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Abstract: Iodine is a trace micronutrient that is critical for normal thyroid function and human health.
Inadequate dietary intake is associated with cognitive impairment, infertility, growth retardation
and iodine deficiency disorders in affected populations. Herein, we examined the prevalence of
iodine deficiency in adults (median age of 61 years) based on the analysis of 24 h urine samples
collected from 800 participants in four clinical sites across Canada in the Prospective Urban and Rural
Epidemiological (PURE) study. Urinary iodide together with thiocyanate and nitrate were measured
using a validated capillary electrophoresis assay. Protective/risk factors associated with iodine
deficiency were identified using a binary logistic regression model, whereas daily urinary iodine
concentration (24 h UIC, µg/L) and urinary iodine excretion (24 h UIE, µg/day) were compared using
complementary statistical methods with covariate adjustments. Overall, our Canadian adult cohort
had adequate iodine status as reflected by a median UIC of 111 µg/L with 11.9% of the population
<50 µg/L categorized as having moderate to severe iodine deficiency. Iodine adequacy was also
evident with a median 24 h UIE of 226 µg/day as a more robust metric of iodine status with an
estimated average requirement (EAR) of 7.1% (< 95 µg/day) and a tolerable upper level (UL) of
1.8% (≥1100 µg/day) based on Canadian dietary reference intake values. Participants taking iodine
supplements (OR = 0.18; p = 6.35 × 10−5), had greater 24 h urine volume (OR = 0.69; p = 4.07 × 10−4),
excreted higher daily urinary sodium (OR = 0.71; p = 3.03 × 10−5), and/or were prescribed thyroxine
(OR = 0.33; p = 1.20 × 10−2) had lower risk for iodine deficiency. Self-reported intake of dairy products
was most strongly associated with iodine status (r = 0.24; p = 2.38 × 10−9) after excluding for iodine
supplementation and T4 use. Participants residing in Quebec City (OR = 2.58; p = 1.74 × 10−4) and
Vancouver (OR = 2.54; p = 3.57 × 10−4) were more susceptible to iodine deficiency than Hamilton
or Ottawa. Also, greater exposure to abundant iodine uptake inhibitors from tobacco smoking and
intake of specific goitrogenic foods corresponded to elevated urinary thiocyanate and nitrate, which
were found for residents from Quebec City as compared to other clinical sites. Recent public health
policies that advocate for salt restriction and lower dairy intake may inadvertently reduce iodine
nutrition of Canadians, and further exacerbate regional variations in iodine deficiency risk.

Keywords: iodine deficiency; iodine deficiency disorders; urinary iodine concentration; urinary
iodine excretion; nutrition; dietary intake; epidemiological studies; iodine uptake inhibitors
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1. Introduction

Iodine is an essential trace micronutrient in human health used in the biosynthesis of
thyroid hormones, which regulate cellular metabolism, growth, and development through-
out the lifespan [1,2]. Iodine deficiency remains a global public health concern since it
increases neonatal mortality and is a preventable cause of cognitive impairment and de-
velopmental delays in children [3,4]. Although reproductive age women and school-aged
children represent vulnerable groups [5], thyroid disorders attributed to mild to moderate
iodine deficiency are also implicated in chronic disease burden in adults and older per-
sons [6,7], which include immunomodulatory effects on immune function [8]. Nonetheless,
remarkable progress has been made in expanding universal salt iodization programs to
reduce the prevalence of iodine deficiency disorders worldwide [9,10]. However, several
developing and developed countries still suffer from persistent iodine deficiency (e.g., Cam-
bodia, Russia, Israel) or excessive iodine intake (e.g., South Korea, Cameroon, Columbia)
that may also contribute to deleterious health outcomes [11,12]. Changing dietary pat-
terns in contemporary societies have also altered the efficacy of iodine prophylaxis [13]
through restriction of sodium intake to reduce blood pressure [14] along with increased
consumption of processed foods using non-iodized salt [15]. As a result, continuous surveil-
lance is critical to ensure optimal iodine status and to evaluate the impact of recent public
health interventions, such as iodine fortification of staple foods (e.g., bread) adopted in
Australia [16].

Food frequency questionnaires for estimating iodine intake in populations are limited
in capturing the variable content of iodine in similar foods, which may also not be reported
in national food composition databases [17]. For instance, cow’s milk represents a major
source of dietary iodine that varies widely in retail products based on feed composition,
iodine supplementation and teat-dipping sanitation practices using iodophors [18]. As
most iodine consumed is excreted as iodide, the median urinary iodine concentration (UIC)
offers an objective indicator of iodine intake while also serving as a surrogate measure
of the prevalence of goiter and thyroid nodules in a population [19]. However, up to ten
repeat urine spot samples or 24 h urine collection is needed to reliably estimate individual
iodine status [20]. According to the World Health Organization (WHO), adequate iodine
intake for adults is indicated by a median UIC within 100 to 199 µg/L along with a low
rate (<20%) of moderate to severe iodine deficiency (<50 µg/L) [9,21]. Higher thresholds
for iodine deficiency are designated for children and pregnant/lactating women [22]. Daily
iodine intake (µg/day) can be estimated from 24 h urinary iodine excretion (UIE) from spot
urine iodine concentrations after correction for age, sex, ethnicity and/or anthropometric
dependent creatinine adjustments. These adjustments correct for between-subject variations
in urine fluid volume and muscle mass [23–25]. As urinary concentrations of iodide reflect
recent dietary intake of iodine-containing foods or beverages, other factors can also affect
iodine status determination when using spot urine samples, such as skipping breakfast
prior to morning urine sampling [26]. Although less convenient to collect, 24 h urine
samples offer greater reproducibility and accuracy than spot urine samples and are the
preferred method for assessing iodine status in epidemiological studies [27].

