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Abstract: Cardiovascular disease is a leading cause of death and reduced quality of life 

worldwide. Arterial vessels are a primary target for endothelial dysfunction and 

atherosclerosis, which is accompanied or even driven by increased oxidative stress. Recent 

research in this field identified different sources of reactive oxygen and nitrogen species 

contributing to the pathogenesis of endothelial dysfunction. According to lessons from the 

past, improvement of endothelial function and prevention of cardiovascular disease by 

systemic, unspecific, oral antioxidant therapy are obviously too simplistic an approach. 

Source- and cell organelle-specific antioxidants as well as activators of intrinsic 

antioxidant defense systems might be more promising. Since basic research demonstrated 

the contribution of different inflammatory cells to vascular oxidative stress and clinical 

trials identified chronic inflammatory disorders as risk factors for cardiovascular events, 

atherosclerosis and cardiovascular disease are closely associated with inflammation. 

Therefore, modulation of the inflammatory response is a new and promising approach in 

the therapy of cardiovascular disease. Classical anti-inflammatory therapeutic compounds, 

but also established drugs with pleiotropic immunomodulatory abilities, demonstrated 

protective effects in various models of cardiovascular disease. However, results from 

ongoing clinical trials are needed to further evaluate the value of immunomodulation for 

the treatment of cardiovascular disease. 

OPEN ACCESS



Int. J. Mol. Sci. 2015, 16 18186 

 

 

Keywords: cardiovascular disease; endothelial dysfunction; oxidative stress; inflammation; 

dipeptidyl peptidase-4 inhibitors; glucagon-like peptide analogs 

 

1. Oxidative Stress in Cardiovascular Disease and Inflammation 

1.1. Introduction 

The majority of cardiovascular diseases are accompanied by an imbalance between the formation of 

reactive oxygen species (ROS, including superoxide, hydrogen peroxide as well as precursor products 

peroxynitrite or hypochlorous acid) and antioxidant enzymes [1,2], leading to a deviation from the 

steady state [3]. More recent evidence suggests that adverse redox signaling and oxidative stress are 

not only side effects of the progression of cardiovascular disease but even potent triggers of their 

development and pathogenesis [4,5]. According to the “kindling radical” hypothesis (or “bonfire” 

concept), the formation of ROS may trigger the activation of additional sources of ROS in certain 

disease conditions or during the aging process [6,7]. According to recent reports, vascular dysfunction 

in general, but hypertension and coronary artery disease may also be linked to inflammation or  

low-grade activation of the immune system [8,9]. Uncoupling of endothelial nitric oxide synthase 

(eNOS) is a hallmark of most cardiovascular disease [10,11] and endothelial dysfunction in coronary 

and peripheral vessels, measured by acetylcholine-dependent plethysmography or flow-mediated 

dilation, is an early predictor of cardiovascular events [12,13]. eNOS function is regulated by many 

different factors such as subcellular localization, calcium levels, binding of different co-factors (e.g., 

BH4, FAD, FMN, NADPH, zinc), and other proteins (e.g., calmodulin, heat shock proteins). 

Regulation of eNOS activity by so-called “redox switches” is of great interest for the present  

review—the oxidative depletion of tetrahydrobiopterin (BH4), oxidative disruption of the dimeric 

eNOS complex by oxidation of the zinc-sulfur complex, S-glutathionylation of a cysteine in the 

reductase domain, and adverse phosphorylation at Thr495/Tyr657, as well as ROS-triggered increases 

in levels of the endogenous eNOS inhibitor asymmetric dimethylarginine (ADMA) (for detailed 

review see [6,7]). Another focus of research in the cardiovascular field is the “repair” of vascular 

damage by improvement of the function of endothelial progenitor cells by drugs with antioxidant and 

other pleiotropic properties [14] or infusion of these cells after a severe insult such as myocardial  

infarction [15,16]. This topic will only be touched on with some examples but not explored in detail. 

The major part of this review will discuss antioxidant therapeutic interventions that prevent eNOS 

uncoupling, thereby normalizing endothelial function in particular and improving cardiovascular 

disease in general. We will emphasize the importance of low-grade inflammation in the development 

of endothelial dysfunction and cardiovascular disease and discuss the contribution of specific inflammatory 

cells and their cytokine profiles to the development and progression of cardiovascular disease. 

1.2. Inflammation, Oxidative Stress, and Endothelial Dysfunction 

The first description of the role of oxidative stress in the development and progression of 

cardiovascular disease in an experimental model of hypercholesterolemia was published by Harrison 
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and Ohara [17,18]. According to the abovementioned concept of “kindling radicals” or the “bonfire” 

hypothesis, the initial formation of superoxide (e.g., from phagocytic NADPH oxidases of infiltrated 

leukocytes) and subsequent formation of peroxynitrite most likely triggers further damage such as 

eNOS uncoupling, converting this beneficial nitric oxide synthase into a detrimental superoxide-producing 

enzyme (Figure 1) [6,8]. Likewise, ROS from infiltrated immune cells can activate or induce 

expression of vascular cell oxidases such as Nox1, Nox2, or Nox4 (isoform specific catalytic subunits 

of NADPH oxidases), or mediate the oxidative conversion of the xanthine dehydrogenase to the 

oxidase form [6,19]. This ROS-induced ROS formation is well known for cross-activation of 

mitochondrial ROS formation by dysfunctional mitochondria [20]. Mitochondrial ROS formation and 

release can be stimulated by thiol-oxidation in different mitochondrial structures (e.g., mitochondrial 

permeability transition pore constituents such as cyclophilin D, p66shc or monoamine oxidases); 

xanthine dehydrogenase is converted to the oxidase form by oxidation of critical thiol residues; the 

protective action of eNOS to produce •NO is switched to adverse superoxide formation by oxidative 

depletion of BH4, adverse phosphorylation by redox-activated kinases, S-glutathionylation ,or 

oxidative disruption of the zinc-sulfur complex at the dimer binding interface, called the “uncoupling” 

process. These changes (increased vascular oxidative stress and release of inflammatory signaling 

molecules) will lead to endothelial cell activation and priming for the adhesion of additional immune 

cells as well as platelets and switch the vasodilatory, antiaggregatory, and antiatherosclerotic 

phenotype of the endothelium to a vasoconstrictory, proaggregatory, and proatherosclerotic one. 

