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A B S T R A C T

The electrocardiogram is traditionally used to diagnose a large number of heart pathologies. Research to improve
the readability and classification of cardiac signals includes studies geared toward sonification of the electro-
cardiographic signal and others involving features related to music processing, such as Mel-frequency cepstral
coefficients. In terms of music processing features, this study seeks to use music information retrieval (MIR)
features as electrocardiographic signal descriptors. The study compares the discriminatory capability of the
introduced features in relation to standard groups such as heart rate variability, wavelet transform, descriptive
statistics, Mel coefficients and fractal analysis, evaluated using classification algorithms; the signals analyzed were
extracted from public databases. The group of features extracted from wavelet transform and the MIR group
showed a high level of discrimination; the best representation of the ECG signals in the study was achieved in
most cases by the MIR features. Moreover, a correlation coefficient higher than 0.8 was found between a number
of MIR and other feature groups, indicating a likely relationship between the electrocardiographic signals and
MIR features. These results suggest the feasibility of representing the analyzed signals by music information
retrieval descriptors, giving the potential to consider these electrocardiographic signals as analogues to musical
signals.
1. Introduction

The electrocardiogram (ECG) is a medical examination that allows
recording the electrical activity of the heart using contact electrodes
placed in specific positions of the chest and extremities, together with a
monitoring system [1]. It is one of the main physiological measures for
medical diagnosis, analysis and monitoring of cardiac function [2]. Since
it is related to the mechanical pumping of the heart, it provides infor-
mation on its physiological state [2]. ECG represents one of the most
widely used diagnostic tools in the health field, and is used in different
situations from control in healthy subjects [3] to monitoring of patients
in intensive care [3]. The high frequency of ECG use is due to the increase
in the prevalence and incidence of cardiovascular diseases (CVD), where
physicians and cardiologists have to read and analyze large numbers of
u.co (E. Idrobo-�Avila).
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ECG records, an increasingly challenging task. It is important to note that
CVD represents the leading cause of death in the world [4], with more
than 17 million deaths per year in 2016, and expected to exceed 23
million in 2030 [5]. Therefore, in recent years, research has been con-
ducted concerning ECG applications, including studies related to signal
processing [6, 7], machine learning [8], ordinal statistics of patterns and
symbolic dynamics [9], or using morphological and dynamic features of
ECG signals [10].

In relation to ECG classification, applications and analysis, other
studies looked to relate music to ECG signals. The aim of these studies is
the sonification of the ECG signal [11, 12]. In this regard, some features
related to music processing, such as Mel-frequency cepstral coefficients
(MFCC) have been used with promising results [13]. At this point, it is
worth mentioning that MFCCs are used as timbre descriptors within
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music information retrieval (MIR) [14, 15], a field usually referred to as
analysis of audio content, whose objective is the extraction of informa-
tion from audio signals - digital recordings of music and audio in general
[16]. MIR provides information about recognition of musical in-
struments, classification of musical phrases or melodies, and rhythm and
high level-based music retrieval [17]. MIR analysis is also focused on
recognition of emotions in music [18] and research continues concerning
ECG and emotion in relation to music. Applications have been developed
in which heart rate emotion data was used for generating music [19].
More recent research continues to propose methods for recognizing
emotions elicited by music through ECG [20].

Even though prior research has explored a limited number of digital
music processing features as ECG signal descriptors, until now the
methods implemented only allowed ECG signal characterization via
MFCC features using public databases in order to classify ECG as normal
or abnormal. Therefore, studies in which more elements of musical
analysis are incorporated must still be considered to see whether MIR
features can allow better discrimination between ECG signals [13]. This
study hypothesizes that ECG signals can indeed be represented through
MIR features, which could serve to discriminate between different car-
diopathies. In this paper, an approach that uses MIR as ECG features is
presented to classify between inferior and anterior myocardial infarction,
T-wave alternation, and normal ECG signals. MIR features of different
natures are considered and compared with those features commonly used
in cardiac signal analysis as features related to descriptive statistics [21],
wavelet coefficients [22], heart rate variability [23], and fractal analysis
[24]. In order to compare the descriptive capacity of each set of features,
different machine learning algorithms were used, and the performance
obtained with each set was compared. A correlation analysis was per-
formed to associate the MIR features with those already known in the
context of the ECG signals.