Although populations in North America are considered to have adequate iodine
status [11], differences remain across certain demographic groups and regions [28]. For
instance, a median UIC of 134 µg/L from spot urine samples was reported in Canadian
households surveyed from 2009 to 2011, with about 22% and 7% of Canadians at risk
for mild and moderate iodine deficiency, respectively [29]. Furthermore, iodine intake
is frequently inadequate for women of child-bearing age with recommendations for use
of a daily multivitamin-mineral supplement containing iodine during pregnancy and
breastfeeding [30]. The risk for iodine deficiency is also dependent on environmental
exposure to perchlorate, thiocyanate and nitrate that competitively inhibit active iodine
uptake via the sodium-iodine symporter expressed in the intestine and thyroid gland [31].
To date, few epidemiological studies have examined the iodine status and environmental
exposure to iodine uptake inhibitors in diverse populations across different regions [32]. In
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this work, we examined the iodine status in 24 h urine specimens collected from participants
(n = 800) in the Prospective Urban and Rural Epidemiological (PURE) study [33]. A
validated method based on capillary electrophoresis (CE) was used for simultaneous
analysis of urinary iodide, nitrate and thiocyanate after a simple dilution step [34,35].
Our study aimed to identify risk/protective factors associated with iodine deficiency for
participants residing in four communities across Canada reflecting differences in dietary
habits, smoking status, and other environmental exposures.

2. Experimental
2.1. Study Design, Participant Eligibility, and 24 h Urine Sampling

Our cross-sectional study included a subset of participants from the PURE-24USE
(PURE-24 Hour Urinary Sodium Excretion Survey) study [34] who were recruited from
January 2012 to December 2013. This cohort included adults aged from 36 to 83 years
(median of 61 years) living in four sites across Canada, Hamilton (n = 217), Vancouver
(n = 200), Quebec City (n = 200), and Ottawa (n = 183). Ethical approval was provided
by local research ethics boards at the four clinical sites, and all participants from each
site provided signed informed consent [33]. Participants were excluded if they were
diagnosed with a debilitating disease, required food restrictions due to chronic illness, as
well as pregnant or breastfeeding women who are contraindicated from ingestion of para-
aminobenzoic acid (PABA). A standardized procedure, necessary supplies, and detailed
instructions for collecting 24 h urine specimens were provided to all PURE participants
as described elsewhere [33]. Participants aged under 65 years also ingested a PABA tablet
(80 mg) at each of the three meals to verify adherence to 24 h urine sampling [36]. Urine
samples were considered authentic for subsequent analysis when recovery was >85% for
ingested PABA, and urinary 24 h creatinine excretion was within reference intervals for
men (995 to 2489 mg) and women (509 to 1810 mg) [34]. However, older participants
(>65 years) were exempted from PABA screening due to their delayed renal clearance [36].
On completion of collection, study staff measured and recorded the 24 h urine volume,
thoroughly mixed the collection, and retained 2 mL aliquots that were stored frozen at
−70◦C within the Clinical Trials and Clinical Research Laboratory in Hamilton General
Hospital [37].

2.2. PURE Participants and Self-Reported Dietary Intake

At each participant’s study visit, a standardized questionnaire was used to assess an-
thropogenic parameters, personal medical history, smoking status, alcohol intake, physical
activity, and use of prescription medications (e.g., Levothyroxine or Synthroid, T4) and
vitamin-mineral supplements [33]. Participants also completed a short questionnaire of
salt exposures from foods consumed over the 24 h period when their urine sample was
collected. Self-reported food intake was recorded by participants according to the type
of product consumed with emphasis on assessment of sodium and/or potassium content
in the PURE-24USE study [33]. In this work, foods associated with iodine nutrition and
goitrogen intake were evaluated [38,39] including salty foods, dairy, eggs, fish, breads and
cereals, meats (e.g., red, white, processed), processed foods, fruits, and various vegetables
(e.g., green leafy, cruciferous, dark yellow). The amount of specific food products consumed
daily were estimated as g/day unless otherwise indicated.

2.3. Iodide, Thiocyanate, Nitrate and Sodium Determination in 24 h Urine Samples

Urine samples were analyzed for iodide that is the predominant species of iodine
excreted in urine, as well as nitrate and thiocyanate using a recently validated assay
based on capillary electrophoresis with UV absorbance detection [34,35]. Urinary sodium
concentrations were measured by indirect potentiometry using a Beckman Coulter UniCel
DxC600 Synchron Clinical System [33]. All chemical reagents were purchased from Sigma-
Aldrich Inc. (Oakville, ON, Canada) unless otherwise stated. Briefly, frozen aliquots of
urine were thawed slowly to room temperature and then diluted two-fold in deionized
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water containing an internal standard, 1,5-naphthalene disulfonic acid (NDS, 40 µM). In
some cases, hydrated urine samples with low ionic strength were diluted two-fold in
a simulated urine matrix solution comprised of 100 mM sodium chloride and 10 mM
sodium sulfate for matrix matching purposes. All diluted urine samples were vortexed and
centrifuged prior to analysis. Quality control (QC) samples based on a pooled urine sample
from all PURE-24USE participants were used for assessment of technical precision. All CE
separations were performed using a P/ACE™ MDQ system with UV absorbance detection
(SCIEX, Framingham, MA, USA). Unmodified fused-silica capillaries were purchased from
Polymicro Technologies Inc. (Phoenix, AZ, USA) with an internal diameter of 75 µm and
total and effective (to detector window) capillary length of 60 cm and 50 cm, respectively.
The background electrolyte (BGE) was composed of 180 mM lithium hydroxide, 180 mM
phosphoric acid, 46 mM α-cyclodextrin with a pH of 3.0 [35]. New capillaries were
initially conditioned by flushing with methanol, deionized water, 1.0 M lithium hydroxide
(5 min each), and then background electrolyte (BGE) for 20 min using a rinse pressure of
20 psi (138 kPa). The CE separations were performed at 25 ◦C under reversed polarity with
an applied voltage of −18 kV, and UV absorbance was monitored at 226 nm (for iodide,
nitrate and thiocyanate) and 288 nm (for NDS). Prior to each analysis, the capillary was
flushed with the BGE for 3 min at 20 psi (138 kPa) followed by a long sample injection
via hydrodynamic pressure for 80 s at 0.5 psi (3.4 kPa). At the start of each day, a blank
sample, a calibrant mixture, and a QC were analyzed by CE prior to a randomized analysis
of a batch of individual urine samples with a QC sample repeatedly analyzed after every
batch of ten runs. At the end of each day, the capillary was flushed with deionized water
for 5 min and the inlet and outlet ends of the capillary were stored in vials containing
deionized water overnight. Calibration curves were performed for iodide, nitrate and
thiocyanate by CE, where their integrated peak areas were normalized to NDS as the
internal standard. Urinary iodide, nitrate and thiocyanate concentrations from PURE-
24USE participants were reported in terms of their absolute concentrations (µg/L or mg/L)
or daily excretion amounts based on total volume of 24 h urine collected (µg/day or
mg/day) that forgoes the need for creatinine adjustment. Dietary iodine intake estimates
for PURE were derived from measured daily excretion amounts and adjusted by an iodine
bioavailability of 92% [39]. Missing data following analysis of all 24 h urine samples were
0%, 2%, and 11% for nitrate, iodide and thiocyanate, respectively, if below method detection
limits (S/N = 3; 0.020 µmol/L or 2.5 µg/L for iodide) or as a result of matrix interferences.
For iodide non-detects, a missing value replacement was used corresponding to the lowest
concentration measured in the cohort divided by 3.

