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ABSTRACT

An important goal in molecular biology is to quan-
tify both the patterns across a genomic sequence
and the relationship between phenotype and under-
lying sequence. We propose a multivariate tensor-
based orthogonal polynomial approach to character-
ize nucleotides or amino acids in a given sequence
and map corresponding phenotypes onto the se-
quence space. We have applied this method to a pre-
viously published case of small transcription activat-
ing RNAs. Covariance patterns along the sequence
showcased strong correlations between nucleotides
at the ends of the sequence. However, when the phe-
notype is projected onto the sequence space, this
pattern does not emerge. When doing second or-
der analysis and quantifying the functional relation-
ship between the phenotype and pairs of sites along
the sequence, we identified sites with high regres-
sions spread across the sequence, indicating po-
tential intramolecular binding. In addition to quan-
tifying interactions between different parts of a se-
quence, the method quantifies sequence—phenotype
interactions at first and higher order levels. We dis-
cuss the strengths and constraints of the method and
compare it to computational methods such as ma-
chine learning approaches. Anh accompanying com-
mand line tool to compute these polynomials is pro-
vided. We show proof of concept of this approach
and demonstrate its potential application to other bi-
ological systems.

INTRODUCTION

Due to the inherent complexity in biological systems, much
of the analysis that aims to study systems, such as sequence
structure and function in genomics, has been largely based
on computational methods. Advancements in sequencing

technology and the rise in the availability of genomic data
has led to the development of novel computational tools
that seek to determine the relationship between underlying
sequence and the resulting function or phenotype. These
methods aim to predict protein function given sequence and
structure information, identify novel and potential DNA
binding motifs, including transcription factor binding sites
and determine RNA secondary structure based on the un-
derlying sequence (1-4). While computational methods,
such as machine learning (ML) models, provide powerful
ways to extract patterns in complex data, they lack the clar-
ity of interpretation that comes with purely mathematical
approaches. In this work, we present a method to do ana-
lytical mathematics with sequences that integrates well with
computational methods and that has the potential to reveal
new results and complement those given by purely compu-
tational or ML approaches.

Current methods that aim to connect sequence informa-
tion to output phenotype largely utilize ML tools, such
as deep learning, to quantify the role of each site in a se-
quence in the resulting phenotypes. Some examples of this
include deep learning tools that aim to predict protein struc-
ture given the underlying amino acid sequence and others
that are designed to predict the effect of each site in a pre-
mRNA sequence on mRNA splicing (5,6). Although these
methods seem promising and do reveal substantial biologi-
cal insights, they come with caveats such as the requirement
of large training datasets and ‘the incorporation of irrele-
vant features’ into the deep learning model as in the case of
SpliceAl (6).

Here, we describe a mathematical method using multi-
variate tensor-based orthogonal polynomials to convert se-
quence information into vectors and build orthogonal poly-
nomials with the aim of quantifying the effect of the se-
quence states on the resulting phenotype (7). Our method
proposes an entirely novel way to work with nucleotides in
a genomic sequence. Elements in a sequence (nucleotides,
amino acids, etc.) are not meaningfully described by scalar
values (i.e. by a single number) because they are distinct
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types of things that are not well-characterized in this way
(7).

In general, instead of representing nucleotides with in-
dividual numbers, current methods utilize kmers, or words
of length k, to represent a set of nucleotide bases. Here, a
I-mer is the same as a single site in a sequence. The use
of kmers is ubiquitous as a bioinformatics tool and they’re
used widely in many bioinformatics applications such as
genome assembly and compressing genomic sequence data
(8,9). In addition, kmers can be utilized to look for associa-
tions between different sequences and any associated traits
in GWAS studies (10). Another widely used representation
is encoding each nucleotide as a one-hot encoded array that
is fed into ML algorithms. One-hot encoding refers to de-
noting a given nucleotide at a site with a 1 and the rest of
the nucleotides as zeros. Many of these algorithms are deep
learning methods that are based on neural networks with
many layers that attempt to understand the underlying vari-
ation in sequence data and predict phenotypes (11).