As described above, ROS formation is not only a side effect of cardiovascular diseases but directly 

contributes to the disease progression in many ways. For example, the induction of endothelial 

dysfunction by oxidative modification of eNOS or its cofactors as well as redox stimulation of 

inflammatory cascades fosters the progression of these cardiovascular diseases (Figure 1). Most 

immune cells express high levels of functional NADPH oxidases and are capable of producing ROS at 

much higher levels than vascular cells [21,22]. The important role of phagocytic NADPH oxidase in 

this process was demonstrated by the fact that white blood cells with dysfunctional Nox2 were not able 

to infiltrate the vascular wall and induce vascular oxidative stress and damage [22,23], e.g., by 

oxidative conversion of xanthine dehydrogenase to the oxidase form, uncoupling of eNOS, or 

stimulation of mitochondrial ROS formation and release by specific redox switches [6]. On the other 

hand, there is clear evidence that ROS formation per se contributes to a pro-inflammatory phenotype, 

since mitochondrial superoxide/hydrogen peroxide formation has the ability to activate immune  

cells [24–26]. ROS play an important role in inflammation and tissue damage [27]. There is also 

increasing evidence of a close interaction between vascular oxidative stress and inflammation during 

the aging process, leading to a vicious cycle in the aging vasculature [28]. By this crosstalk, infiltrated 

immune cells promote vascular oxidative stress, lead to endothelial cell activation, and prime the 

endothelium for the adhesion of additional leukocytes and platelets [8], which is of great importance 

for aging-associated endothelial dysfunction [29]. Vice versa, oxidative stress is a hallmark of all 

cardiovascular disease and will also lead to endothelial cell activation, priming for adhesion and 

infiltration of immune cells as well as activation of these infiltrated immune cells. Accordingly, most 

cardiovascular disease displays a low-grade inflammatory phenotype of the vasculature. 
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Figure 1. Inflammatory cells, vascular dysfunction, and atherothrombosis. The scheme 

illustrates the activation of immune cells and recruitment to vascular tissues by classical 

cardiovascular risk factors, leading to activation of secondary vascular ROS sources such 

as NADPH oxidase (Nox1, Nox2, and Nox4), xanthine oxidase (conversion of the 

dehydrogenase (XDH) to the oxidase (XO) form), mitochondria (via mitochondrial redox 

switches (RS)), and uncoupled eNOS (oxidative depletion of tetrahydrobiopterin (BH4) 

and other redox switches), all of which contribute to vascular dysfunction. Immune cells 

such as monocytes need the functional phagocyte-type NADPH oxidase (Nox2) in order to 

infiltrate vascular tissues. ROS produced by this activated Nox2 from infiltrated immune 

cells will activate secondary vascular ROS sources in a redox-sensitive fashion (for review 

see [19,30]). These processes lead to late-stage cardiovascular complications such as 

atherosclerosis with plaque formation and thrombosis. Modified from [8]. With permission 

by Bentham Science Publisher. Copyright © 2014, Eureka Science Ltd. 

Different immune cells have been reported to contribute to the development of cardiovascular 

disease, but since they interact with each other, the individual impact of each cell type on the 

development of cardiovascular disease remains elusive. The contribution of B- and T-cells to the 

development of hypertension by angiotensin-II infusion was demonstrated by RAG-1−/− mice [22]. 

Likewise, the onset of angiotensin-II induced hypertension and vascular oxidative stress was also 

attenuated by removal of myelomonocytic cells [23]. Of note, immune suppressive treatment of 

patients with rheumatoid arthritis or psoriasis was associated with a reduction of systolic blood 
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pressure [31], underlining the clinical impact of a direct contribution of the immune system to  

vascular dysfunction. 

1.3. Chronic Autoimmune Diseases Associated with Cardiovascular Disease 

Chronic autoimmune diseases such as systemic lupus erythematodes, rheumatoid arthritis, and 

severe psoriasis are associated with an increased risk for cardiovascular events [32–35]. Importantly, 

psoriasis was defined as an independent risk factor in addition to the classical cardiovascular risk 

factors such as smoking, obesity, and diabetes [36]. The European League against Rheumatism even 

recommends the management of cardiovascular risk in inflammatory arthritis in their guidelines [37]. 

As an early predictor of cardiovascular events, impaired vascular function was observed under chronic 

inflammation, which was evident in patients with rheumatoid arthritis by a significant increase in the 

intima-media thickness [38] or impaired endothelial function measured by flow-mediated dilatation in 

patients with psoriasis [39]. Therefore, recent clinical trials have demonstrated that increased 

cardiovascular mortality in patients with chronic inflammatory disease can be managed by targeting 

specific cytokines or activation of specific immune cells, e.g., in psoriasis the IL-17/IL-23 axis [40–42], 

in systemic lupus erythematodes IL-17A signaling [43], and in rheumatoid arthritis the IL-6, TNF-α, 

and IL-17A cascades [44,45]. These data provide a feasible link between cardiovascular disease and 

the chronic autoimmune diseases (also reviewed in [32,34]). 

2. Classical Antioxidants and New Strategies to Modulate Oxidative Stress 

2.1. Classical Antioxidants 

Based on the oxidative stress concept in cardiovascular, neurodegenerative, metabolic, and 

inflammatory disease [5,7,8], numerous studies were conducted. In vitro and animal studies of these 

diseases were performed in order to characterize the cytoprotective or therapeutic benefit of 

antioxidants and to promote phytochemicals, functional foods, and antioxidant (vitamin) supplements. 

However, antioxidants have failed to show any therapeutic benefit in most large clinical trials that 

were conducted according to modern standards [46], such as HOPE (Heart Outcome Prevention 

Evaluation) and HOPE-TOO (Heart Outcome Prevention Evaluation—The Ongoing Outcomes), 

which demonstrated that vitamin E causes more heart failure and left heart decompensation [47–50] 

(for review see [51]). A prospective study with vitamin C in post-menopausal women with  

diabetes mellitus even demonstrated an increased incidence of cardiovascular events and  

mortality under antioxidant therapy [52]. The SAINT I trial investigated the therapeutic benefit of  

the synthetic antioxidant, NXY-059, in acute ischemic stroke but failed to show any neuroprotective 

effect [53]. According to Bjelakovic and coworkers, meta-analysis of 68 randomized trials with 

232,606 participants revealed that the use of lipid-soluble antioxidants without medical indication  

may even increase mortality in adults [54]. Another meta-analysis of 14 randomized trials with  

170,525 individuals by the same author demonstrated a similar trend—lipid-soluble antioxidants 

increased the mortality of gastrointestinal cancer patients [55]. However, other meta-analyses support 

the beneficial effects of vitamin C in specific disease conditions or disease-associated impairment of 
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functional parameters, e.g., on the survival of women with breast cancer [56] or on endothelial 

function in patients with atherosclerosis, diabetes, and heart failure [57]. 

These large-scale clinical trials on chronic oral antioxidant supplementation are contrasted by 

multiple small cohort studies with acute (parenteral) administration of antioxidants with highly 

beneficial effects on the surrogate parameters of disease (e.g., endothelial dysfunction) in chronic 

smokers or patients with diabetes or coronary artery disease [12,58–60] (for review see [51]). The 

advantage of parenteral administration of water-soluble antioxidants is that high plasma concentrations 

of the antioxidant are achieved [61], thereby omitting the complications of oral absorption (time-lag, 

limited capacity) and insufficient compliance. High-dose intravenous infusion of vitamin C also 

improved endothelial function in patients with Kawasaki disease [62], kidney dysfunction [63],  

hypertension [64], liver cirrhosis, and portal hypertension [65]. Moreover, parenteral application of 

vitamin C has also proven to have clinical effects in patients with allergies [66], sudden hearing  

loss [67], breast cancer, infection, and pancreatitis [68]. 