The remainder of this document is organized as follows: Section 2
presents a description of the databases used, along with the stages of the
experimental procedure; Section 3 reports the results, in which the best
outcomes can be observed; Section 4 covers discussion of the results; and
finally, Section 5 shows the conclusions of this study and some ideas for
future research.

2. Materials and methods

2.1. Database description

This study makes use of ECG signals from two publicly available da-
tabases - the MIT-BIH and the C-database, both belonging to the Physi-
oNet databases [25]. The MIT-BIH database [26] was included since it
was considered in previous research to study MFCC coefficients as de-
scriptors of ECG signals [13] and thus enabled comparisons to be made.
The C-database was included as a challenge to the MIR features since this
Figure 1. Block diagram of th
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database contains signals with more subtle differences between its clas-
ses, which poses difficulties for the classification stage. In both databases,
Lead II of the ECG signals was selected since this lead registers the
inferior electrical activity of the heart [27].

The MIT-BIH database is composed of signals belonging to three
classes, arrhythmia (ARR), congestive heart failure (CHF), and normal
sinus rhythm (NSR). These classes comprised 30 instances, each with a
512-second duration and sampling frequency of 128 Hz. The C-database
involved the PTB Diagnostic ECG Database (PTB) [25, 28, 29] where
signs of inferior and anterior myocardial infarction and normal signals
were used. Additionally, the T-Wave Alternans Challenge Database
(TWA) [25, 30, 31] was included where T-wave alternating signals were
used. Thus, C-database was constructed with four classes: normal signals
(N), signals with alternating T-wave (T-wave), signals with inferior
myocardial infarction (IMI) and signals with anterior myocardial
infarction (AMI). The classes N, T-wave, IMI and AMI consisted of 48, 41,
38, and 39 instances respectively, 166 instances in total. All signals are of
60 s duration and a sampling frequency of 1000 Hz, except for T-wave
class signals, which were acquired with a sampling frequency of 500 Hz.

2.2. Experimental procedure

Once ECG derivations and anomalies were chosen and classified, the
general experimental procedure was proposed. This procedure consisted
of four stages: preprocessing, dataset augmentation, feature extraction
and classification (Figure 1). The feature extraction stage was divided
into two substages: extraction and selection, the latter to find out how
each feature contributes to description of the database. For this, a new
classification according to this ranking was performed, to observe the
changes in the classification metrics with the number of best features;
and a correlation between MIR features and other ECG features was also
performed, to find any relationship(s) between them.

2.2.1. Preprocessing
The preprocessing stage allows both conditioning the signals and

eliminating unwanted elements such as certain frequential components.
In this case, the preprocessing stage consisted of two sub-stages: resam-
pling and baseline wander correction.

2.2.1.1. Resampling. The objective of the resampling stage is to put all
signals of the dataset in as similar conditions as possible, i.e. similar
frequential content. All signals in the C-database were resampled to the
minimum sample frequency of the original dataset; namely, 500 Hz. The
resampling process was not applied to the MIT-BIH database since all the
signals had the same sampling rate.

2.2.1.2. Baseline wander correction. After resampling the signals, a
baseline wander correction process was applied. This procedure was
e experimental procedure.