2.4. Statistical Analysis

Descriptive statistics, box-whisker plots, and pair-wise Spearman rank correlations
for urinary iodide, nitrate, thiocyanate and sodium concentrations and their equivalent
daily excretion amounts were performed using MedCalc 12.5 statistical software (MedCalc
Software Ltd, Ostend, Belgium). Routine data processing for population stratification
(quintiles) and least-squares linear regression for calibration curves of urinary anions mea-
sured by CE were performed using Microsoft Excel (Redmond, WA, USA). Representative
electropherograms and control charts were plotted using Igor Pro 5.04B (Wavemetrics Inc.,
Lake Oswego, OR, USA). Protective and risk factors associated with iodine deficiency
(<100 µg/L or <150 µg/day) were evaluated using a binary multivariate logistic regression
with and without adjustment for covariates. An odds ratio (OR) < 1.0 corresponds to a
positive association with the outcome (i.e., protective factor against iodine deficiency),
whereas an OR > 1.0 indicates a negative association to the outcome (i.e., risk for iodine
deficiency). Also, analysis of covariance (ANCOVA) was performed on log-transformed
data using SPSS 23.0 statistical software (IBM SPSS, Chicago, IL, USA). Statistical tests
comparing iodine status among PURE participants as a function of regional site, iodine
supplementation, T4 prescription, and dietary intake of specific foods were performed
unadjusted and adjusted for covariates, including age, sex, body mass index (BMI), to-
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tal caloric intake, current smoking, alcohol use, education, and diet quality (Alternative
Healthy Eating Index, AHEI score) unless otherwise noted. Statistical significance was set
at p < 0.05 with a Bonferroni correction used for multiple comparisons.

3. Results
3.1. PURE Cohort Characteristics and CE Method Performance

Table S1 summarizes the cohort characteristics of this cross-sectional study comprising
800 PURE-24USE participants from four regional sites across Canada who completed 24 h
urine sampling and a short questionnaire during their clinical visit. Overall, a sex-balanced
cohort (females, n = 412; males, n = 388) of overweight Canadian adults with a mean
age of (60 ± 9; 36 to 83) years and BMI of (28.1 ± 5.7; 16.3 to 59.4) kg/m2 were recruited
primarily from urban (~ 86%) regions of Vancouver, Hamilton, Ottawa and Quebec City.
Also, about 25% of PURE-24USE participants had high blood pressure based on a resting
systolic blood pressure >140 mm Hg and/or diastolic blood pressure >90 mm Hg [33].
We searched the composition of all vitamin/mineral supplements reported to be taken
by PURE participants and verified that iodine-containing supplements were consumed
by 12.9% (n = 103). Additionally, 7.6% were prescribed thyroxine (T4, n = 61), and 7.4%
(n = 59) were current smokers. However, participants with debilitating chronic diseases,
restrictive diet requirements and pregnant women were excluded. All urine samples from
participants were diluted minimally and then directly analyzed by CE with UV absorbance
detection, which allowed for determination of iodide, as well as nitrate and thiocyanate
within 10 min (Figure S1). Good technical precision was achieved following intermittent
analysis of a pooled QC urine sample (n = 93) with a mean coefficient of variance (CV) < 8%
as depicted in control charts. Table S2 lists the figures of merit of the CE method used for
reliable quantification of iodide, nitrate and thiocyanate in 24 h urine samples from the
PURE-24USE study.

