cmaintain. Overall, SOC0 and its interaction with soil clay content, temperature and rainfall 
explained ~90% of the variation in the estimated Cmaintain across world’s wheat systems (Fig. 3).

Discussions
Our results provided a detailed map of the critical C input to maintain current C level in world wheat systems, 
and showed that the average global critical C input was 2.0 Mg C ha−1 yr−1 in order to maintain current SOC 
levels in world wheat systems, with a large spatial variability depending on soil and climatic conditions. The esti-
mated critical C input positively correlated to current SOC stock, mean annual temperature and precipitation, 
but negatively to soil clay fraction. We suggested that the current SOC level could generally be maintained or even 
enhanced in most of the areas in Asia, North America, South America and Oceania under current C input man-
agement, because the current C input levels in these regions are generally higher than or equal to the estimated 
Cmaintain (Table 1). In Europe and Africa, however, the wheat system may lose C under current management prac-
tices unless increasing C input. Special attention should be paid to Ukraine where current C input is only around 
two thirds of the estimated critical C input (Table 1). Clearly, additional input of 1.5 Mg C ha−1 yr−1 is required to 
cease soil C loss in Ukraine. If retaining all available C input (e.g. 100% residue retention) in the wheat system, all 
the top 10 wheat producing countries regions will be a C sink of atmospheric CO2, because the available C input 
levels in these regions are generally higher than the estimated Cmaintain (Table 1).

The critical C input to maintain current soil C stocks in world wheat systems was significantly and positively 
related to the amount of current soil C stock (Fig. 3). This phenomenon is straight-forward as higher soil C means 
higher potential loss, and thus higher C input is required to keep the balance20,22. The effect of current soil C level 
was further strengthened by higher temperature and rainfall, suggesting that more C input is required in order to 
maintain C balance in wetter and warmer regions given a typical current C stock23. However, soil clay fraction has 
negative effect on required C input. This result confirms the finding that higher soil clay fraction could benefit C 
stabilization through mineralogical protection of soil C24,25.

It should be noted that the critical C input estimated in the present study can only be valid for the current 
existing SOC stock in wheat systems at the studied resolution. If the soil C varies over time and at finer spatial 
resolution, the critical C input needs to be re-quantified. The process-based models have the ability to predict 
SOC dynamics but normally require detailed information that is typically not readily obtainable at desired spa-
tiotemporal resolution, thereby resulting in great challenges for decision-makers or potential users who have 
difficulty in using such models. Alternatively, a ‘space-for time’ substitution26 on the inputs and outputs of the 
process-based model simulations (meta-model) can help determine the relationship between the interests and 
their potential driving factors27. Such meta-model could then be used to predict critical C input under condi-
tions when one or more of the covariates have changed. Here, we fitted the following meta-model to predict the 
RothC-modelled critical C input (Cmaintain, Mg C ha−1 yr−1) using current existing SOC stock (SOC0, Mg C ha−1), 
soil clay fraction (Clay, %), mean annual temperature (MAT, °C) and precipitation (MAP, mm):

= × ( . − . × + . ×
+ . × − . × × )

( = . , = , < . ) ( )

C SOC Clay MAT
MAP MAT MAP

R n P

0 016 0 00035 0 0025
0 042 0 0023

0 90 209562 0 0001 1

maintain 0

2

It should be noted that Cmaintain was assumed not to be negative, and it should be set to zero if Eq. (1) yields a 
negative value. In general, this meta-model could explain 90% of the variations in Cmaintain predicted by RothC, 
but required much less input information than RothC. This meta-model can be easily used as “space-for-time” 
substitution to infer critical C input under specific conditions. For example, irrigation was not taken into account 
in this study, causing potential underestimation of Cmaintain in areas having irrigation. The effect of irrigation can 
be inferred by assuming that its effect is similar to rainfall.

Several uncertainties and limitations should be noticed in interpreting the simulation results in this study. 
First, the effect of tillage regimes on SOC were not simulated and it was assumed that the organic materials were 
incorporated into soils, due to the lacking of detailed information on tillage practice at global scale as well as the 
RothC model does not include a tillage module. However, our results would be still reasonable because existing 
studies have shown that conversion from conventional tillage to no-till has very limited ability to either accumu-
late SOC28 or mitigate climate change29 at global scales. Second, it has been reported that straw stoichiometry may 
affect SOC mineralization30. In the present study, we did not model the possible effect of nutrient availability on 
soil C dynamics because the RothC model does not have a functionality to simulate nitrogen dynamics. Ignoring 
the potential effect of straw stoichiometry on C decomposition may lead to biased estimation of Cmaintain particu-
larly in soils with low nutrient level31. Third, the RothC model does not include the processes or mechanisms 
involved with anaerobic respiration which might result in an overestimation of the Cmaintain in some paddy soils 
across the eastern Asia, because the anaerobic conditions during rice growing season in paddy soils restricts 
SOC or straw decomposition. At last, it should be noted that although the RothC model could well simulate the 
observed SOC changes in most cases (Fig. S2), the model performed bad at Urumuqi, Zhangye and Prague. A 
possible reason is that large amounts of dust and other types of aerosols at these sites may affect temperature 
and precipitation and thus the model estimation of C dynamics which is mainly controlled by temperature and 
moisture32,33.