Figure 2. Mother wavelet Daubechies 6. For more information on mother
wavelets see [33].
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performed to remove noise produced by the breathing or movement of
subjects [32], which produces problems as it overlaps with the ST
segment [32]. Baseline wander correction was applied to both databases
using discrete wavelet transform (DWT) with the same filter bank:
Daubechies 6 (Figure 2) [33]. This mother wavelet was selected because
it is one of the most similar to a normal ECG signal. Wavelet decompo-
sition was performed on ten levels of the input signal, and a frequency
band between 0 and 0.49 Hz was removed, corresponding to baseline
drift [34]. Following this decomposition, signal reconstruction was per-
formed from approximation coefficients of the last level and all the detail
coefficients of all decomposition levels were equaled to zero. As a result
of this process, a low-frequency signal represented the baseline of the
input signal. Finally, it was necessary to subtract the signal obtained from
wavelet analysis of the input signal, in order to correct the baseline.

2.2.2. Database augmentation

2.2.2.1. Wavelet-based shrinkage filtering. The data augmentation stage is
essential to ensure that the machine learning algorithms have enough
samples from which to learn. Additional data have to replicate the con-
ditions that were encountered during the acquisition process. The data
augmentation process was applied only to the C-database, as the MIT-BIH
database contained enough data to train the chosen algorithms. Data
augmentation was implemented using the wavelet-based shrinkage
filtering method [35], in which three mother wavelets were applied to
filter the signals: Daubechies 4 (db4), Daubechies 6 (db6), and Symlets 8
(sym8). Thus, for each raw signal, three more signals were generated
(Figure 3).
Figure 3. Database au
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2.2.3. Segmentation
Before the feature extraction stage, a segmentation phase was per-

formed. This process was carried out to analyse the signals in more detail,
i.e. short periods of time. The signals were segmented using a Hamming
Window. In the MIT-BIH database, the signals were divided into seg-
ments of ten seconds, without overlapping, while in the C-database, each
signal was divided into nine segments of ten seconds each, with a win-
dow overlapping of 40% [36]. This interval was chosen because, in a
healthy heart rate range, there are between 50 and 90 bpm (beats per
minute). Thus, it is possible to have between 8 to 15 heartbeats within
each window [37]. Using this amount of heartbeats, it is possible to
establish a pattern behaviour in both the ECG signal and some heart rate
variability (HRV) analysis [38, 39].

2.2.4. Feature extraction
Once the segmentation stage was carried out, the feature

extraction step was performed. This process allows compact repre-
sentation of data (ECG signals) through features that depict partic-
ular behaviours or patterns in the data [40]. From the MIT-BIH
database (Table 1), a set of MIR features was extracted, while six
groups of features were extracted from the C-database (Table 2) -
MIR, Mel-frequency cepstral coefficients (MFCC), descriptive statis-
tics, fractal analysis, HRV, and descriptive statistics from wavelet
coefficients. Although MFCC could be considered part of MIR, it was
omitted in this MIT-BIH analysis and was considered elsewhere
mainly in order to compare the outcomes obtained from MIR fea-
tures with the MFCC results obtained in [13], through study of the
same MIT-BIH database.

In calculating HRV, both temporal and frequency domain features
were considered. HRV was computed through detection of R-peaks; R-
peaks were identified using the Pan-Tompkins algorithm [45]. Unde-
tected peaks were marked manually. Regarding feature extraction of
wavelet coefficients, three levels of decomposition, descriptive statistics
for these components, and the Higuchi fractal dimension were consid-
ered. Implementation of the algorithms required in this study was carried
out using Matlab [46], while MIR feature extraction was performed using
MIRtoolbox [44, 47].

2.2.5. Feature ranking

A best features ranking was carried out using the information gain
ratio [48] with the C-database. This process was performed to observe
whether the classification process could be improved by considering only
the best features. This process was also performed on the MIR features to
determine how much each MIR feature contributes to data representa-
tion. From the ranking process, two groups were created, “Best features”
(the five best-ranked features from each of the MIR, Statistics, HRV, and
Wavelet groups) and “14-MIR” (the 14 best-ranked MIR features). The
number 14 was selected according to a classification analysis with the
best MIR features (See below: Section 3.5. Classification with best MIR
features).
gmentation stage.