A positive example of the beneficial effect of chronic antioxidant therapy is vitamin D. Lack of 

vitamin D is endemic in the human population and epidemiological data indicate that deficiency of this 

vitamin is associated with cardiovascular disease [69]. There is some evidence from interventional 

trials demonstrating that supplementation of vitamin D is beneficial to endothelial function [70,71], 

blood pressure [72], and cardiac hypertrophy [73,74] in humans. Furthermore, a recent Cochrane 

analysis revealed that vitamin D supplementation significantly reduces cardiovascular mortality in 

elderly people [75]. Nevertheless, further large-scale randomized placebo-controlled clinical trial are 

needed to elucidate the cardiovascular protective effects of vitamin D. In contrast to other vitamins, 

deficiency of vitamin D is very common, especially in older individuals [76], which might be the 

explanation for the beneficial effects of vitamin D, especially on cardiovascular disease in the  

elderly [77]. 

Based on the disappointing results of most large-scale clinical trials (HOPE, HOPE-TOO) [47,49] 

(reviewed in [51]), with chronic oral antioxidants supplementation the question arises whether the 

oxidative stress hypothesis in pathogenesis and disease progression is wrong? We think the answer is 

no and possible explanations for the lack of clinical efficacy of antioxidants in these studies might be 

that: (1) vitamins C and E act as pro-oxidants; (2) the coronary artery disease of the patients included 

in the studies is already irreversible; (3) the coronary artery disease patients are already being treated 

with drugs displaying antioxidant properties (for example, ACE inhibitors and angiotensin type 1 

receptor blockers; see also Section 3); (4) chronic antioxidant therapy inhibits intrinsic ischemic 

preconditioning, which relies on ROS formation; and (5) oral vitamin treatment does not result In high 

enough concentrations of the antioxidants at the place of oxidative stress (summarized from [5]). 

Another important drawback of classical antioxidants may be the slow reaction between O2
•− and 

vitamins C and E (with rate constants of 3.3 × 105 and 4.9 × 103 M−1·s−1, respectively, compared with 

1.9 × 1010 M−1·s−1 for the reaction between •NO and O2
•−) [78]. Finally, in most of the abovementioned 

large-scale clinical trials on the use of chronic oral antioxidant supplementation, the compliance of the 

patients was not controlled (e.g., by measurement of plasma levels of the antioxidants). The important 

role of controlled antioxidant plasma levels became evident in the EPIC Norfalk study, demonstrating 

that vitamin C concentrations in the blood inversely correlate with all-cause mortality in healthy 

volunteers [79]. In addition, there was an inverse correlation between circulating vitamin C concentrations 
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and risk of stroke as reported by a meta-analysis [80]. According to a concept put forward by 

Lykkesfeldt and colleagues [81], better results of antioxidant therapy might be expected under 

conditions of antioxidant deficiency (e.g., for vitamin C and E) [82], or often encountered for  

vitamin D [76]. Some of these reasons would favor a proper prediagnosis of patients for blood levels 

of antioxidants, strict monitoring of this parameter during antioxidant therapy, and acute infusion of 

vitamin C in accordance with the observations and advantages of parenteral use discussed above. 

According to a recent review on the use of antioxidants in translational medicine, future antioxidant 

strategies will not be based on the classical antioxidant vitamins (apart from some acute situations with 

subclinical deficiencies as well as parenteral instead of oral therapy) but rather on the activation of 

endogenous antioxidant enzyme systems, inhibition of critical ROS sources (e.g., NADPH oxidase), 

the repair of oxidatively damaged structures, or site-directed antioxidant approaches [51]. 

2.2. New Antioxidant Strategies 

Direct and cell organelle-specific targeting of ROS formation is a new promising strategy. A 

prominent example is scavenging mitochondrial ROS by mitochondria-targeted antioxidants such as 

mitoquinone (mitoQ) [83,84], a quinone that is coupled to a triphenylphosphonium group to facilitate 

mitoQ accumulation in mitochondria by up to 10,000-fold. MitoQ showed beneficial effects in an 

animal model and in human cells from patients with chronic obstructive pulmonary disease [85], 

improved nitrate-tolerance-associated side effects of nitroglycerin therapy in rats [86], and normalized 

endothelial function and cardiac hypertrophy in stroke-prone spontaneously hypertensive rats [87]. 

Moreover, MitoQ showed neuroprotective effects in experimental amyotrophic lateral sclerosis [88], 

suppressed NLRP3 inflammasome-mediated inflammatory cytokines in a murine colitis model [89], 

beneficially influenced nephropathy in diabetic mice [90], and prevented cardiac ischemia-reperfusion 

injury in rats [84]. According to recent data, another mitochondria-targeted antioxidant, mitoTEMPO, 

prevented adverse effects of angiotensin-II in experimental hypertension [91]. Similar beneficial 

effects have been reported for the use of mitochondria-targeted SOD mimetics such as  

Mn(III) 5,10,15,20-tetrakis(N-methylpyridinium-2-yl)porphyrin (MnTM-2-PyP5+) in various disease  

models [92,93]. Several compounds of the class of mitochondria-targeted antioxidants are  

currently in late phase clinical trials (for review see [92–95]; for ongoing clinical trials visit 

www.clinicaltrials.gov). A limitation of the use of mitochondria-targeted antioxidants might be that 

viable mitochondria with intact membrane potential are required for their mitochondrial accumulation, 

which could interfere with their uptake, especially in dysfunctional, ROS-producing mitochondria. A 

similar idea provides the basis for endothelium-targeted antioxidants. Shuvaev et al. demonstrated that 

targeting of SOD, but not catalase, to the endothelium reversed angiotensin II-induced endothelial 

dysfunction [96], nicely demonstrating that O2
•− is a more harmful species in the vascular system  

than H2O2. The antioxidant enzymes SOD and catalase were conjugated with an antibody against  

PECAM-1 (platelet/endothelial cell adhesion molecule-1) to ensure endothelial binding. Another 

strategy would be to covalently bind SOD mimetics or antioxidants to heparin [97], which will lead to 

the binding of these antioxidant compounds to heparin-binding sites on the endothelial cell layer [98,99]. 

Modulation/regulation of endogenous antioxidant defense systems or ROS sources by miRNAs 

(e.g., antagomirs), epigenetic drugs (e.g., modulators of histone acetyl transferases or deacetylases),  
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or phytochemicals are other completely new antioxidant strategies [100–106]. Resveratrol, a 

phytochemical antioxidant, was previously regarded as a direct ROS scavenger, but more recent data 

revealed that it mostly acts via indirect antioxidant mechanisms [107], e.g., by modulation of gene 

expression via miRNAs, epigenetic modifications, and direct effects on proteins of the DNA repair 

machinery [108–110]. Besides resveratrol, there are hundreds of these phytochemical antioxidant 

compounds, in many cases with proven therapeutic effects and in some cases even with mechanistic 

explanations for these observed clinical effects. One prominent example is Ginkgo biloba, which has 

been in clinical use for a long time, especially for dementia therapy but also for its positive effects on 

cardiovascular disease [111]. 