In our system, we represent monomers not with individ-
ual numbers or sets of words (kmers), but with vectors. This
is similar to one-hot encoding of nucleotides, in which a
nucleotide is represented as an array to be used in compu-
tational genomics or ML methods. In our approach, how-
ever, the array is treated mathematically as a vector (a ten-
sor of rank one). Note that a vector here represents a sin-
gle site, not a sequence; a pair of sites is captured with a
tensor of rank 2 (a matrix). These vectors and matrices can
then be incorporated into mathematical functions, such as
polynomials. In contrast to computational approaches, de-
noting nucleotides as mathematical objects in this way al-
lows us to do formal mathematics with sequence informa-
tion. For example, the mean vector at a site gives the distri-
bution of nucleotides at that site, same as what a sequence
logo plot gives, and the mean outer product of two sites
gives us a matrix that is the covariance matrix (see ‘Ma-
terials and Methods’ section). After denoting each site in
a sequence as a vector (instead of the entire sequence be-
ing a vector), we then build orthogonal polynomials based
on these vectors and project the phenotypes onto the poly-
nomial space. This reveals not only first order interactions
between parts of sequences but also quantifies higher order
effects of having particular nucleotides at given sites. Thus,
doing purely mathematical analyses with this representation
of nucleotides yields biologically meaningful results. Note
that both the ML and the mathematical approaches share
the common fundamental step of one-hot encoding the nu-
cleotides but this is in contrast to kmer methods which de-
note sets of nucleotides as words of length k.

In the case of RNA sequence analysis, secondary struc-
ture prediction is an active area of development. For ex-
ample, predicting pseudoknots without constraints is im-
possible and is an NP-complete problem (12). RNAs are
extremely versatile molecules and play important regula-
tory roles in gene expression by affecting transcription and
translation through various different mechanisms, includ-
ing intermolecular (¢rans) and intramolecular (cis) interac-
tions (13). Of particular importance is the ability of RNA
to control transcription initiation or termination through
secondary structure formation of hairpins and loops (14).
In recent years, much work has been done to understand

the role of sequence composition in the regulatory poten-
tial of RNAs by not only studying the ones that occur nat-
urally in bacterial systems but also synthetically construct-
ing these regulators de novo (15,16). This presents a unique
opportunity to employ novel mathematical tools to quan-
tify the sequence—function relationship between RNAs and
their resulting regulatory activity in both synthetic and nat-
ural systems.

In general, given sequence information and correspond-
ing phenotype data, one important objective is to quantify
exactly how the underlying sequence, whether DNA, RNA
or protein, gives rise to variation in phenotype. We use the
term ‘phenotype’ broadly, to refer to any measurable bio-
logical trait that is (potentially) influenced by one or more
sequences. This could include whole organism properties as
well as molecular traits, such as the rate of expression of a
gene product (as in (17)) or binding propensity of a tran-
scription factor. Though we will use molecular traits as ex-
amples — since there is more data available relating these
to sequence variation — the methods that we present could
be applied in exactly the same way to whole organism traits
such as morphology or expression of a disease. In the case
of RNA regulators, one measurable phenotype is the regula-
tory activity of an RNA as captured experimentally through
the use of fluorescent reporters (18).

We have applied this method to a case of regula-
tory RNAs called Small Transcription Activating RNAs
(STARSs) that were synthetically constructed and whose
regulatory activity was quantified experimentally by mon-
itoring levels of green fluorescent protein expression (Fig-
ure 1, (19)). Our methods showcase important character-
istics about the sequence composition of these synthetic
RNAs and the corresponding target RNAs that they bind
to. When analyzing just the variation in the given sequences,
covariation patterns emerge that indicate interactions be-
tween the two ends of the STAR linear region. How-
ever, somewhat surprisingly, this pattern does not emerge
when the phenotype values (fluorescence indicating tran-
scription termination activity) are projected onto the se-
quence space. When looking at second order effects and
projecting the phenotype onto pairs of nucleotides, we find
a few notable interactions spread out along the sequence
indicating potential intramolecular binding. By showing
proof of concept of this method applied to these syn-
thetic RNAs, we demonstrate its ability to capture nu-
cleotide (or amino acids in the case of proteins) interactions
across sequences and quantify sequence—phenotype inter-
actions can be leveraged when applied to other biological
systems.