The spatially explicit estimates and high-resolution map of the critical C input generated in this study have 
important implications. First, the map can serve to assess the status of current C stock in world wheat systems 
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under current management practices. This information is important to develop site-specific effective manage-
ment strategies for soil C sequestration. Second, the map will help identify critical zones that have potential for 
carbon sequestration, and support national C accounting in wheat systems. In wheat systems of the USA, Russia 
and Ukraine, for example, the soil would be a continual source of atmospheric CO2 unless more residues are 
retained. Third, the derived meta-model can be readily used to infer C input requirement in order to maintain 
current soil C stock under future management and climate change. The model highlights the significance of the 
interaction between rainfall and temperature, implying the potential diverse consequences of global warming and 
rainfall change on soil C dynamics.

Materials and Methods
The Rothamsted carbon model34 (RothC, version 26.3) was used to estimate C input rates to maintain the current 
soil C level in world wheat systems. RothC is a widely used soil organic matter (SOM) decomposition model to 
simulate C dynamics in agricultural soils under various environments and management3,35–40. The performance 
of the RothC model in simulating soil C dynamics was evaluated using observations obtained from 16 long-term 
experimental sites across the world’s wheat-growing regions (Fig. S1 and Table S1). Using the validated model, 
soil C dynamics between 2011 and 2050 under different C input scenarios were simulated at a resolution of 
0.1° ×  0.1°. For each of the 0.1° ×  0.1° pixel, we identified the critical rates of C input to maintain the existing SOC 
stocks.

Initialization and parameterization of the RothC model.  In the RothC model, SOM is partitioned 
into five conceptual pools, i.e., decomposable plant material (DPM), resistant plant material (RPM), microbial 
biomass (BIO), humified organic matter (HUM), and inert organic matter (IOM). Such conceptual pools are not 
defined by direct measurable fractions, and are usually estimated by a spin-up run of the model to equilibrium or 
by physical fractionation. When applying RothC at large spatial scales (e.g. at the global scale in this study), both 
approaches to initialize the model are not possible because of limited data on physical fractions and the challenge 
of the required “run time” for the model spin-up. In this study, we adopted the approach of Falloon et al.41 and 
Weihermüller et al.42, who developed and validated a set of functions to initialize C pools in the RothC model:

= . × ( ).IOM SOC0 049 21 139

= ( . × + . ) × ( + . ) ( )− .RPM SOC Clay0 1847 0 1555 1 2750 30 1158

= ( . × + . ) × ( + . ) ( ).HUM SOC Clay0 7148 0 5069 10 3421 40 0184

= ( . × + . ) × ( + . ) ( ).BIO SOC Clay0 0140 0 0075 8 8473 50 0567

where SOC is the total soil organic C content in the 0–30 cm soil layer (Mg C ha−1) and clay is the soil clay fraction 
(%). The credibility of this approach was tested as described below.

For each of the datasets from the 16 long-term experiments, we tested the model performance using above 
functions (Eqns. 2–5) to initialize the sizes of C pools and the default decomposition rate constant of different C 
pools (i.e. 10.0 a−1 for DPM, 0.3 a−1 for RPM, 0.66 a−1 for BIO, 0.02 a−1 for HUM, and 0 for IOM). The default 
yearly rate constants were converted to monthly rate constants to allow the model to be run on a monthly time 
step. The annual C inputs for each experiment was either obtained from the corresponding literature (Table S1) 
or estimated based on crop yields using the approach of Huang et al. (2007). In determning the time of C input, 
we assumed that it occurs at the time of harvests. This setting is acceptable as RothC is known to be insensitive to 
the time of C input, particulary in long-term simulations3. The DPM/RPM ratio of the C input was set to 1.44, a 
typical value for most agricultural crops and grasses34.

In some experiments, SOC was only reported in the top 10 cm (SOC0–10cm) or 20 cm (SOC0–20cm) of soil. For 
these cases, the SOC stock in the top 30 cm soil layer (SOC0–30cm) was estimated based on the SOC vertical distri-
bution assumption outlined in equations (6) to (8)5,43 :

= + ( )− − −SOC SOC SOC 6cm cm cm0 20 0 10 10 20

= . × ( )− −SOC SOC1 32 7cm cm0 30 0 20

= . × ( )− −SOC SOC2 35 8cm cm0 30 0 10

where 1.32 and 2.35 are the conversion coefficients.