3.2. Iodine Nutritional Status of Canadian Adults from PURE-24USE

Data distribution for urinary iodide, nitrate and thiocyanate were highly skewed
(Shapiro–Wilk, p > 0.05) with concentrations varying up to 1500-fold between participants.
The median 24 h urinary concentrations for iodide, thiocyanate and nitrate were 111 µg/L
(0.87 µmol/L, n = 800), 680 µg/L (11.7 µmol/L, n = 713), and 73.9 mg/L (587 µmol/L,
n = 800), respectively. As creatinine normalization was not required with 24 h urine col-
lection due to recording of total urine volume from each participant, the corresponding
median daily amounts excreted for iodide, thiocyanate and nitrate were determined as
226 µg/day, 1.39 mg/day and 150 mg/day, respectively. Figure 1A,B summarizes the
iodine status of PURE-24USE participants classified according to WHO guidelines [21]
based on 24 h UIC (µg/L) and 24 h UIE (µg/day) metrics. Overall, the median UIC of
111 µg/L was within adequacy requirements (100–199 µg/L) with 11.9% of the population
(<20%) having moderate (20–49 µg/L, 9.3%) or severe (<20 µg/L, 2.6%) iodine deficiency.
Similar outcomes of adequate iodine nutrition in the population were evident when using
more robust 24 h median UIE of 226 µg/day that was above the recommended dietary
allowance (RDA of 150 µg/day) with a much lower fraction of the population categorized
with moderate (2.1%) or severe (2.1%) iodine deficiency (<75 µg/day). In contrast, more
participants had excessive iodine intake based on 24 h UIE (13.4%; ≥450 µg/day) as com-
pared to 24 h UIC (7.3%; ≥300 µg/L) metrics. Figure 1C confirms that most participants
(~ 91%) had a daily iodine intake (assuming 92% bioavailability) within an acceptable
interval (95–1099 µg/day) with only 7.1% below EAR (<95 µg/day) and 1.8% greater than
tolerable UL (≥1100 µg/day).
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Figure 1. The iodine status of participants from the PURE-24USE study (n = 800) based on (A) 24 h
UIC (µg/L) and (B) 24 h UIE (µg/day). Median iodine concentrations indicated iodine adequacy
(111 µg/L or 226 µg/day, where error is ±IQR) with a low prevalence of moderate to severe io-
dine deficiency in the population (<20%). (C) Daily iodine intake confirmed only a small fraction
of adult Canadians in our cohort were below EAR (7.1%, <95 µg/day) or greater than UL (1.8%,
≥1100 µg/day). (D) Regional variations in iodine nutrition were found with residents from Quebec
City and Vancouver having lower iodine status than Hamilton or Ottawa (F = 8.80, p = 9.82 × 10−6,
n = 737; where * p < 0.014 for pairwise comparisons). Participants who (E) reported use of multivi-
tamin supplements containing iodine, but no T4 (F = 42.3, p = 1.52 × 10−10, n = 681), or (F) were
prescribed T4, but not taking iodine supplements (F = 9.71, p = 1.91 × 10−3, n = 644) had greater
iodine status than controls. All ANCOVA were adjusted for age, sex, BMI, total caloric intake, AHEI
score, education, alcohol use, and smoking status.

3.3. Factors Contributing to Iodine Deficiency in Canada

Table 1 summarizes the major variables associated with iodine deficiency (<150 µg/day
or <100 µg/L) when using a binary logistic regression model after adjustments for age,
sex, BMI, total caloric intake, and diet quality (AHEI score). Overall, variables that were
consistently protective against iodine deficiency (OR < 1.0, p < 0.05) using either UIE and
UIC included use of iodine supplements, T4 prescription, site location, and dairy intake.
Also, urinary sodium excretion was inversely associated with the risk of iodine deficiency
based on UIE reflecting greater intake of iodized salt in foods. All other self-reports of
salt intake (e.g., salty foods, table salt use at table and cooking, processed foods etc.) were
not associated with iodine status. Age, as well as greater bread and cereal intake, were
marginally protective against iodine deficiency based on UIC, whereas alcohol consumption
increased risk for iodine deficiency. Interestingly, 24 h urine volume showed opposing
trends likely reflecting a dilution effect when using UIC as a metric for iodine status
resulting in an apparent risk for iodide deficiency. However, correction for differences
in hydration based on UIE likely accurately reflects a true protective effect due to iodine
uptake from greater daily drinking water/fluid consumption.

Other factors associated with iodine deficiency (OR > 1.0, p < 0.05) were site location,
where residents from Vancouver and Quebec City had about a 2.5-fold greater relative
risk as compared to Hamilton or Ottawa. Figure 1D shows box plots confirming that the
median 24 h UIE for residents of Hamilton (264 µg/day, n = 198) and Ottawa (267 µg/day,
n = 173) were higher than Vancouver (194 µg/day, n = 172) and Quebec City (191 µg/day,
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n = 194) based on ANCOVA after a Bonferroni correction and adjustments for age, sex,
BMI, total caloric intake, AHEI score, education, smoking status and alcohol use (F = 8.80,
p = 9.82 × 10−6, n = 737). In contrast, iodine supplement use (F = 42.3, p = 1.52 × 10−10,
n = 681) without a T4 prescription had the greatest effect on iodine status when compared
to T4 alone without iodine supplement use (F = 9.71, p = 1.91 × 10−3, n = 644) as illustrated
in Figure 1E,F. Table S3 confirms that lower dairy and bread and cereal consumption were
dietary patterns associated with iodine inadequacy when participants were categorized
based on their iodine status as quintiles (Q1 vs. Q2–5) with a larger fraction from Van-
couver and Quebec City, with fewer taking iodine supplements or T4 hormone therapy.
Table S4 summarizes a Spearman rank correlation analysis of self-reported dietary intake of
specific foods as a function of UIE (µg/day) after excluding participants using iodine sup-
plements and/or T4. Overall, dairy intake had the strongest positive correlation (r = 0.24,
p = 2.38 × 10−9, n = 611) with iodine status that was most evident for residents in Hamilton
and Ottawa. In contrast, intake of bread and cereal, as well as processed food or a combina-
tion of red and processed meat were important sources related to iodine status for residents
of Quebec City. Other potential iodine containing foods surveyed in this study, such as fish,
eggs, and various vegetables, were not significant sources of dietary iodine.

Table 1. Protective and risk factors for iodine deficiency (<150 µg/day or <100 µg/L) among PURE-
24USE participants (n = 800) using a binary linear logistic regression. Significant variables (p < 0.05)
are bolded after adjustments for age, sex, BMI, total caloric intake and AHEI score.