Table 1. List of MIR features extracted from ECG signals (26 features) MIT-BIH database.

Features Description

mean pitch, standard deviation pitch, zero-crossing, low energy rate, tempo,
minimum tempo, maximum tempo, mean tempo, standard deviation of
tempo, pulse clarity, event density, minimum novelty, maximum novelty,
mean novelty, standard deviation of novelty, key, mode, spectral spread,
spectral distribution centroid, spectral roll-off, spectral skewness, spectral
kurtosis, spectral flatness, spectral regularity, spectral entropy, root mean
square

Although, many features were included, a greater influence of tempo-related features was expected due
to the rhythmic nature of the heart. The main MIR characteristics considered here include root mean
square, tempo, zero-cross, spectral flatness, and spectral spread. Root mean square is related to sound
intensity [41]. Tempo is related to the tempo of a musical signal; this is estimated from the detection of
periodicities in the signals [42]. Zero-crossing represents the number of changes of sign in consecutive
blocks of signals [16]. Zero-crossing has high values for segments with noise and low values for tonal
parts or parts with determined frequencies. Its long constant values during constant pitches indicate the
presence of a fundamental frequency. Spectral flatness measures the amount of correlation structure that
exists in a signal [43]; it also indicates whether the spectral distribution is smooth, associated with noise,
or with peaks, associated with a tonal behavior [44]. A spectral flatness close to one represents spectrum
with components in all frequency bands, similar to the spectrum of white noise. In contrast, a spectral
flatness close to zero represents a spectrum with components in a limited number of frequency bands,
such as those present in pure tones or the sum of sinusoidal components. Spectral spread is associated
with the standard deviation of the signal spectrum around the spectral centroid; this measure is
associated with perception of the timbre of an audio signal [16].
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2.2.6. Classification
Once the features were extracted and selected, a classification process

was carried out to determine whether or not the extracted features can
represent particular ECG signals. Classification was implemented using
six classical AI algorithms: AdaBoost, CN2 rule inducer, neural network,
random forest, decision trees (Tree), and k-nearest neighbors (kNN)
(Table 3). These algorithms were applied to both datasets: MIT-BIH and
C-database.

2.2.6.1. Training, test and evaluation of models. The datasets were split
into training and testing sets corresponding to 80 and 20% of the
data, respectively. The datasets had a total of 4,590 and 5,976 in-
stances related to MIT-BIH and the C-database, respectively, within
which the training and test sets had respectively 3,672 and 918
instances for the MIT-BIH database, and 4,860 and 1,116 instances
for the C-database. These two sets were constructed considering that
data of subjects in the test set should not be in the training set.
Although this approach generally produces low-performance metrics
in evaluation because of inter-participant variability [49], it was
selected since it is closest to real applications. Cross-validation with
five folds was used for training the models. The performance of
each classifier was evaluated using the area under the ROC curve
(AUC), and accuracy. In the classification process, the performance
of the classification algorithms was compared with each group of
features, revealing the group of features which best described the
ECG signals and the classifiers that achieved the best performance
with the selected database.
Table 2. List of features extracted from ECG signals, C-database.

Group Features

MFCC mfcc1, mfcc2, mfcc3, mfcc4, mfcc5, mfcc6, m
maximum mfcc, minimum mfcc, mean mfcc

Descriptive statistics maximum, minimum, mean, variance, skew

Fractal analysis Higuchi fractal dimension, Katz fractal dime
analysis alpha1, HRV detrended fluctuation

HRV mean R-R interval, root mean square of the
interquartile range of Euclidean distance, m
than 50ms, triangular index from the interv
correlation dimension, approximate entropy
deviation2 of the Poincar�e plot, ratio of stan
Poincar�e plot, very low-frequency componen
components, ratio of low and high-frequenc
power of high-frequency components, total p
detrended fluctuation analysis alpha2

Wavelet coefficients maximum(cfs0-7), minimum(cfs0-7), mean(
7), energy(cfs0-7), entropy(cfs0-7), Higuchi

MIR As described in Table 1

Total

4

2.2.7. Correlation analysis

Finally, using the Pearson correlation coefficient, an analysis was
carried out of correlation between the MIR features and the other fea-
tures extracted from the C-database, to establish a link between the ECG
signal and the MIR features.