Other antioxidant strategies are only briefly mentioned here (we refer to the respective review articles, 

e.g., [51]) and are based on: (1) the inhibition of disease-relevant ROS sources such as inhibitors of 

NADPH oxidase (Nox) enzymes [112–115] or xanthine oxidase [116,117]; (2) upregulation of the 

endogenous antioxidant defense system such as Nrf2 agonists [118]; and (3) repair of oxidatively 

damaged protein structures as exemplified by activators of heme-deficient or oxidized soluble guanylyl 

cyclase [119–121]. According to Stocker and colleagues, an antioxidant should ideally be recycled by 

cellular reducing systems, act catalytically to prevent its consumption, or induce endogenous 

antioxidant defense systems rather than act as a direct scavenger (for review see [122]). 

3. Antioxidants 2.0—Pleiotropic Antioxidant Effects of Established Drugs 

It would be beyond the scope of this review to discuss all of the important representatives of this 

group of drugs, so the following will be limited to some examples of new function for old drugs. The 

pleiotropic antioxidant effects of these compounds are characterized by different modes of action (as 

already described above): (1) induction of intrinsic antioxidant systems; (2) inhibition of  

Nox2-dependent ROS formation; and (3) direct ROS scavenging activity. It remains to be established 

whether some of these pleiotropic antioxidant effects are just a consequence of the primary 

pharmacological action of the drugs (e.g., lowering of blood pressure). At least in some of the 

examples the primary pharmacological action of the drugs can be excluded since data were obtained 

either in cell culture or even with isolated enzymatic systems. 

3.1. Statins, ACE-Inhibitors, and AT1-Receptor Blockers 

Angiotensin-converting enzyme inhibitors, type 1 angiotensin II receptor antagonists, statins, and 

many other cardiovascular drugs display pleiotropic indirect antioxidant properties (e.g., inhibition of 

Nox enzymes and secondary to this prevention of eNOS uncoupling) [123,124]. In more detail, 

angiotensin-converting enzyme inhibitors and type 1 angiotensin II receptor antagonists increase the 

bioavailability of •NO by decreased breakdown of bradykinin and activation of the corresponding B2 

receptor [125]. They also prevent the activation of the phagocytic and vascular Nox2 enzyme and 

thereby decrease cellular superoxide, hydrogen peroxide, and peroxynitrite levels [126]. Inhibition of 

angiotensin-II signaling decreases oxidative stress since angiotensin-II via its receptor leads to the 

formation of diacylglycerol, a potent endogenous trigger of NADPH oxidase activity [127]. In 

addition, these drugs confer potent anti-inflammatory effects by interfering with the adhesion of 

monocytes to the endothelium [128] and even improving the severity of adjuvant arthritis [129]. In 
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summary, angiotensin-converting enzyme inhibitors and type 1 angiotensin II receptor antagonists 

promote a vasodilatory, antithrombotic, and antiproliferative milieu and improve the function of 

endothelial progenitor cells [130]. These protective mechanisms might also explain their benefit  

for the therapy of patients with heart failure [131]. Statins obviously target exactly the same 

pathophysiological parameters. In patients with cardiovascular disease, statins reduce vascular 

inflammation and atherothrombosis, which causes cardiovascular events like myocardial  

infarction [132–134]. Statins reduce NADPH oxidase activity in a Rac1-dependent mechanism [135,136] 

and improve the bioavailability of •NO through increased levels of the eNOS cofactor BH4, decreased 

levels of the endogenous eNOS inhibitor asymmetric dimethyl-L-arginine, decreased caveolin-1 

activity, improved activating eNOS phosphorylation, and upregulation of eNOS mRNA [137]. The 

beneficial pleiotropic effects of statins are probably based on the induction of the Nrf2-heme 

oxygenase-1 system [138,139] but improvement of the function of endothelial progenitor cells could 

also contribute to their protective profile [140]. 

3.2. Nebivolol, Hydralazine, and Pentaerythrityl Tetranitrate (PETN) 

One of the first known antihypertensive drugs was hydralazine, which is today mainly used for the 

treatment of pre-eclampsia [141]. However, it experienced a “revival” when the company NitroMed 

introduced their combination drug BiDil containing hydralazine and isosorbide dinitrate. This 

combination therapy showed an impressive decrease in mortality in African-Americans with  

severe heart failure, who responded poorly to ACE inhibitors and other standard medications  

(the study design was based on data from V-HeFT (Vasodilator Heart Failure Trial) and A-HeFT  

(African-American Heart Failure Trial) [142–144]. According to our previous observations, 

hydralazine is a highly efficient peroxynitrite scavenger and prevents tyrosine nitration [145,146], 

which may at least contribute to its beneficial effects on nitroglycerin-induced nitrate tolerance [147] 

and potentially isosorbide dinitrate-associated side effects. Based on these data, we postulate a direct 

antioxidant property of hydralazine by scavenging peroxynitrite, a potentially harmful oxidant. This 

provides the rationale for the beneficial effects of the hydralazine/isosorbide dinitrate combination to 

prevent side effects of the organic nitrate under chronic therapy (e.g., endothelial dysfunction [148]). 

Recent data support a reaction between peroxynitrite and dihydralazine sulfate [149]. However, there 

is also evidence for the indirect antioxidant effects of hydralazine by induction of hypoxia-inducible 

factor-1α, vascular endothelial growth factor, and angiogenesis by inhibition of prolyl hydroxylases [150]. 

Among other antihypertensive drugs, hydralazine has been found to possess pleiotropic antioxidant 

effects in patients beyond the direct blood pressure lowering effects [151]. Also, protective effects of 

hydralazine on endothelial progenitor cell function were reported [152]. 

The third generation beta-blocker nebivolol was reported to induce vascular nitric oxide formation 

via stimulation of eNOS activity in ex vivo studies [153–155], providing the rationale for improved 
•NO bioavailability in patients with essential hypertension [156]. In this clinical study a combination 

therapy of nebivolol/bendrofluazide, in contrast to atenolol/bendrofluazide treatment, improved •NO 

bioavailability despite a similar degree of blood pressure lowering. We could detect eNOS-stimulating 

effects of nebivolol neither in cultured endothelial cells nor in hypertensive mice when comparing 

wild-type controls with eNOS knockout mice (unpublished data, Karbach et al. and Daiber). We have 
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previously shown that nebivolol, in contrast to metoprolol and atenolol, prevents eNOS uncoupling 

and induction of phagocytic NADPH oxidase activity in white blood cells, vascular oxidative stress, 

and endothelial dysfunction in hyperlipidemic Watanabe (WHHL) rabbits [157]. In a subsequent study 

we characterized nebivolol as a potent Nox2 inhibitor in hypertensive rats as well as isolated cells, 

which are not shared by first- and second-generation beta-blockers [158]. Nebivolol directly interferes 

with the assembly of Nox2 and cytosolic subunits p47phox, p67phox, and rac1 in the cytoplasmic 

membrane, suggesting that Nox2 inhibition leads to reduced superoxide formation, prevents eNOS 

uncoupling and breakdown of nitric oxide by reaction with superoxide, and finally ameliorates 

endothelial function. This concept goes hand in hand with human data in which nebivolol normalized 

oxidative stress in hypertensive patients and led to reduced oxidative degradation of nitric oxide [159]. 