Variable
24 h UIE (µg/day) 24 h UIC (µg/L)

OR (95% CI) p-Value OR (95% CI) p-Value

Age 0.99 (0.99–1.01) 0.257 0.98 (0.97–1.00) 0.0516
Male sex 0.80 (0.56–1.14) 0.215 0.76 (0.56–1.03) 0.0754
BMI (>27 kg/m2) 0.66 (0.47–0.92) 0.0153 0.99 (0.96–1.02) 0.515
24 h Urine volume (L) 0.69 (0.56–0.85) 4.07 × 10−4 2.31 (1.91–2.81) 5.87 × 10−17

Current smoker 0.85 (0.43–1.67) 0.635 1.13 (0.64–1.99) 0.671
Current alcohol consumer 1.59 (0.98–2.47) 0.059 1.48 (1.00–2.20) 0.0505
Study site:
Hamilton 1.00 (ref.) – 1.00 (ref.) –
Vancouver 2.54 (1.52–4.23) 3.57 × 10−4 1.83 (1.20–2.81) 5.31 × 10−3

Quebec City 2.58 (1.57–4.22) 1.74 × 10−4 1.89 (1.25–2.84) 2.41 × 10−3

Ottawa 1.19 (0.69–2.05) 0.531 1.28 (0.85–1.93) 0.839
Rural location 0.99 (0.69–1.60) 0.953 1.28 (0.85–1.93) 0.246
Iodine supplementation 0.18 (0.08–0.41) 6.30 × 10−5 0.31 (0.19–0.52) 8.77 × 10−6

T4 prescription 0.33 (0.14–0.78) 1.20 × 10−2 0.43 (0.23–0.79) 6.76 × 10−3

Dairy intake (g/day) 0.999 (0.998–0.999) 3.94 × 10−4 0.999 (0.998–1.00) 4.41 × 10−4

Starch intake (g/day) 0.999 (0.997–1.00) 0.105 0.999 (0.997–1.00) 0.0470
Sodium excretion (g/day) 0.71 (0.61–0.84) 3.03 × 10−5 0.93 (0.83–1.05) 0.265
Salty food intake (g/day) 1.00 (1.00–1.01) 0.108 1.00 (0.97–1.00) 0.856

CI = confidence interval, OR = odds ratios, ref. = reference. Hosmer–Lemeshow goodness-of-fit logistic regression,
UIE, urinary iodine excretion; UIC, urinary iodine concentration. Statistically significant variables (p < 0.05)
are bolded.

3.4. Risk Assessment of Iodine Deficiency from Exposure to Environmental Iodine
Uptake Inhibitors

Figure 2A confirms that dairy consumption was an important dietary pattern associ-
ated with iodine deficiency in the PURE-24USE study (F = 18.7, p = 1.75 × 10−5, n = 725)
as compared to 24 h sodium excretion (F = 16.9, p = 4.47 × 10−5, n = 737), and bread and
cereal consumption (F = 1.44, p = 0.230, n = 728); the latter food source of iodine was only
marginally significant when comparing iodine deficient vs. iodine sufficient participants
in an unadjusted student’s t-test (p = 0.0551). Other environmental exposures may also
modulate iodine deficiency risk despite adequate iodine nutrition. In this case, urinary
thiocyanate and nitrate concentrations and their daily excretion amounts were also mea-
sured in this study. Overall, median urinary thiocyanate and nitrate concentrations were
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6.1 and 670-fold higher than corresponding iodide levels. Figure 2B highlights that urinary
thiocyanate was strongly dependent on smoking status (F = 19.5, p = 5.82 × 10−9, n = 654)
with median 24 h thiocyanate excretion of about 1270 µg/day (n = 348), 1450 µg/day
(n = 256), and 3500 µg/day (n = 50) corresponding to never smokers, former smokers,
and current smokers, respectively. Otherwise, Table S5 highlights that dietary sources of
thiocyanate (after excluding current smokers) were only weakly associated with intake of
processed meat, cruciferous vegetables, and eggs (r ~ 0.10, p ~ 0.020, n = 620).
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Figure 2. (A) Dairy intake was the most significant dietary exposure associated with iodine deficiency
(F = 18.7, p = 1.75 × 10−5, n = 725), whereas (B) current smoking was a lifestyle factor associated
with elevated urinary thiocyanate excretion as compared to former or never smokers (F = 19.5,
p = 5.82 × 10−9, n = 654). Modest regional variations in exposure to environmental iodide uptake
inhibitors, (C) thiocyanate and (D) nitrate were found. Overall, residents from Quebec City were
exposed to both higher thiocyanate (F = 3.32, p = 0.0194, n = 654) and nitrate (F = 3.61, p = 0.0130,
n = 737) relative to Hamilton when using ANCOVA after adjustment for covariates with a Bonferroni
correction (* p < 0.05).

Table S6 highlights that urinary nitrate had a moderate association to the intake of
(total) vegetables (r = 0.17, p = 2.46 × 10−6, n = 759), as well as other specific vegetables
(e.g., green leafy, cruciferous), and fruit. Indeed, there was a modest difference in 24 h
urinary nitrate excretion when comparing low vs. high consumers of vegetables (F = 4.46,
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p = 0.0351, n = 728). However, there was no association of higher urinary nitrate excretion
and lower blood pressure, nor was it related to hypertension prevalence [40]. There were
regional variations in thiocyanate and nitrate exposures across Canada, although not as
striking as for iodine status (Figure 1D). Figure 2C,D demonstrate that residents from
Quebec City had greater exposure to both thiocyanate (F = 3.32, p = 0.0194, n = 654) and
nitrate (F = 3.61, p = 0.0130, n = 737) relative to Hamilton, after covariate adjustments and
Bonferroni correction. Also, residents from Vancouver had modestly elevated exposure to
nitrate as compared to Hamilton in an unadjusted ANOVA model.