3. Results

3.1. Preprocessing

3.1.1. Baseline correction
Applying the methodology described above, the ECG baseline was

subtracted (Figure 4), resulting in enhanced and cleaner signals, with a
near-constant dc level.

3.2. Database augmentation

Shrinkage filtering with three mother wavelets - Daubechies 4 (db4),
Daubechies 6 (db6), and Symlets 8 (sym8) - augmented the database by a
factor of 4 (from 166 to 664 instances), each filtering subtly modifying
the original signal (Figure 5); e.g. filtering with the sym8 and db6
wavelets was noticeably smoother than with db4.
Total

fcc7, mfcc8, mfcc9, mfcc10, mfcc11, mfcc12, mfcc13,
, mfcc variance, mfcc skewness, mfcc kurtosis

19

ness, kurtosis, median, mode, energy, entropy 10

nsion, Hurst exponent, HRV detrended fluctuation
analysis alpha2

5

successive differences, median of Euclidean distance,
ean of the heart rate, probability of intervals greater
al histogram, performing triangular interpolation,
, standard deviation1 of the Poincar�e plot, standard
dard deviation1 and standard deviation2 of the
ts, low-frequency components, high-frequency
y components, power of low-frequency components,
ower, HRV detrended fluctuation analysis alpha1, HRV

22

cfs0-7), variance(cfs0-7), median(cfs0-7), mode(cfs0-
fractal dimension (cfs0-7)

72

26

154



Table 3. Configuration parameters of classical artificial intelligence algorithms implemented.

Classification algorithms Configuration MIT-BIH database Configuration
C-database

AdaBoost Base estimator: Tree, Number of estimators: 50, Learning rate: 1, Classification
algorithm: SAMME.R

Base estimator: Tree, Number of
estimators: 50, Learning rate: 1,
Classification algorithm:
SAMME.R

CN2 rule inducer Unordered rule, Evaluation measure: entropy, Beam width: 5, Regression loss
function: linear

Unordered rule, Evaluation
measure: entropy, Beam width: 5,
Regression loss function: linear

Neural network Multi-layer perceptron with backpropagation. Neurons in hidden layers: 150,
Activation: ReLu, Regularization: alpha ¼ 0.002, Solver: Adam

Multi-layer perceptron with
backpropagation. Neurons in
hidden layers: 5, Activation: ReLu,
Regularization: alpha ¼ 3, Solver:
L-BFGS-B

Random forest Number of trees: 20 Number of trees: 10

Decision trees Induce binary tree, Minimum number of instances in leaves: 7, Limit the
maximal tree depth to: 100

Induce binary tree, Minimum
number of instances in leaves: 2,
Limit the maximal tree depth to:
100

K-nearest neighbors Number of neighbors: 5, Metric: Manhattan, Weight: Distance Number of neighbors: 3, Metric:
Manhattan, Weight: Distance
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3.3. MIR feature ranking

Ranking of all MIR features was carried out using the information
gain ratio (Table 4). As expected, the tempo features best described these
ECG signals.
3.4. Classification: evaluation of models