Global spatial datasets.  The study area focused on the global wheat-growing regions. The map of global 
national boundaries was obtained from the NASA Socioeconomic Data and Applications Center (SEDAC)44. 
The geographic distribution of wheat-growing areas (0.1° ×  0.1° spatial resolution, Fig. S1) and soil cover infor-
mation were sourced from the Center for Sustainability and the Global Environment (SAGE)45. Soil parameters 
(0.1° ×  0.1° resolution) including the clay content and SOC stock in the 0–30 cm soil layer were sourced from 
the Global Soil Dataset for use in Earth System Models (GSDE)46. The GSDE dataset is newly developed based 
on Soil Map of the World and various regional and national soil databases, it is the most comprehensive data-
sets of soil information at present46. Gridded climate projections (i.e. monthly mean temperature, precipitation 
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and evaporation) at the resolution of 0.5° ×  0.5° from 2011 to 2050 that produced by CESM1-CAM5-1-FV2 
were extracted from the CMIP5 dataset47, and downscaled to the resolution of 0.1° ×  0.1° using the method of 
Bertacchi et al.48.

We also derived the information on current C input (i.e. crop residues, roots and manure) rate from the 
FAOSTAT website (http://faostat3.fao.org/home/E), which was used to identify the feasibility of SOC sequestra-
tion under current C input levels (Table 1). The FAOSTAT online data contains crop-specific yield data across 
different spatial scales (e.g., national and continental). Following Huang et al.49, we assumed a constant Harvest 
index (0.4) and a constant root to top ratio (0.11) to calculate the quantity of crop residues and roots (e.g., avail-
able C input). According to published literature, the above-ground residue retention rates were assumed 30% in 
developing regions such as Asia and Africa50–52, and 60% in other regions53–55. The quantity of manure that were 
incorporated into soils across global croplands were estimated from the results of Potter et al.56. Based on these 
estimate of current C input, we also estimate the available C input (Table 1), assuming 100% residue retention.

Model application to estimate the critical C input in world wheat systems.  Using above data lay-
ers (wheat-growing regions, climate and soil), the RothC model was run in each of the 0.1° ×  0.1° pixel under a 
C input scenario (from 0 to 10 Mg C ha−1 yr−1 in 0.1 Mg C ha−1increments) from 2011 to 2050. The SOC change 
(Δ SOC, Mg C ha−1) was calculated as the difference in the SOC between the final (SOC stock in 2050) and ini-
tial SOC stock (SOC stock in 2011). The lowest C input rate resulting in a positive Δ SOC was identified as the 
critical C input to maintain current existing SOC. This amount of C input was referred as Cmaintain. Then, Cmaintain 
was mapped at the resolution of 0.1° ×  0.1° and compared between major wheat-growing regions and countries.

Meta-modeling to identify the drivers of Cmaintain.  Meta-modelling is a sophisticated procedure to 
derive simple relationships from process-based modelling, and has been applied in soil C predictions27,57. The 
meta-model has the advantage of not needing detailed information to initialize process-based models and can be 
readily used by farmers and other policy-makers. Using the meta-modelling approach, we identified the impacts 
of climatic and soil variables on estimated Cmaintain. We hypothesized that the Cmaintain was a function of current 
SOC stock, and environmental variables such as mean annual temperature (MAT) and precipitation (MAP) and 
soil clay fraction (Clay). We fitted the following model to assess the effect of current SOC stock (SOC0), and the 
regulations of Clay, MAT and MAP on this effect:

α β γ δ ε= × ( + × + × + × + × × ) ( )C SOC Cl T P T P 9maintain 0

where Cl, T and P are the standardized (z-score) Clay, MAT and MAP, i.e., subtracting Clay (or MAT or MAP) at 
a given pixel by the mean in the whole study area and dividing by 2 standard deviations (SD); α is the predicted 
Cmaintain (i.e., the slope) corresponding to a 1 Mg C ha−1 change in SOC0 when Cl, T and P are equal to zero, i.e., 
these variables are the same as the average of all pixels; β, γ, δ, and ε are the coefficients for Cl, T, P and T ×  P 
interaction, respectively. The T ×  P interaction could reflect the impact of particularly favorable or unfavorable 
combinations of temperature and rainfall58. The coefficients estimated based on z-scores have the advantage of 
indicating the relative importance of the predictors: more important with higher absolute values. Here, we did 
not fit an intercept for the model because when SOC0 was equal to 0, the Cmaintain must also be 0 (i.e., no need of 
incorporating extra C). All analyses were performed with the statistical and graphical software R 3.0.259.
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