4. Discussion
4.1. Iodine Nutritional Status of Canadian Adults

Canada first introduced mandatory iodized salt for table or household use in 1949 as a
prophylaxis to prevent iodine deficiency disorders due to the prevalence of iodine-deficient
soils [41]. However, continuous monitoring of national programs is needed to optimize
iodized salt content (~25 mg/kg) to ensure adequate nutrition in diverse populations with
changing eating patterns [42]. A household iodine nutrition survey by the Canadian Health
Measures Survey from 2007 to 2009 [29], as well as a recent study in children and young
women in Canada [30], concluded adequate iodine nutrition in the population, including in
high-risk demographic groups. The PURE-24USE study recently reported that daily sodium
intake for Canadians was similar to other Western countries with about 47% of participants
consuming <3 g/day [33] unlike other regions prone to excessive salt intake [11]. Thus,
population data does not support sodium restriction as a public health policy for blood
pressure reduction in Canada [43]. As a result, there is growing concern of the impact
on iodine nutrition when promoting ‘heart-healthy’ salt-restricted diets, which may also
include processed foods lacking iodized salt [44]. Additionally, vegans and vegetarians
have greater risk for iodine deficiency with about half being below an EAR of 100 µg/day
without iodine supplementation [45]. In fact, low iodine and selenium intake among
vegans and vegetarian women represents a nutritional vulnerability [46]. To the best of our
knowledge, our work is the first epidemiological study to examine iodine nutrition and
exposure to iodine uptake inhibitors in Canadian adults (2012 to 2013) using a robust 24 h
urine collection procedure for direct assessment of UIE [33]. In contrast, determination of
iodine status from random spot urine samples is prone to significant day-to-day [47] and
diurnal variations with peak concentrations excreted 4–5 h after main meals [48]. The CE
assay used in this study offers a simple and low-cost microseparation platform compared
to ion chromatography-tandem mass spectrometry [49] to differentiate urinary iodide from
other iodine species (e.g., iodine, iodate etc.) while also allowing for the analysis of nitrate
and thiocyanate [34,35] unlike inductive coupled plasma-mass spectrometry.

We confirmed adequate iodine nutrition based on a median 24 h UIE of 226 µg/day and
24 h UIC of 111 µg/L with 4.2% and 11.9% categorized as moderately and severely deficient
respectively based on WHO guidelines [21] in our cross-sectional study of community-
dwelling participants living in four cities across Canada. However, dietary thresholds for
estimating iodine status have assumed a mean 24 h urine volume of 1.5 L in adults. In
this case, the impact of hydration status can overestimate the prevalence of iodide defi-
ciency when relying on UIC as compared to UIE, which represents an age-old problem in
urinalysis [50]. In our study, 7.1% of participants have sub-optimal iodine intake < EAR
of 95 µg/day with few (1.8% > UL) prone to the deleterious effects from excessive iodine
consumption of over-iodized salt, seaweeds, iodine supplements, medications, or a combi-
nation of these sources [13]. These two latter extreme conditions may be associated with
adverse thyroid related health effects based on recommended Canadian dietary reference
intakes [51]. However, thyroid function and other biomarkers of hyper-/hypothyroidism
(e.g., thyroid-stimulating hormone) were not evaluated in the PURE-24USE study, which
focused on the impact of dietary salt intake on blood pressure and hypertension [33].

Overall, use of iodine containing multivitamins was the single most important factor
contributing to iodine adequacy in our study as compared to T4 use. For instance, the me-
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dian UIE for individuals taking both iodine supplements and T4, iodine supplements alone
(no T4), T4 hormone therapy alone (no iodine supplements) as compared to controls was
575 µg/day (n = 8), 360 µg/day (n = 95), 271 µg/day (n =53) and 206 µg/day (n = 644), re-
spectively. The use of iodine supplements has been shown to be a strong predictor of iodine
status as compared to other dietary sources [46], including in pregnant women [52]. Indeed,
a large fraction of popular adult multivitamin products now contain iodine primarily as
potassium iodide [53]. However, an analysis of prenatal multivitamins in the US market
revealed that some products may contain more than three-times the recommended daily
intake of iodine especially if derived from kelp [54]. T4 is a prescribed thyroid hormone
often used for treatment of hypothyroidism due to a thyroid dysfunction impairing normal
iodine uptake, such as Hashimoto’s thyroiditis. Yet, certain patients may be prescribed
T4 for non-thyroid indications, such as treatment for fatigue or obesity [55]. Deiodination
of T4 following ingestion and metabolism (average dosage ~ 125 µg) likely results in its
preferential renal excretion as iodide [56] that increases UIE to a greater extent than typical
food sources of iodine in the Canadian diet. However, simultaneous intake of T4 and iodine
supplements is not recommended given concerns of excessive iodine intake with potential
risks for hyperthyroidism. Otherwise, only two participants in this study were reported to
be using another iodine containing prescribed medication, namely amiodarone. However,
recent use of iodine containing contrast agents for diagnostic imaging was not included in
the questionnaire.

4.2. Major Dietary Sources of Iodine Nutrition in Canada

Dairy intake was the most significant food source to differentiate iodine status (p = 1.75 × 10−5)
in our cohort of Canadian adults after adjustment for covariates (Figure 2A) as compared
to total salt intake (i.e., 24 h urinary sodium excretion), or bread and cereal, and processed
food consumption. Milk and dairy products are important sources of iodine that contribute
about 40% of total iodine nutrition in non-pregnant adults relative to about 11% for fish
and seafood in the United Kingdom [57]. However, dairy may constitute a greater fraction
of total dietary iodine in other western countries given its more frequent consumption
than fish [52]. In fact, postmenopausal women with reduced milk intake are at greater
risk for iodine deficiency as compared to daily milk consumers, despite regular iodized
salt use [58]. A survey of Canadian dairy farms reported a variable iodine content in
milk in different provinces, which was dependent on feeding and sanitation practices,
such as spraying or dipping teats with iodophors before milking [59]. Thus, human
iodine intake from milk and dairy products arises from cattle fodder and feed fortification,
as well as indirectly via transdermal uptake and/or incidental contamination of iodine
containing disinfectants during milking [60]. This scenario has been characterized as an
accidental public health triumph for eliminating endemic goiter in Britain [61]. The median
dairy intake for PURE participants was 333 g/day (ranging from 0 to 1520 g/day), which
corresponds to a theoretical iodine intake of 102 µg/day or 68% of the recommended
non-pregnant adult daily requirement assuming a mean iodine concentration of 304 µg/kg
in Canadian milk [59]. Data from the USA reported that iodine content of retail milk
products was variable with an average 85 µg/serving (240 mL) that did not depend on
milk fat content while supplying about 57% of daily iodine intake [18]. Recent studies have
also demonstrated that iodide is the predominant iodine species in cow milk that has high
bioavailability, which is recommended for children and pregnant women given their higher
iodine nutritional requirements [62]. However, there is growing risk for iodine deficiency
due to increased consumption of unfortified milk alternative drinks derived from soya, oat,
hemp, rice and various nuts (e.g., almond, coconut) that contain only 1.7% of cow milk’s
iodine content [63]. Although most of these milk substitutes are fortified with calcium, few
products are fortified with iodine.