The case of STAR RNAs is particularly interesting to
study at the sequence level due to the impact that both intra-
and intermolecular interactions may have on the function of
this type of RNA. Our method described herein enables pre-
diction of nucleotide sequence covariation both positively
and negatively impacting the function of this RNA-based
regulator. These findings have the potential to uncover crit-
ical intra- and intermolecular interactions within the STAR
RNA regulatory system. The impact of nucleotide covaria-
tion on both intra- and intermolecular interactions is high-
lighted in the examples from Figure 2 depicting the ability
of different hairpin sequences to potentially form an inter-
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Figure 1. STAR and Target RNA mechanism. (A) illustrates the case in which a target DNA sequence is transcribed into an intrinsic terminator hairpin
which displaces the polymerase, preventing transcription of the downstream gene. (B) shows that when STAR binds to the target RNA, the terminator
hairpin is prevented from forming and transcription of the downstream gene continues. The purple region in the target RNA indicates the terminator helix
which is disrupted upon binding of STAR. The 40 nt linear region in both the target RNA and STAR is depicted with a black line. This was the sequence
that was varied while the terminator hairpin sequence remained the same across all 99 variants. Figure adapted from (19).

molecular interaction with an unchanging target sequence.
In the scenario shown in Figure 2A, a favorable intramolec-
ular interaction forming a strong hairpin is likely to pre-
vent the formation of the less favorable intermolecular in-
teraction. In the scenario shown in Figure 2B, a slight se-
quence change in the hairpin RNA has shifted the balance
to a far more favorable intermolecular interaction likely
to outperform the relatively weak intramolecular interac-
tion. Interestingly, a covariation on the other end of the po-
tential hairpin restores a favorable intramolecular interac-
tion without impacting the theoretical strength of the inter-
molecular interaction (Figure 2C). Despite the theoretical
strength of the intermolecular interaction depicted in Fig-

ure 2C, the competing intramolecular structure is likely to
impair full intermolecular function. Thus, the study of both
the positive and negative impacts of covariation on molec-
ular function can provide insight into the nucleotides in-
volved in important intra- and intermolecular interactions.
Importantly, while the Watson-Crick base pairing interac-
tions depicted in Figure 2 are rather easy to computation-
ally predict, there are many other types of interactions oc-
curring within structured RNAs that are less simple to pre-
dict. Studies providing insight into the functional impor-
tance of sequence covariation may assist in improving the
predictions of these other types of structural elements in the
future.
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Legend: Black nucleotide makes up the original sequence. Red nucleotides denote variation from original. Blue nucleotides are

covarying with the red sequence. Separate transcript sequence is denoted in orange. Double arrow indicates competing

interaction.

Figure 2. Importance of covariation for secondary structure. (A) It shows a case where there exists favorable intramolecular interaction (top panel) and
an unfavorable intermolecular interaction with another transcript (bottom panel). (B) Here, the same original sequence has 3 nt mutated which gives rise
to an unfavorable intramolecular interaction (top panel) but a favorable intermolecular interaction with the other transcript (bottom panel). (C) It shows
mutually exclusive structures with competing intramolecular and intermolecular interactions when there is a mutation (denoted in blue) that covaries with

the nucleotides denoted in red.

MATERIALS AND METHODS
Application of orthogonal polynomials

Given a set of DNA, RNA or protein sequences, along
with corresponding phenotypic data, our method consists
of building tensor-valued first and higher order polynomi-
als and projecting the phenotypic data onto this polyno-
mial space (see Supplementary Methods for detailed ex-
planation and proofs). Note that we assume that the se-
quences we are working with are of good sequencing qual-
ity and depth. Thus, before applying this method to se-
quence data, the user will have to perform general bioin-
formatic pre-processing steps to produce the final set of se-
quences to be analyzed. To apply our methods to the STAR
system, we first converted each site in each sequence of
the 99 sequences of STAR and target RNAs into a vector
as depicted in Figure 3. This is similar to one-hot encod-
ing an array which is a first step when feeding sequence
data to an ML algorithm (11). For each type of RNA,
each sequence had a corresponding experimentally derived
OFF/ON fluorescence value which served as the numer-
ical phenotype that we later project onto the polynomial
space.