3.4.1. Classification: MIT-BIH database
After training the algorithms with the MIT-BIH database, perfor-

mance was evaluated using the AUC (Figure 6), and accuracy metrics
(Figure 7) in both binary and multiclass classifications. The two classes
used were normal sinus rhythm (NSR) and congestive heart failure
(CHF), while arrhythmia (ARR) to make three classes. With the exception
of CN2 rule inducer for 3 classes, performance across all algorithms
surpassed 0.90 AUC and 0.85 accuracy. Neural network, with 0.98 AUC
and 0.99 accuracy (2 classes) and 0.96 AUC and 0.99 accuracy (3 classes)
outperformed all the others.
Figure 4. Example of ECG baseline correction.
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3.4.2. Classification: C-database
Having trained the algorithms with the C-database, performance was

evaluated using AUC and accuracy. AUC again revealed a strong overall
performance by neural network (Figure 8). The MIR features, in combi-
nation with neural network, outperformed all other groups. The “Best
features” group was also seen to perform well. An accuracy value that
exceeded 0.7 showed that MIR features in combination with neural
network again performed best (Figure 9).

3.5. Classification with best MIR features: C-database

Having ranked the MIR features, analysis of the classification per-
formance was carried out using the MIR feature ranking. In this analysis,
neural network was selected, as the best overall performing algorithm
from previous results. Observation began with two features (Figure 10).
In this performance, the values of AUC and accuracy are observed to be
around 0.85 and 0.65 respectively.
Figure 5. Example of wavelet-based shrinkage filtering.



Table 4. Ranking of MIR features using information gain ratio (IGR).

Ranking MIR feature IGR Ranking MIR feature IGR

1 mean tempo 0.1181 14 standard deviation of tempo 0.0432

2 tempo 0.1137 15 spectral spread 0.0367

3 minimum tempo 0.0995 16 low energy rate 0.0324

4 pulse clarity 0.0773 17 spectral regularity 0.0296

5 root mean square 0.0731 18 spectral flatness 0.0283

6 spectral entropy 0.0708 19 standard deviation pitch 0.0240

7 spectral skewness 0.0641 20 zero-crossing 0.0233

8 spectral roll-off 0.0597 21 key 0.0165

9 spectral centroid 0.0579 22 mode 0.0060

10 spectral kurtosis 0.0569 23 standard deviation of novelty 0.0040

11 event density 0.0526 24 maximum novelty 0.0028

12 maximum tempo 0.0483 25 mean of novelty 0.0015

13 mean pitch 0.0453 26 minimum novelty 0.0009
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3.6. Correlation: MIR and ECG features

In addition to the classification, a correlation analysis was performed
using the Pearson correlation coefficient. The MIR features and their
relationship to features from the other groups were considered using
correlation analysis (Table 5). This approach used Landis and Koch levels
of reliability [50] and relationships between features with an absolute
value of correlation coefficient greater than 0.8 were considered.
3.7. Classification without the AMI class: C-database

The confusion matrix of classification with neural network in the
complete C-database is shown (Table 6), since this algorithm performed
best overall. Compared to other metrics, precision allows easier visuali-
zation of system performance in determining the percentage of predicted
classes belonging to each class, i.e. positives that are correct [51]. Given
that a 90% precision was obtained, the AMI classification, with only 60%
precision, was notably poor.

Taking into consideration that anterior myocardial infarction is not
usually recognized in lead II of ECG, a new classification process was
performed without the AMI class. This classification was made using MIR
features and neural network (Figure 11). Performance in this configu-
ration was improved significantly with respect to that of Figure 10, with
values of AUC and accuracy observed to be around 0.90 and 0.80
respectively.

4. Discussion

Comparing the performance level of the present study with previous
work, the results with MFCC features were not able to match the correct
Figure 6. Area under the ROC curve (AUC), MIT-BIH database: classification
with MIR features.
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classification of 99% reported by [13] in the use of neural network
classifiers and MFCC. In that study, the high performance was achieved
in a binary classification considering normal and abnormal classes, in
which the authors took segments of ECG signals with a one second
duration, whereas in our study, in addition to normal signals, three more
classes were examined, thereby significantly increasing the complexity in
the classification task; likewise, the analysis was carried out with
different subjects in the training and test sets. Using the same MIT-BIH
database and considering MIR features, an accuracy of 0.98 and 0.96
was obtained for 2 and 3 classes, respectively (Figure 7). As with the
C-database, neural network was the best algorithm overall (Figures 6 and
7); CN2 rule inducer was the only algorithmwith an accuracy below 0.85
(Figure 7) and all algorithms performed well, with AUC higher than 0.90
and accuracy above 0.85. It is not clear whether periods of one second are
representative or not in the context of physiology and signal processing.
Clearly, it is difficult to determine if a condition of arrhythmia is present
in signals of one second duration. In the present study, therefore,
ten-second segments were used.