Self-reported measures of salt use from questionnaires were not identified as significant
source of dietary iodine in the PURE-24USE study with only processed food consumption
being weakly correlated to UIE. On the other hand, daily urinary sodium excretion was
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found to differentiate iodine status after adjustment for covariates (p = 4.47 × 10−5). For
instance, iodine deficient (<150 µg/day) as compared to sufficient (≥150 µg/day) partic-
ipants with completed diet records (n = 737) had a median urinary sodium excretion of
2.74 g/day and 3.15 g/day, respectively. Overall, only 10% of participants had excessive
sodium intake of ≥5 g/day with a median sodium intake of 3.08 g/day, which highlights
that public health policies to restrict sodium intake in the population [44,45] may nega-
tively impact universal iodized salt programs unless other iodine-rich sources of food are
regularly consumed [13]. This policy conflict is reflected by recent changes to Canada’s
Food Guide in 2020 that discourages animal protein consumption (i.e., milk and dairy)
in favor of plant-based protein sources while also recommending meals to be prepared
with little to no added salt [64]. Although fish consumption was not associated with iodine
status in this study, bread and cereal intake was weakly protective against iodine deficiency
albeit much less significant than dairy products, as well as iodine supplement or T4 use.
This may reflect the declining use of iodate as a conditioner in bread and baking products
in North America [12] in contrast to public health initiatives to fortify breads with iodized
salt, such as in Australia [16] and Denmark [65].

4.3. Regional Variations in Iodine Deficiency across Canada Modulated by Exposure to Iodine
Uptake Inhibitors

An unexpected result from our multi-center cross-sectional study was the variation in
iodine status for PURE participants across the four Canadian study sites, as well as their
differential exposure to environmental iodide uptake inhibitors. Similar regional variations
in iodine status were reported in three cities in Turkey whose population is mildly iodine
deficient [32]. Also, regional variations in iodine status have been reported across four
cities in China with evidence of adequate iodine status [66]. Although there is iodine
adequacy on a population level in Canada, residents from Quebec City and Vancouver
(~191 µg/day or 92.1 µg/L, n = 400) were at a 2.5-fold greater relative risk for iodine
deficiency as compared to Hamilton and Ottawa (~269 µg/day or 124 µg/L, n = 400) after
covariate adjustments and Bonferroni correction. These regional variations in iodine status
persisted after excluding for differential iodine supplement and T4 use. Yet, residents from
Quebec City had the highest 24 h urinary sodium excretion (median of 3.70 g/day) and
dairy intake (median of 379 g/day) relative to other sites, whereas Vancouver residents had
average sodium excretion (median of 2.99 g/day) and a lower mean dairy consumption
(median of 285 g/day). The variable iodine content of Canadian milk producers differs
regionally [59] likely explains these discordant trends when relying on a standardized
questionnaire for diary intake for participants from three different provinces, including
Ontario, British Columbia, and Quebec.

Indeed, there was a poor correlation between self-reported dairy intake and iodine
status for residents from Quebec City and Vancouver, unlike Hamilton and Ottawa (both
in Ontario) implying regional variations in milk iodine content. In contrast, the iodine
status of residents from Quebec City had a weak correlation with bread and cereal intake,
as well as processed food and processed meat consumption reflecting distinctive eating
patterns despite no overall difference in diet quality (AHEI score). However, alcohol
consumption weakly increased risk for iodine deficiency in the PURE-24USE study, which
is not consistent with the association of moderate alcohol use and lower rates of goiter,
single thyroid nodules and autoimmune hypothyroidism [67,68]. The analysis of iodine
content in household drinking water from urban and rural sites in Canada may represent an
important yet unexplained dietary iodine source not examined in this study. For instance,
there is growing recognition of the importance of iodine-rich spring and ground water
sources which may lead to excessive iodine intake in certain regions [69]. Indeed, there
was over a ten-fold range in hydration status recorded among PURE participants with a
median 24 h urine volume of 2.13 L (n = 800) ranging from 0.63 to 6.77 L that is corrected
with UIE determination indicative of a protective effect against iodine deficiency due to
greater daily fluid intake.
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Although urinary perchlorate was not detected by the CE method, two abundant
iodine uptake inhibitors were measured together with iodide, namely thiocyanate and
nitrate. For instance, a median urinary perchlorate concentration of 3.2 µg/L was re-
ported in pregnant women from Toronto, Canada that was about 100-fold lower than
urinary thiocyanate [70]. Although thiocyanate is a weaker antagonist of the sodium-iodide
symporter, the relative potency of perchlorate to inhibit iodide uptake is about 15- and
240-times that of thiocyanate and nitrate on a molar concentration basis [71]. Thus, the
much higher concentrations of thiocyanate and nitrate render these ubiquitous thyroid an-
tagonists essential when estimating their combined inhibitory effect based on a perchlorate
equivalent concentration [72]. Although thiocyanate is biosynthesized in-vivo, exogenous
sources are derived by smoke inhalation of hydrogen cyanide following combustion of
nitrogen-containing tobacco alkaloids, and the digestion of certain goitrogenic foods, such
as vegetables containing cyanogenic glycosides [73]. As expected, urinary thiocyanate
excretion was strongly determined by smoking status [74] with smaller background dietary
contributions from the intake of cruciferous vegetables and processed meat. Overall, there
was a 2.6-fold (p = 5.82 × 10−9) greater thiocyanate excretion in current smokers as com-
pared to former/never smokers. Women who are heavy smokers have been reported to
be at greater risk for hypothyroxinemia from excessive thiocyanate exposures [75]. The
median urinary thiocyanate excretion of 1395 µg/day (or 680 µg/L) was 67-fold greater
than iodide with higher thiocyanate exposures measured for residents in Quebec City as
compared to Hamilton, Ottawa, and Vancouver after covariate adjustment.