After subtracting out the means across all sites in the set
of sequences, we get the first order M vectors (see exam-
ple in described in Supplementary Methods). We use these
to find the variances at each site and covariances between
each pair of sites. The covariance analysis shows positive
and negative relationships between a pair of two sites. It
picks out not only the correlations between sites across a
sequence but also the relationship between the szate at one
site (what nucleotide is present) and the state at another site
(Figure 3).

The covariance matrix for two sites is the mean, across
all individuals, of the outer product of M! and M?, where
M! and M? are first order vectors for each individual in the
population:

[ie1. 1ol = M ® M2 )

Next, we constructed orthogonal polynomials based on
our vectors and projected our variable of interest (OFF/ON
values) onto the polynomial space as shown below and de-
tailed in Supplementary Methods.

For scalar traits (body mass, degree of altruism, etc.), we
can write some other variable (fitness, susceptibility to a
disease, protein folding, etc.) as a function of the trait by
constructing a set of orthogonal polynomials, of increasing
order, for the trait. Orthogonality, here, is defined with re-
spect to the distribution of variation in the population (i.e.
the population distribution is the weight function). This is
essentially generalized Fourier analysis.

For example, to write some variable F as a function of a
single phenotypic trait (¢), we write the series:

N—1
F=TF+) [£]P )
i=1

where Pl is the ith order orthogonal polynomial in ¢ (i.e. it
has leading term ), |[Ef[,.]]] is the projection (regression) of F'
onto polynomial PI'l, and N is population size.

The projection of a variable F onto a scalar based poly-
nomial P’ is just the regression of F on P’ (denoted [£])
multiplied by P'. For a vector based polynomial, M/, the
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Figure 3. Example sequences with corresponding phenotypic values. Example sequences with corresponding phenotypic values. The first step in our
methods is to convert each site in a DNA or RNA sequence to its respective four-dimensional vector. In this example, a set of six sequences is shown, each
corresponding to a phenotype (a real-valued number). For DNA and RNA, the vectors are four-dimensional but this can be changed to a 20-dimensional
vector in the case of proteins. The phenotype () is the off/on fluorescence value associated with the sequence.

projection of F for a particular individual is given by:
Lie ] (i ® ) - MY (3)

Where ‘-’ represents inner product and ‘®’ represents
outer product. The role of the new term, w;,®u;, is devel-
oped in the section ‘Deriving the vector valued equation
from the scalar case’ in Supplementary Methods.

For the first order analysis, we are interested in the re-
gression of the phenotype (OFF/ON values) onto the first
order conditional polynomial. This is presented here as [['f{ﬂ_]]
and distributions of these regressions onto target RNA and
STAR linear regions are shown in Figures 6 and 7, respec-
tively.

First order analysis is useful to get an overall idea of how
a given trait is related to the underlying sequence. However,
biological systems are complex and relationships between
sequence and the corresponding phenotypic traits often ex-
hibit higher order associations. The challenge with trying
to capture higher order relationships, for example, quanti-
fying the regression of the trait on the combination of two
or more sites at once, is that this becomes computation-
ally difficult for sequences with large numbers of sites. Thus,
second and third order polynomials were constructed for a
smaller set of sites. We identified these sites as likely can-
didates after doing first order analysis and noticing sites
that potentially exhibited second and third order interac-
tions. Polynomials up to third order were built for three in-
teracting sites and the regressions of the phenotype on the
third orthogonal polynomial were computed (Supplemen-
tary Figures S5 and 6). In addition, regressions of the phe-
notype on the second order orthogonal polynomial were
built for six interacting sites in the 5 prime region of the
STAR sequence (Supplementary Figures S7-10).

All code to construct up to third order orthogonal poly-
nomials is written in the Python programming language.

All computational analysis and visualization of results was
also done in Python. A command line tool to compute
these polynomials based on sequence data and correspond-
ing phenotype data has been constructed and is under fur-
ther development. Users can clone the Github repository,
plug in their own data, and utilize the tool as shown in the
repo. To start, users input their sequence data and corre-
sponding phenotype data in separate text files. The program
accesses the sequence data (complexity O(1)), converts each
letter to a four-dimensional array, and stores this array as
phi (see Supplementary Methods). All the rest of the math-
ematics is done on these vectors. Supplementary Table S3
shows examples of the computational time and memory re-
quirements to build up to third orthogonal polynomials for
STAR /target RNA sequences. It also contains an example
of runtimes for a set of 10 000 DNA sequences that are two
sites each (see Github for more info). In general, the com-
mand line interface will run efficiently for shorter sequences
compared to longer ones. For instance, when doing just first
order analysis for the 40 site STAR sequences, the runtime
is efficient but doing second order on all 40 sites is not com-
putationally feasible. One can, however, do second order on
sections of the sequence (e.g. 10-site regions) or two sites at
a time which is what we have done in this work. The analy-
sis for this paper, along with data and files that generate the
figures, has been uploaded to this Github project page.