Anterior myocardial infarction consistently produced the weakest
predictions due to the lack of information present in the original lead II
signal (Table 6). Lead II is most able to recognize elements in the inferior
wall of the heart. For the detection of infarction in the anterior wall,
precordial leads V3 and V4 are recommended, as well as leads V1 and V2
[27], highlighting the need to establish which diseases or conditions it is
possible to recognize in each electrocardiogram lead. Classification
exempting the AMI class consequently gave a better performance than
with all four classes (Figure 11), with AUC and accuracy around 0.9 and
0.8 respectively, stabilizing from the 12th best-ranked features. These
metrics would thus appear to ratify the potential capacity of the selected
Figure 7. Accuracy, MIT-BIH database: classification with MIR features.



Figure 8. Area under the ROC curve (AUC), C-database: classification analysis
of features and classifier algorithms.

Figure 9. Accuracy, C-database: classification analysis of features and classi-
fier algorithms.
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MIR features to represent the ECG signals studied. Moreover, ranking of
the MIR features in the C-database revealed tempo, pulse clarity, root
Figure 10. Neural network classification w
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mean square and spectral elements (skewness, roll-off, centroid, and
kurtosis) as the strongest contributors to the classification task (Table 4).
From the 13th best-ranked features, classification with neural network
stabilized around 0.85 in AUC and 0.65 in accuracy.

The neural network classifier, almost without exception, performed
best in both AUC and accuracy for all feature sets of the C-database.
Within the features themselves, the best performance involved the MIR,
statistics, and wavelet groups. The MFCC and fractal features generally
produced the lowest performances. However, combining the five best-
ranked features from each of the MIR, Statistics, HRV and Wavelet
groups also gave good results, noticeably using the neural network and
random forest classifiers (Figures 8 and 9).

From the correlation analysis, a direct relationship was observed
between a number of features extracted from the ECG signal and certain
MIR features. In particular, tempo was strongly linked to mean heart rate
and R-R interval, while root mean square had a close association with
energy, variance, maximum, and mean of the wavelet coefficient zero
(cfs0). In the musical context, tempo, slower rhythms, and low-pitched
notes are known to be linked generally with low frequencies and the
energy of the selected ECG signals was found to be concentrated in the
lower frequencies (cfs0). In terms of the rhythmic function of the human
heart, it would seem to be more coherent to associate the low frequencies
with tempo or with more ponderous rhythms (i.e. the normal heart rate
of between 60 and 90 beats per minute). Given that tempo describes the
speed of music [42], a close link would be anticipated with heart rate
over a given length of time, as described by the R-R interval and heart
rate average.

From the same analysis, but in the time domain, zero-crossing
allowed conclusions to be drawn concerning the higher frequencies.
Zero-crossing is a measurement of sign changes in the signal. It is a
noisiness indicator that could explain its association with the Higuchi
fractal dimension, which measures irregularity in a signal or time series
[52]. Where more zero crosses abound, the higher the fractal dimension
will be. The fractal nature of the selected ECG signals was clearly asso-
ciated with the presence of high frequencies, as revealed by features both
of time and of frequency (e.g. spectral spread, spectral flatness). The
direct relationships between the Higuchi fractal dimension and these
spectral features imply that the wider the frequency range of the ECG
signal, the higher the self-similarity may be, as observed particularly in
the relationship with spectral spread. The correlation with spectral flat-
ness confirms a fractal behaviour with the frequency content in all fre-
quency bands, but especially in the higher frequencies. Thus, given the
influence of frequency content in the fractal dimension of the electro-
cardiographic signals, through the sound and music property of timbre a
link can be contemplated between the ECG signals and musical signals.
ith ranked MIR features (C-database).