Finally, nebivolol improved the function of early endothelial progenitor cells in experimental 

myocardial infarction, which could also contribute to its beneficial clinical profile [160]. 

After the development of pentaerithrityl tetranitrate (PETN) for the U.S. market, it was abandoned, 

but then used for many years in the former Eastern German Republic. After the reunion of Germany, 

PETN became the best-selling nitrate on the German market. PETN is the only organic nitrate in 

clinical use devoid of induction of nitrate tolerance, endothelial dysfunction, and other nitrate-associated 

side effects in volunteers [161,162] and patients with coronary artery disease [163,164]. The molecular 

explanation for the beneficial effects of PETN, not shared by other nitrates, is the induction of  

heme oxygenase-1 [165–168] in a Nrf2-dependent fashion [169]. PETN also induced extracellular 

superoxide dismutase [170], prevented vascular complications in experimental diabetes and 

hypertension [165,169], prevented the progression of atherosclerosis in a rabbit model [171], and 

inhibited platelet aggregation in heart failure [172]. In contrast to other organic nitrates, PETN 

improved the function (migration and incorporation) of endothelial progenitor cells and decreased their 

NADPH oxidase activity ex vivo and in vivo in humans and rats [173–175]. In addition, PETN therapy 

leads to the regulation of more than 1200 genes and upregulates several cardio-protective transcription 

factors, whereas nitroglycerin, also a nitrovasodilator, regulated approximately 500 genes different 

from those regulated by PETN [176]. More recently, PETN was shown to induce heritable epigenetic 

changes envisaged by H3K27 acetylation, H3K4 trimethylation, and transcriptional activation of 

eNOS, MnSOD, glutathione peroxidase-1, and heme oxygenase-1, all of which lead to reduced blood 

pressure in female offspring of PETN-treated hypertensive rats [177]. Of note, these beneficial effects 

were neither shared by other organic nitrates nor by the •NO donors tested in this study. The ongoing 

CAESAR trial (Clinical efficacy study of Pentalong for pulmonary hypertension in heart failure; 

EudraCT Number: 2009-015059-26) will show whether the potent antioxidant and vasculoprotective 

effects of PETN can be translated to patients with pulmonary hypertension as a result of heart failure. 

3.3. Gliptins and Glucagon-Like Peptide-1 (GLP-1) Analogs Display Antioxidant and  

Anti-Inflammatory Properties 

Dipeptidyl peptidase-4 (DPP-4) is an exopeptidase also known as CD26. N-terminal dipeptides are 

cleaved from alanine- and proline-rich proteins [178]. Besides DPP-4, the family of DPPs consists of 

several members: DPP-1–DPP-4, DPP-6–DPP-9, quiescent cell proline dipeptidase (QPP), and 

fibroblast activation protein (FAP) [178,179]. DPP-4 has a wide range of functions, the best 
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characterized of which is the degradation of incretins (glucagon-like peptide-1 (GLP-1) and gastric 

inhibitory polypeptide GIP) [179]. Furthermore, DPP-4 cleaves non-incretin peptides, possesses  

non-enzymatic function, and interacts with membrane bound proteins as a chaperone [179]. In various 

tissues DPP-4 is expressed on the surface of endothelial cells, epithelial cells, and inflammatory cells 

(monocytes, lymphocytes, dendritic cells, and natural killer (NK) cells) [180–183]. 

GLP-1 is an incretin hormone released from L-cells in the intestine after food uptake [184,185].  

In the context of glucose homeostasis, circulating GLP-1 binds to its receptor, which is expressed on 

pancreatic beta-cells, but also on cardiomyocytes, endothelial cells, and inflammatory cells. The  

GLP-1 receptor belongs to the family of G-protein-coupled receptors. After binding of GLP-1 to its 

receptor, cAMP levels rise and insulin release is stimulated. On pancreatic alpha-cells, GLP-1 reduces 

glucagon release (for review see [186]). In summary, GLP-1 is involved in glycemic control, which 

makes it an attractive target for treatment of diabetes [187,188]. Derived from the prolucagon  

gene, GLP-1 (7–36-amide) and GLP-1 (7–37) are secreted. Due to rapid degradation of GLP-1 to 

GLP-1 (9–36-amide) by DPP-4, the half-life of GLP-1 is below 2 min [189,190]. There are two 

pharmacological strategies for using the GLP-1 effects on glucose metabolism in diabetic patients:  

(1) inhibition of DPP-4 by gliptins to increase GLP-1 levels and (2) supplementation of modified  

GLP-1, which resists degradation by DPP-4. At the time of this review five DPP-4 inhibitors are 

approved by the European Medicines Agency (EMA) (vildagliptin, alogliptin, sitagliptin, linagliptin, 

and saxagliptin) for treatment of type 2 diabetes mellitus, also reflected by the Global Guideline for 

Type 2 Diabetes [191]. GLP-1 analogs are represented by liraglutide and exenatide, also reflected by 

the Global Guideline for Type 2 Diabetes [191]. 

Besides their potent effects on glycemic control in diabetic patients, research of the last years 

revealed their effects on several other cell types and tissues. In vivo and in vitro studies demonstrated 

the beneficial effects of DPP-4 inhibitors on cardiovascular disease [192,193], but also in diseases like 

psoriasis [194], hepatic steatosis [195], or stroke [196]. Interestingly, pathogenesis of all of these 

diseases has oxidative stress and most likely inflammation in common. Finally, DPP-4 inhibitors 

improved the number and “homing” of endothelial progenitor cells in animal [197,198] and  

human [199] studies, but the number of publications on this association is still low. GLP-1 analogs 

seem to share these effects on endothelial progenitor cells [200]. 

Oeseburg et al. published evidence for a protective effect of DPP-4 inhibition on oxidative  

stress-induced DNA damage and cellular senescence in Zucker diabetic fatty rats [201]. The authors 

propose elevated GLP-1 to be responsible since the effect could be blocked by exendin fragment 9–39, 

which is a GLP-1 receptor antagonist. According to this study, induction of the antioxidant enzymes 

heme oxygenase-1 and NADPH dehydrogenase (quinone) via protein kinase A activation are 

responsible for the beneficial effects [201]. The mentioned study is an excellent example of the 

difficulty of differentiating between the direct GLP-1 effects and the GLP-1-independent effects of 

DPP-4 inhibition. Others detected reduced oxidative stress under DPP-4 inhibitor therapy in animal 

models of type 1 diabetes [202], cardiac ischemia/reperfusion-injury [203], chronic myocardial 

infarction [204], abdominal aortic aneurysm [205], Parkinson’s diseases [206], and sepsis [207,208]. 

Furthermore, limited data are available on the reduction of oxidative stress by DPP-4 inhibition in 

humans. Shah et al. found reduced 3-nitrotyrosine levels in isolated human pancreatic cells after 

treatment with linagliptin [209], which agrees with the findings in gliptin-treated type 2 diabetic 
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patients [210]. In humans it remains unclear whether DPP-4 inhibitor-dependent reduction of  

oxidative stress is independent of glucose-lowering effects. However, there is clear evidence for 

glucose-independent reduction of oxidative stress by DPP-4 inhibition in different animal models. 