Application to STARs (small transcription activating RNAs)

We applied our methods to the case of a synthetic RNA reg-
ulator designed by (19) known as STARs. In this system,
a target DNA sequence, containing the necessary informa-
tion for termination, is placed upstream of a gene. When
transcribed, this sequence turns into an intrinsic terminator
with a linear region and a hairpin structure. Upon forma-
tion of this structure, the polymerase gets knocked off, pre-
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venting the transcription of the downstream gene (Figure
1A, (19,20)). This is known as the ‘OFF state’. In the ‘ON
state’, a STAR is constructed such that upon binding to the
target RNA, terminator hairpin formation is prevented and
the polymerase continues transcription of the downstream
gene (Figure 1B).

In this system, it was determined that the linear region of
the STAR binding to the corresponding part on the target
RNA was critical to the activation of the downstream gene.
To establish this, linear regions of 100 STAR:target RNA
variants were constructed de novo using a software package
known as NUPACK (21). In this construction, only the lin-
ear recognition region was varied while the terminator hair-
pin remained the same for all variants. This linear region
was 40 nt long, as determined experimentally, and it was hy-
pothesized that variation in this part of the sequence would
give rise to distinct OFF and ON states for all STAR:target
variants (see ‘Materials and Methods’ section in (19) for de-
tails). For the application of our methods to this system, this
set of 40 nt long sequences in the STAR and target RNA
were used to build first and higher order orthogonal poly-
nomials. Fold and off values were then projected onto the
space of the orthogonal polynomials.

RESULTS

Covariances showcase nucleotide interactions across STAR
sites

As part of first order analysis, means, variances and covari-
ances were computed for all 40 sites across the population
of STAR and target RNA sequences. The 40 site long lin-
ear region was determined experimentally as being the op-
timal length to activate transcription (see ‘Materials and
Methods’ section in (19)). Figure 4 shows frequencies of nu-
cleotides along the 99 sequences of the target RNA. consist
of nucleotides cytosine (C), thymine (T), and uracil (U, in
the case of RNA). Purines consist of adenine (A) and gua-
nine (G).

The covariance analysis yields matrices for all pairs of
sites, across the 40 sites and quantifies the relation between
having a particular nucleotide at one site and another nu-
cleotide at another site. Since there are 40 sites in this sys-
tem, there are 780 unique pairs of sites. The covariance be-
tween each pair of sites is a matrix and thus, there are 780
4x4 matrices which account for all sites and all possible
nucleotides at each site. To understand the distribution of
these covariances, a histogram was constructed and differ-
ent cutoffs were analyzed (Supplementary Figures S1, 3 and
4). Supplementary Figure S1 shows that as the cutoff be-
came larger, the number of ‘highly covarying’ pairs became
smaller. The cutoff of —0.05 and 0.05 was selected after test-
ing multiple different cutoffs which showed the same pat-
terns (Supplementary Figures S3 and 4 showing cutoffs of
0.04 and 0.03, respectively). The cutoff of 0.05 yields 32
site pairs, indicating nucleotides at specific sites covarying
highly and positively with each other and nucleotides at
other sites covarying highly and negatively with each other
(see Supplementary Table S1 for actual values).

These large positive and negative covariances are visual-
ized as seen in Figure 5 and Supplementary Figure S2 The
start of the sequence, depicted as site 1, is the 5" end of the

STAR while the end of the sequence is the 3" end. It can be
immediately noted that sites near the 5’ end of the sequence
(sites 2-6) covary with themselves and with all other sites,
no other sites covary with anything else except with one of
those. And the sites that sites 2—6 connect with are fairly
evenly distributed throughout the rest of the sequence. Ad-
ditionally, there is a lack of notable correlation between sites
in the middle portion of the sequence. One possible explana-
tion for this result is that this interaction between sites at the
ends of the sequence is preventing any potential binding be-
tween the linear region and the hairpin part of the RNA so
that the hairpin region can stay intact and pursue its func-
tion of terminating transcription of the downstream gene.
This type of function for transacting regulatory RNAs has
been well described in other contexts ((19), (22), (23), (24)).