Similarly, residents of Quebec City also had modestly higher exposure to nitrate
relative to Hamilton. Overall, there was a 664-fold higher urinary nitrate concentration
than iodide with a median 24 h excretion of 150 mg/day (or 7.41 mg/L, n = 800). Unlike
thiocyanate, urinary nitrate was unrelated to tobacco smoking, and it had a stronger
correlation to dietary intake of vegetables, notably green leafy vegetables. However,
residents from Quebec City also had nitrate exposures from processed meat and fruit
intake unlike other study sites (Table S5). Similar to iodide, drinking water is likely an
unaccounted source of nitrate exposures [76] in the PURE-24USE study, which may be acute
in ground water contaminated by agricultural fertilizer run-off. Although greater nitrate
exposure may have putative health benefits to reduce hypertension and cardiovascular
disease risk reflecting higher nitric oxide levels [41], there was no significant correlation to
blood pressure (systolic or diastolic) or hypertension incidence in this study. Nonetheless,
nitrate and thiocyanate are anticipated to have a 96-fold and 14-fold greater inhibitory
effect on iodide uptake as compared to reported urinary perchlorate levels [71] given their
much higher exposure levels consistent with previous risk assessment calculations [77].
Consequently, residents from Vancouver and especially Quebec City may be at greater
relative risk for iodine deficiency due to their suboptimal iodine nutritional status and
greater combined exposures to thiocyanate and/or nitrate.

4.4. Study Strengths, Limitations and Future Perspectives

Major strengths of this study include the use of a robust 24 h urine collection procedure
together with a coordinated 24 h dietary questionnaire timed during specimen drop-off
at four different clinical sites across Canada. A validated CE method was also used
for quantitative iodide, thiocyanate and nitrate determination in urine directly after a
simple dilution step. Moreover, complementary statistical methods were adjusted for
potential confounders with key outcomes remaining robust relative to unadjusted models.
Limitations include that this cross-sectional study was not representative of Canadians
given selection criteria for participant selection was focused on sodium and potassium
intake primarily in older persons, which excluded children and pregnant women [33].
Even though total urine volume was used to correct for variable hydration status when
reporting iodine status as UIE, the recording of daily volume of water or beverages ingested,
source(s) of water (e.g., tap, bottle), as well as iodide content analyses of local drinking
water and commercial milk products in different sites were also study limitations. A
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more detailed food frequency questionnaire that included specific iodine-rich foods, such
as seaweed/marine algae, and ocean fish/seafood, as well as adherence to increasingly
popular diets (e.g., vegetarian, vegan, lactose-intolerant, ketogenic, low-salt, paleolithic) is
recommended in future studies given their likely impact on iodine status [78]. Although
nitrate exposure was not related to hypertension in this study, iodine deficiency with low
urinary iodide levels is associated with hyperlipidemia and greater cardiovascular disease
risk highlighting the broader public health benefits of optimal iodine prophylaxis [79,80].
Future studies involving iodine nutrition in older persons would benefit from biochemical
measures of thyroid function, blood lipid panels, and inflammatory biomarkers during
clinical visits. Direct analysis of circulating levels of iodide in serum may also provide
deeper insights into iodine status and thyroid function than urine biomonitoring [66].
Lastly, national food guidelines recommending salt-restricted foods and plant-based protein
substitutes warrant further scrutiny to the potential negative impacts on iodine deficiency in
susceptible populations without iodine supplementation or mandatory iodine fortification
of staple foods (e.g., bread) and commercial products (e.g., milk substitutes).

5. Conclusions

In summary, the iodine status of Canadian adults (n = 800) surveyed from 2012
to 2013 was determined to be adequate on a population level with a low prevalence
of moderate to mild deficiency or excessive iodine intake. Overall, 24 h UIE provided
a more robust indicator of iodine status than UIC that allowed for direct assessment
of dietary reference intervals without creatinine adjustments. Iodine supplement use,
T4 prescription, dairy intake, 24 h sodium excretion, and 24 h urine volume were key
protective factors against iodine deficiency in this study. On the other hand, residents from
Quebec City and Vancouver were at greater risk for iodine deficiency than Hamilton and
Ottawa. These regional differences in iodine status may be further exacerbated by greater
exposure to thiocyanate and nitrate as ubiquitous iodine uptake inhibitors. Continued
iodine surveillance is warranted given greater consumption of processed foods, increased
popularity of salt-restricted and other specialized diets, as well as emerging environmental
exposures that may increase iodine deficiency risk in Canada. This work highlights that
national level iodine adequacy may obscure regional differences in iodine status in local
populations. Greater public awareness of the importance of optimal iodine nutrition in a
healthy diet is strongly recommended along with public health guidelines that better align
the optimal dietary intakes of sodium and iodine in the population.
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Spearman rank correlation analysis of dietary variables associated with daily thiocyanate excretion;
Table S6: Spearman rank correlation analysis of dietary variables associated with daily nitrate excre-
tion; Figure S1: Representative electropherogram overlay and control charts for reliable quantification
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