DPP4 inhibition has been shown to reduce oxidative stress in various disease models. Reports on 

diabetes [211,212], atherosclerosis [192,193], sepsis [207,208], and neurological disease [213] can be 

found in the literature. AMP-activated protein kinase (AMPK) is an important regulator of oxidative 

stress in the vasculature, more specifically in endothelial cells [214]. Activation of AMPK via GLP-1 

receptor signaling has been shown to reduce oxidative stress in cardiomyocytes and reduces activation 

of NADPH oxidase [215]. On the other hand, suppression of protein kinase C (PKC)/NFκB-dependent 

Nox activation/upregulation might also be responsible [211,212]. For GLP-1 independent action of 

DPP-4 inhibition on reduction of oxidative stress, it has been proposed that DPP-4 is an adenosine 

deaminase (ADA)-binding protein and regulates the subcellular localization and activity of this 

enzyme, which has known immunomodulatory functions [216,217]. ADA activity also leads to 

increased inosine levels with subsequent hypoxanthine formation and thereby provides the substrate 

for the pro-oxidative enzyme xanthine oxidase (XO) [208]. Furthermore, several other protein targets 

were described for DPP-4 such as caveolin-1, kidney Na+/H+ ion exchanger 3, thromboxane A2 

receptor, CXCR4, CXCL12 (SDF-1), fibronectin, and many more [179], most of them being involved 

in the regulation of inflammation. Immunomodulation by DPP-4 seems to be critical for antioxidant 

properties of DPP-4 inhibitors. 

Since various cell types and tissues are affected by DPP-4 inhibition and also by GLP-1, it is 

difficult to determine which signaling pathway is predominantly responsible for reduction of oxidative 

stress in a specific disease model. Most of the studies that investigated the effects of DPP-4 inhibition 

on oxidative burst performed no experiments with genetic or pharmacological inhibition of the GLP-1 

receptor. This limitation prevents a differentiation between DPP-4- and GLP-1-dependent effects. 

Future studies on cell-specific GLP-1 receptor knock-out animals are needed to draw a clearer  

picture of the complex interaction of DPP-4 and GLP-1. The following sections will focus on the  

antioxidant effects of DPP-4 inhibition and GLP-1 analog supplementation in atherosclerosis  

and sepsis. 

3.3.1. Gliptins and GLP-1 in Atherosclerosis 

As described above, cardiovascular diseases are closely linked to oxidative stress and inflammation. 

Endothelial function is a reliable predictor of future cardiovascular events and is directly linked to the 

burden of oxidative stress in the vessel wall as well as in the blood (e.g., activation state of circulating 

immune cells) [12]. Recent studies demonstrate that walking distance and critical limb ischemia 

correlate with the activation state and production of ROS of circulating leukocytes in patients with 

peripheral artery disease [218–220]. Impaired endothelial function leads to inadequate vasodilation  

and increased disposition for infiltration of inflammatory cells. There is convincing evidence that 

atherosclerosis can be regarded an inflammatory disease [221]. 

Matsubara et al. investigated the effects of the DPP-4 inhibitor sitagliptin in an animal model of 

atherosclerosis [192]. They used ApoE−/− mice on a high-fat diet. Sitagliptin treatment reduced 

atherosclerotic lesions, improved endothelial function, and reduced infiltration of CD68+ cells into the 
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vascular wall. Vascular inflammation was significantly reduced by sitagliptin treatment, which was 

proven by reduced mRNA levels of several pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α). 

Similar reduction of inflammation was found in cultured human monocytes. The authors also showed 

the anti-inflammatory effects of a GLP-1 analog (envisaged by reduced IL-6), which was additive to 

the beneficial effects of sitagliptin. This in vitro experiment demonstrated that the anti-inflammatory 

effects of DPP-4 inhibitor and GLP-1 analog were not connected to each other. Shah et al. made 

similar observations in LDLr−/− and ApoE−/− mice by using alogliptin treatment [193]. They 

demonstrated nicely the reduction of chemotaxis and monocyte activation by DPP-4 inhibitor therapy 

in both models of atherosclerosis. A major limitation of the study is that it does not differentiate 

between GLP-1- and DPP-4-dependent effects [193]. Besides the beneficial effects of DPP-4 inhibition 

on atherosclerosis, anti-atherosclerotic effects of GLP-1 supplementation were also demonstrated in 

animal models. GLP-1 therapy reduced vascular inflammation and increased plaque stability [222]. 

Others demonstrated improved endothelial function in ApoE−/− mice [223]. Since oxidative stress, 

derived from inflammatory monocytes, is a major trigger for endothelial dysfunction [23], the 

beneficial effects of GLP-1 in this context might rely on inhibition of this cell type. This hypothesis is 

supported by a recent publication reporting on reduced oxidative stress in human monocytes after 

exendin-4 incubation [224]. Furthermore, the antioxidant capacity (superoxide dismutase activity) in 

these cells was increased by exendin-4, which could be blocked by the PKA inhibitor H89 [224]. 

Others attributed the anti-inflammatory effects of GLP-1 to the modulation of NFκB-activity via  

PKA-dependent signaling pathways [225]. GLP-1 supplementation and DPP-4 inhibition induce 

protective effects on vascular function in animal models of atherosclerosis. Both reduce vascular 

inflammation, a main trigger for oxidative stress in the vasculature. Since the GLP-1 receptor and 

DPP-4 are expressed in endothelial cells, it may be suggested that both can improve endothelial 

function by direct effects. Indeed, improved function of the endothelial NO synthase in response to 

GLP-1 analog treatment was demonstrated, followed by reduced activation of endothelial cells via the 

PI3 kinase/Akt-signaling pathway [226]. Likewise, an activation of the cAMP/PKA-signaling pathway 

but also the cGMP-signaling pathway was reported for GLP-1 analogs [227,228]. Also, for the DPP-4 

inhibitor alogliptin, potent vasodilatory effects were described based on a Src-Akt-eNOS-dependent 

nitric oxide release [229]. Similar vasodilatory effects were described for linagliptin in an eNOS and 

soluble guanylyl cyclase-dependent fashion [208]. Furthermore, studies with HUVECs revealed  

the inhibitory effects of GLP-1 analog treatment on mRNA expression of Nox subunits gp91 an  

p22phox [230]. 

Future studies and the use of cell-specific knock-out animals (DPP-4 and GLP-1 receptor) are 

needed to differentiate between the DPP-4- and GLP-1-dependent effects on vascular oxidative stress 

and inflammation in models of atherosclerosis. 

3.3.2. Gliptins and GLP-1 in Sepsis and Chronic Inflammatory Disease 

Sepsis is an inflammatory disease that affects the whole organism. Depending on the immune status 

of a patient, simple pneumonia can expand to a “systemic inflammatory response syndrome” (SIRS), 

which is a severe, life-threatening condition. An average mortality of 40% makes it a leading cause of 

death in the European Union [231]. Because of antibiotic resistance, the use of invasive procedures, 
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and an aging population, sepsis has become more frequent and the absence of efficient causal therapies 

confers high importance and priority to future research on the septic pathomechanisms but also on 

more promising therapeutic interventions [232]. 