Another possible explanation for this result could be re-
lated to the way these sequences were designed by the NU-
PACK algorithm. The objective of this software program
is to calculate equilibrium distributions of the given nucleic
acid strands (21). However, as has been noted by the au-
thors of the STAR paper, STAR ‘regulation is governed by
kinetic, out-of-equilibrium folding regimes’ and thus, the
NUPACK design of STAR sequences may not resemble
natural sequences (19). Therefore, the apparent importance
of sites at the 5’ end of the sequence could be an artifact
of the software used to design the sequences. This warrants
further investigation.

The covariation pattern here indicates the potential im-
portance of sites 2-6 to the functionality of this sequence,
however, the fact that these sites appear to be correlated
with a lot of other sites might suggest that they’re interact-
ing with those other sites. Therefore, a functional variable
must be projected onto this sequence space to find out the
relative importance of these sites. First, we conduct first or-
der analysis and project the phenotype onto just individual
sites to see which sites by themselves seem to be most impor-
tant and what nucleotides at those sites seem to stand out.
Subsequently, when doing second order analysis, we look at
pairwise interactions to see how interactions between sites
affect the phenotype.

Regressions of fold and off values onto linear binding regions

In the STAR system, the authors of the STAR paper deter-
mined that the OFF state provides the best measure of the
efficiency of the STAR:target complex as a whole. This mo-
tivates the analysis of the relationship between sequence and
function of the target RNA (as measured by termination
efficiency). To establish this, after building the first order
orthogonal polynomials, we computed regressions of OFF
values onto each nucleotide at each site of the target RNA.
First order analysis shows the direct effects of nucleotides
at each site on the phenotype. The regressions of the pheno-
type onto the first order orthogonal polynomial show how
each nucleotide at each site contributes to the overall func-
tion of the STAR sequence. Figure 6 shows these regressions
and captures the connection between sequence and expres-
sion when looking at just first order patterns.

Distribution of regressions. 'The magnitude of regressions
is highly variable but large values seem to be uniformly dis-
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tributed across the sequence. Regressions here refer to the
projection of the phenotype (OFF fluorescence values) onto
the first order conditional polynomial (see ‘Materials and
Methods’ section). This indicates that this pattern is “un-
structured’ as noted by the authors of the STAR paper. This
can be inferred from the shape of the regressions across the
linear region of the target RNA (Figure 6A). Given the co-
variance structure in the STAR linear sequence sequence
(which is complementary to the target linear region) (Fig-
ure 5), we expected the regressions onto the sites to show a
similar pattern of connection between sites at the 3’ end of
the sequence and sites at the 5" end. However, this pattern
of correlations does not emerge when projecting the OFF
fluorescence values onto the sequence space. Though there
exists a dynamic range of GFP expression in the STAR Ii-
brary, as indicated by the OFF fluorescence values, the se-
quence correlation structure identified earlier does not seem
to be functionally relevant when this phenotype is projected
onto the sequence space. This is evidenced by the fact that

when looking at just each site on its own, no particular sets
of sites stick out as being more important than other parts
of the sequence. To investigate this further, we built second
order orthogonal polynomials and projected the phenotype
onto them in order to identify pairs of interacting sites and
any potential long-range interactions.

Overrepresentation of purines. While there is no spatial
pattern in the magnitudes of regression coefficients, as was
originally expected due to the sequence covariance pattern,
there is a strong relationship between the kind of nucleotide
at a site and the regression of the off phenotype values on
it. Almost all the purines have positive regressions while al-
most all the pyrimidines have negative values. This means
that there is a preference for having purines along the tar-
get RNA sequence while pyrimidines are disfavored. The
hairpin of the target RNA, the intrinsic terminator, in-
cludes a string of guanines and cytosines which implies that
these nucleotides would not be preferred along the linear re-
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gion (19). But then this would mean that As and Us would
have positive regressions here while Gs and Cs would be dis-
favored and have negative values. But that’s not what we see,
we see that Gs and As have positive regressions and Cs and
Us have negative regressions. So this is a somewhat myste-
rious result that warrants further investigation.