Table 5. Correlation coefficients (Corr) between selected MIR features and other
groups of features (ECG features).

MIR Features ECG Features Corr

tempo - mean heart rate þ0.979

tempo - mean R-R interval -0.958

root mean square - energy (cfs0) þ0.951

root mean square - variance þ0.951

root mean square - variance (cfs0) þ0.950

root mean square - energy þ0.950

root mean square - maximum (cfs0) þ0.946

root mean square - maximum þ0.935

zero-crossing - Higuchi fractal dimension þ0.842

root mean square - mean þ0.834

spectral spread - Higuchi fractal dimension þ0.829

root mean square - mean (cfs0) þ0.829

spectral flatness - Higuchi fractal dimension þ0.819

Table 6. Confusion matrix: classification with MIR features and neural network.

Predicted heart condition

N T IMI AMI Σ

Actual heart condition N 189 (90%) 28 (10%) 42 (15%) 65 (20%) 324

T 0 (0%) 248 (84%) 40 (14%) 0 (0%) 288

IMI 0 (0%) 9 (3%) 180 (62%) 63 (20%) 252

AMI 22 (10%) 9 (3%) 27 (9%) 194 (60%) 252

Σ 211 294 289 322 1116

Figure 11. Neural network classification with ranked MIR features (C-database without AMI class).
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MIR features were found to be descriptors for ECG signals of inferior
and anterior myocardial infarction, T-wave alternating, congestive heart
failure, arrhythmia and of the normal condition. Finally, because these
particular ECG signals can be represented through MIR descriptors, they
might be considered as analogues to musical signals, since MIR features
are often used in musical signal processing.

5. Conclusions and future work

The use of music information retrieval (MIR) features as electrocar-
diographic signal descriptors was explored. By means of AI classification
techniques and correlation analysis, a relationship was established be-
tween MIR features and ECG signals. The best representation of the ECG
8

signals in the study was achieved in most cases by the MIR features. The
features extracted from the statistics and wavelet groups also had a sig-
nificant level of description. In the correlation phase, a solid association
was established between the musical features and a number of features of
interest extracted from ECG signals, most evident in the strong re-
lationships found between tempo, heart rate, and Higuchi fractal
dimension. Given that tempo relates to the speed of music, a close link
could therefore be expected with heart rate over a given length of time, as
described by the R-R interval and heart rate average. The fractal
behaviour of the heart was further clearly associated with the frequency
content in the ECG signals across all bands. When the energy was pre-
dominantly in the lower frequencies, this fractal nature was less pro-
nounced. Conversely, the greatest fractal quality was observed with
frequency content predominantly at the higher frequencies. Given the
influence of frequency content in the fractal dimension of the electro-
cardiographic signals, a link might thus be considered between the ECG
signals and musical signals through and music property of timbre. This
study constitutes an initial approach to relating MIR features with ECG
signals. The MIR features selected were shown to be capable of
discriminating ECG signals in the study, making them potential candi-
dates for use as electrocardiographic signal descriptors and contributing
to the development of feature extraction of these signals. This approach
could be expanded to discover other possible applications. This would
necessitate the study of MIR features in more depth; the inclusion of new
MIR features; the incorporation of other ECG referrals and different pa-
thologies within a larger database; and eventually combining MIR fea-
tures with other classic features of ECG analysis to improve classification
performance. Moreover, a new classification metric might be developed,
adjusted to these types of feature. Finally, a logical development of the
present study would seek, through music information retrieval (MIR)
features, to relate sound stimuli and ECG captured in subjects as they
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listen to these stimuli, adding to the science of music perception. It would
also give a physiological meaning to MIR features associated with ECG
signals, and thereby contribute greatly to the science of music therapy.
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