Endotoxins (e.g., lipopolysaccharide, LPS) are responsible for the pathogenesis of sepsis in  

humans and animals. They are part of the outer membrane of gram-negative bacteria and trigger the 

pathophysiological effects (e.g., circulatory disorders). Hypotension, impaired oxygen utilization, 

lactic acidosis, and aggravated blood flow in the microcirculation are characteristic of sepsis, by which 

multiple organ failure is caused [233–235]. Previous studies (animal and human) could show a 

correlation between sepsis and endothelial dysfunction, in which oxidative stress and endothelium-derived 

mediators (e.g., NO, prostacyclin) are involved [236–238]. The oxidative burst is a key feature of 

neutrophils and monocytes/macrophages, which play a pivotal role in host defense. NADPH oxidase 

isoform 2 is generating superoxide anion radicals in response to stimuli like LPS (gram-negative 

bacteria) or zymosan-A (fungi). Chronic granulomatous disease (CGD) underlines the importance of 

Nox2-derived superoxide anion radicals for host defense. In these patients Nox2 is dysfunctional 

because of a genetic mutation of the gp91phox gene and they are highly susceptible to infections [239]. 

Studies on critically ill patients revealed the protective effects of antioxidant therapy with ascorbate 

and α-tocopherol [240]. It reduced the risk of organ dysfunction and duration of hospitalization in 

these patients [240], whereas studies on other antioxidants revealed no beneficial effects [241]. The 

reason for these conflicting results might be that ROS formation is needed for host defense  

against bacteria. 

A global reduction of oxidative stress in sepsis seems not to be the perfect solution to improve 

survival. The most promising strategy would reduce the overshooting inflammatory response in septic 

patients but leave the basal host defense intact. Therefore, the question is whether systemic  

anti-inflammatory therapy of sepsis could counteract the overshooting immune response and might 

improve survival. The CORTICUS trial investigated whether hydrocortisone application, as a general 

suppressor of inflammation, might improve survival in septic patients. In this trial no significant 

improvement of survival in patients suffering from septic shock was found [242]. Furthermore, statins 

have anti-inflammatory properties and a recent trial tested the use of rosuvastatin in patients suffering 

from acute respiratory distress syndrome (ARDS). The results were disappointing and statin therapy 

failed to improve clinical outcome [243]. 

The immunomodulatory actions of DPP-4 inhibitors and GLP-1 analogs have already been 

discussed in general and for models of atherosclerosis. Our group investigated the anti-inflammatory 

and antioxidant effects of DPP-4 inhibition and GLP-1 supplementation in models of endotoxemia. For 

induction of endotoxemia, the LPS injection model (10 mg/kg) was used, whereas a higher dose of 

LPS (17 mg/kg) was used to induce partial mortality. In a first study, we were able to show that 

endothelial dysfunction was severely impaired in endotoxemic rats [208]. This finding was associated 

with increased oxidative stress in whole blood, vessel walls, and hearts of the animals. Oral treatment 

with the DPP-4 inhibitor linagliptin strongly improved endothelial function and accordingly reduced 

oxidative stress levels. Interestingly, the reduced oxidative stress in the vascular wall was accompanied 

by less infiltration of CD11b+ cells and reduced myeloperoxidase protein expression. Our results 

revealed two different mechanisms for reduced oxidative stress under endotoxemic conditions in the 

vascular wall: (1) linagliptin treatment prevents expression of leukocyte adhesion molecules like 
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vascular adhesion molecule-1 (VCAM-1) and thereby reduces endothelial cell activation; and (2) 

linagliptin directly reduces LPS-induced activation of polymorphonuclear neutrophils (PMN), which 

was reflected by attenuated adhesion to endothelial cells and oxidative burst. In summary, DPP-4 

inhibition reduces the inflammatory state of circulating leukocytes as well as the pro-inflammatory 

phenotype of the vascular wall and improves the function of endothelial cells, all of which ameliorates 

vascular function under endotoxemic conditions (Figure 2). 

 

Figure 2. Proposed mechanisms of lipopolysaccharide (LPS)-induced vascular dysfunction 

and improvement by linagliptin therapy. LPS treatment activates white blood cells (WBC, 

envisaged by increased oxidative burst), increases serum levels of xanthine oxidase (XO), 

increases DPP-4 serum activity, and activates vascular cells (detected by expression of 

endothelial adhesion molecules and inducible cyclooxygenase (Cox-20). This leads to the 

infiltration of WBC to the vascular wall (detected by aortic FACS analysis for 

myelomonocytic cells, inducible nitric oxide synthase (Nos-2), Nox2, and myeloperoxidase 

(MPO) expression) and oxidative damage of the vasculature (Nox1 expression, ROS 

formation, 3-nitrotyrosine levels, and lipid peroxidation by malondialdehyde (MDA)). 

Finally, the tissue damage results in smooth muscle constriction and endothelial 

dysfunction. The green lines on the arrows define the inhibitory effects of linagliptin on 

septic complications. Adapted from [208]. With permission by Oxford University Press. 

Copyright © 2012, Oxford University Press. 

These promising results encouraged us to investigate the impact of DPP-4 inhibition and GLP-1 

supplementation on the survival of endotoxemic mice [207]. Pre- as well as post-treatment with 

linagliptin and the GLP-1 analog liraglutide improved survival of endotoxemic animals significantly 

(Figure 3A). As a proof of concept, we tested the survival of LPS-treated DPP-4−/− mice and found that 
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these mice are also protected from endotoxic shock-dependent death [207]. Ku et al. found similar 

results in DPP-4−/− rats and postulated that increased GLP-1 levels are responsible for the improved 

survival [244]. In line with these murine data, the oxidative burst in whole blood of LPS-treated rats 

was significantly increased and normalized by DPP-4 inhibition and GLP-1 supplementation  

(Figure 3B). In accordance with this observation, the nitrosyl-iron hemoglobin (Hb-NO) signal was 

measured by electron spin resonance (EPR) spectroscopy in whole blood as a direct read-out for 

increased iNOS activity in LPS-treated animals, which was increased in endotoxemic rats and 

normalized by linagliptin and liraglutide therapy (Figure 3C). As a marker of vascular oxidative stress, 

the dihydoethidium fluorescence signal was increased in the vascular wall of LPS-treated rats and 

normalized by linagliptin and liraglutide treatment (Figure 3D). In summary, these data nicely show 

the anti-inflammatory and antioxidant potential of DPP-4 inhibitors and GLP-1 analogs, but also reveal 

substantial differences between the different DPP-4 inhibiting drugs that might be related to their 

binding affinity and specific location in the active site of DPP-4 [207,208]. 