After noting the purine/pyrimidine distinction, we
were led to an additional hypothesis regarding molecu-
lar weights. There is a positive relationship between the

magnitude of regression and the molecular weight of the
nucleotide. Guanine is the heaviest molecule, followed by
adenine, uracil and cytosine (Figure 6B). The regressions
were the largest for heaviest molecules and decreased as the
molecular weights decreased.

Furthermore, adenine and guanine are capable of hydro-
gen bonding with uracil. Guanine has a triple bond with
cytosine and can form a double (wobbly) bond with uracil.
As both of these nucleotides are capable of hydrogen bond-
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ing with uracil and this is a unique feature that distinguishes
them from the pyrimidines, it might be the case that these
nucleotides are more preferred.

Regressions of ON values onto STAR sites. In addition to
projecting OFF values onto target RNA sites, ON values
were projected onto the space of the sequences comprising
the STAR linear region. The ON values are a measure of
how good a STAR is at binding to the target RNA and ac-
tivating the downstream gene. Since the STAR sequence is
complementary to the target RNA, as expected, the regres-
sions of having pyrimidines in the STAR linear region are
positive while the regressions of having purines is negative
(Figure 7).

Second order analysis on all pairs of sites across the STAR
sequence

The first order analysis, which includes calculating covari-
ances and variances of nucleotides at each site, revealed a
number of highly correlated sites (absolute values of covari-
ances being >0.05) sequestered in the 5 region of STAR.
In order to test the hypothesis that sites that are correlated
(Figure 5) are interacting in their effect on the phenotype,
we built second order polynomials for each pair of sites
across the STAR sequence (with 780 unique pairs in total).
See the corresponding supplementary section that shows an
example of how this is done with a different set of sites.

After building second order polynomials for each pair of
sites across the STAR sequence, regressions of the pheno-
type onto each pair of sites were computed. For a given pair
of sites, this results in a 4 x4 matrix, with 16 total values that
each correspond to a given nucleotide at the first site and
another nucleotide at the second site. Figure 8 shows an ex-
ample of this for sites 3, 5 and 21. The regressions shown
in this figure are scaled by the absolute value of the largest
regression across all combinations of pairs in the sequence.

To determine the effect of increasing distance between a
pair of sites on the phenotype, we took the distances be-
tween the sites and plotted them against the absolute val-
ues of the maximum regressions (these are regressions of
the phenotype onto two sites at a time). Figure 9A shows
the sampling distribution of these regressions. It can be seen
that a few regressions exist at the very tail end of the distri-
bution as shown in the red part of the histogram. These re-
gressions, all greater than 35 000, are also shown as a cloud
of points, colored red, that appear in the top part of Figure
9B. To visualize which sites made up these site pairs and
which nucleotides at these sites correspond to the high pos-
itive or negative regressions, a plot similar to the covariance
figure (Figure 5) was constructed (Figure 9C) with actual
values given in Supplementary Table S2. For example, the
blue curve connecting ‘A’ at site 5 with ‘C’ at site 15 means
that having that combination contributes substantially to
the OFF value, independently of the individual contribu-
tions of these sites by themselves. This visualization shows
that there is no tendency for strongly interacting sites to be
adjacent. In addition, there does not appear to be high re-
gressions of the phenotype onto site pairs in the 5 part of
the sequence (as predicted by the covariance structure in
Figure 5).

Out of the 14 site pairs shown in Figure 9, there are four
pairs that are between sites in the 5" and 3’ regions. This po-
tentially supports the hypothesis mentioned earlier which
states that possible binding between these parts of the se-
quence would allow the hairpin region of the RNA to stay
intact (by not binding with the hairpin) and pursue its func-
tion of transcription termination of the downstream gene.
However, in addition to this long-range interaction, there
are a cluster of strongly interacting sites in the middle por-
tion of the sequence, between sites 11 and 20. This includes
site 17 which has the most interactions (a ‘C’ at site 17 inter-
acting with five other sites). There exists large values for re-
gressions of the phenotype onto these site pairs (see Supple-
mentary Table S2 for values). This suggests that there might
exist some level of potential intramolecular binding in the
middle section of the sequence that was not picked up by
the NUPACK software when the initial sequences were be-
ing designed.