A known adverse side effect of DPP-4 inhibition in humans is an increased risk for infections like 

nasopharygitis (risk ratio, 1.2 (95% CI, 1.0–1.4)) or urinary tract infection (risk ratio 1.5 (95% CI,  

1.0–2.2)). These results from a meta-analysis reflect the abovementioned immunomodulatory effects 

of DPP-4 inhibition [245]. Furthermore, the GLP-1 analog exendin-4 reduced inflammation in a  

non-alcoholic steatohepatitis (NASH) animal model by decreasing the infiltration of macrophages 

(CD68+, F4/80+) [246]. Sitagliptin improved inflammation and fibrosis in methionine/choline-deficient 

diet-induced steatohepatitis [247]. NASH is a liver inflammatory disease, sharing several features with 

atherosclerosis [248]. Besides atherosclerosis, sepsis, and NASH, DPP-4 inhibitors and GLP-1 analogs 

exert immunomodulatory effects in various models of chronic inflammatory diseases such as colitis [249], 

asthma [250], chronic obstructive lung disease (COPD) [251], and rheumatoid arthritis [252]. 

 

Figure 3. Cont. 
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Figure 3. Protective effects of dipeptidyl peptidase-4 inhibition and glucagon-like  

peptide-1 analog supplementation in an animal model of LPS-induced endotoxemia.  

(A) Survival of animals was recorded and interpreted by Kaplan–Meier curves; (B) Whole 

blood oxidative burst upon stimulation with the fungal endotoxin zymosan A was measured  

by chemiluminescence using the luminol analog L-012; (C) iNOS-derived nitric oxide  

was determined in whole blood by measurement of nitrosyl-iron hemoglobin by electron 

paramagnetic resonance spectroscopy; (D) Vascular ROS formation was measured in aortic 

cryo-sections by dehydrothidium (DHE)-dependent oxidative fluorescence microtopography. 

Data are mean ± SEM of experiments with 19–36 mice (A) or at least three rats per group 

(B–D). * p < 0.05 vs. Ctr; # p < 0.05 vs. LPS. Adapted from [207]. With permission by 

Springer-Verlag Berlin Heidelberg. Copyright © 2015, Springer. 

4. Immunomodulation as a Therapeutic Strategy 

As already outlined above, inflammation represents an independent risk factor for the development of 

cardiovascular disease. C-reactive protein (CRP) is an acute phase protein and indicates inflammatory 

processes. According to the PROVE IT-TIMI 22 trial of patients with acute coronary syndrome  

after initiation of statin therapy, the risk of recurrent myocardial infarction or coronary death was 

significantly elevated in patients with a high hsCPR (>2 mg/L) compared to patients with low hsCPR 

levels [253]. The cytokine IL-17 was demonstrated to induce death of human endothelial cells, contributing 

to plaque destabilization and acute coronary syndrome by disruption of the blood-brain-barrier  
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and activation of NADPH oxidase in brain endothelial cells [254,255]. These adverse effects  

were suppressed by administration of an IL-17A blocking antibody or by antioxidant therapy [255]. 

IL-17 induces endothelial cell activation, expression of endothelial adhesion molecules, followed by 

adhesion and infiltration of neutrophils [256], providing the rational for beneficial effects of therapy 

with a soluble TNF-α receptor antibody (etanercept) on angiotensin-II induced vascular superoxide 

production and hypertension [257,258]. The immunosuppressive drug methotrexate (MTX) is used in 

treatment of cancer and autoimmune disease. Rheumatoid arthritis patients suffer from chronic 

inflammation and have an increased risk for cardiovascular events. A meta-analysis revealed the 

antirheumatic drug to be protective against cardiovascular disease in patients with chronic 

inflammation [259]. Studies on myocardial infarction in dogs showed reduced infarction size by 

methotrexate treatment [260]. Based on these interesting results, the ongoing TETHYS trial, which 

investigates the effects of MTX therapy on myocardial infarction with ST-segment elevation, was 

initiated [261]. An additional clinical trial, which faces the effect of immunosuppression by MTX on 

the cardiovascular system, is the ongoing CIRT trial (Cardiovascular Inflammation Reduction trial). 

Patients with myocardial infarction and either type 2 diabetes mellitus or metabolic syndrome will be 

treated with low-dose MTX or a placebo [262]. Another target currently under investigation for 

immunomodulation in cardiovascular disease is IL-1β. Animal studies revealed that blockade of IL-1β 

improves endothelial regrowth, reduces neointima formation, and thereby prevents restenosis 

following carotid denudation [263]. Furthermore, it ameliorates cardiac remodeling and reduces 

cardiomyocyte apoptosis after experimental acute myocardial infarction [264]. The ongoing CANTOS 

trial examines the cardiovascular outcome after blockade of IL-1 β by canakinumab in post myocardial 

infarction patients [265]. There is convincing evidence for a contribution of inflammation to 

cardiovascular disease and immunomodulation is a promising new therapeutic approach to treat 

cardiovascular disease. Nevertheless, it is challenging to find a specific target and tool for modulating 

the inflammatory cascade. The ongoing clinical trials will provide more answers for these questions. 

5. Conclusions 

Endothelial dysfunction is an early hallmark of most cardiovascular disease in general [266] and 

coronary heart disease in particular [13], as well as related future cardiovascular events. Oxidative 

stress is associated with cardiovascular disease [1,2] but also represents a prognostic marker of future 

cardiovascular events [12]. Therefore, oxidative stress must be considered a trigger of cardiovascular 

events; it probably contributes to the progression of cardiovascular disease and represents an attractive 

target for its therapy [267]. According to more recent data, there is a close correlation between 

oxidative stress and inflammation in the vasculature [8,28,218,268], making both of them independent 

triggers/risk factors for the progression of cardiovascular disease and future cardiovascular  

events [12,36]. Since large clinical trials on chronic oral, systemic, unspecific antioxidant therapy 

failed to display beneficial effects on cardiovascular events [269], the use of source and cell 

(organelle)-specific compounds or activators of intrinsic antioxidant systems represents a more 

promising strategy [122]. Another attractive attempt might be the exploitation of the antioxidant and 

anti-inflammatory properties of established cardiovascular drugs [5]. Screening for candidates with 

potent anti-inflammatory effects could represent important additional criteria for the development of 
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cardiovascular drugs in the future. Comparison of drugs with similar primary effects (e.g., blood 

pressure lowering) but with or without pleiotropic anti-inflammatory and antioxidant effects will allow 

us to study the importance of these pleiotropic effects. Also, prescreening of patients for markers of 

inflammation and/or oxidative stress will help us to develop or find the most efficient drug or drug 

combination for the treatment of the patients in an individual way (in the sense of personalized medicine). 

The results obtained with GLP-1 supplementation and DPP-4 inhibition in models of endotoxemia 

are quite promising, but they remind us of the enthusiasm about statins as a new treatment strategy in 

sepsis and their failure in large clinical trials [270]. Animal trials and small clinical trials showed 

convincing evidence for a mortality reduction by statin therapy, which also relied on immunomodulatory 

effects [271]. Unfortunately, these results could not be reproduced in a large multi-center trial [243] 

and meta-analysis revealed no improvement of survival [272]. More research is needed to better 

characterize the antioxidant and anti-inflammatory effects of DPP-4 inhibition and GLP-1 supplementation 

in the pathogenesis of sepsis. Studies in different models of sepsis (i.e., acute respiratory response 

syndrome or cecal ligation and puncture) and small clinical trials could shed light on this promising 

field of sepsis research in the future. 
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