DISCUSSION

In this work, we propose a novel mathematical tool to de-
scribe sites along biological sequences as vectors and quan-
tify sequence—function relationships by projecting pheno-
types onto the sequence space. Given a set of sequences and
corresponding phenotypic data for each sequence, tensor-
based orthogonal polynomials can be constructed based on
the actual variation in sequences. The regression of pheno-
types onto these polynomials can quantify not only the ef-
fects of different nucleotides at individual sites, but also the
effect on phenotype of combinations of nucleotides at dif-
ferent sites. To show proof of concept, this method was ap-
plied to a case of synthetic RNA regulatory sequences, de-
scribed in previously published work (19), that were exper-
imentally constructed with the goal of identifying how se-
quence structure and design motifs affect RNA regulatory
activity.

This method has some fundamental parallels with ML
methods, such as neural networks, in that they share the
very first step of one-hot encoding nucleotides and convert-
ing them to vectors/arrays. Figure 10 shows the similari-
ties and differences between the two approaches. In the ML
approach, sequence and corresponding phenotype data are
fed into an algorithm (such as a deep neural net) after which
the algorithm is trained to learn the relationship between
the phenotype and the sequence (see (25) for example). In
the mathematical approach, the sequence data is used to
build a space within which we can conduct further math-
ematical analysis such as mapping phenotypes onto the se-
quence space. We argue that doing such mathematical anal-
ysis has some advantages because, here, the meaning of the
values produced through this approach is clear because they
were derived through the mathematics whereas when these
results are derived from black box approaches, it is more
difficult to interpret them. For example, in the analytical
approach, we have a clear understanding of what a projec-
tion of a variable onto the polynomial space is, whereas this
would be difficult to grasp in the traditional deep learning
approaches.

One other advantage that this approach has over other
ML approaches is that once the sequence space is con-
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structed (which is the part that requires most of the compu-
tational resources), one can easily project any correspond-
ing phenotypes onto this space. In the ML approach, on the
other hand, the algorithm would have to be re-trained en-
tirely if one wanted to map a different phenotype to the un-
derlying sequence. Furthermore, these two mappings would
not be easily comparable as each phenotype and under-
lying sequence would have been trained differently. How-
ever, a hybrid approach that combines the two methods
could be implemented. For example, it is possible to ap-
proximate some types of orthogonal polynomials using neu-
ral networks as has been done before (26,27). A hybrid ap-
proach combining the tensor-based orthogonal polynomial
method described here with a deep neural network trained
on sequence and phenotype data is a promising area of fur-
ther investigation.

Application of our method to the case of these regula-
tory RNAs showcase that even though a cluster of sites near
the 5’ end are correlated with other sites throughout the se-
quence, there is no obvious preference for correlations con-
centrated at the ends of the sequence. It turned out that the
correlation structure shown in Figure 5 did not have any
functional relationship with the phenotype when the phe-
notype of OFF fluorescence values was regressed onto the
sequence space. After identifying sites along the STAR se-
quence that are correlated with each other, we built second
and third order orthogonal polynomials that quantified the

effect of the phenotype on two-way and three-way combi-
nations of sites (Supplementary Figures S5-10).

In order to test whether the 5 region contained combi-
nations of sites that had a greater effect on the phenotype
than those at the 3’ end, we built second order polynomials
of combinations of two pairs of sites across the STAR se-
quence. Since the sequence is 40 sites long, there were 780
unique combinations. When projecting the phenotype onto
these pairs of sites, we assessed the impact of distance be-
tween the pair of sites on the degree to which they influence
phenotype, and whether combinations of sites in the 5 re-
gion would have a greater effect on phenotype. As seen in
Figure 9, instead of one region of the sequence being more
important than the other, there seems to be a global struc-
ture to the interacting site pairs across the sequence that
have high regressions.

The interaction data (Figure 9) does show some long
range interactions, but it also shows a cluster of interacting
sites in the middle. Furthermore, the pattern of interaction
between sites in their impact on phenotype is not predicted
by the nucleotide correlations between sites. Interactions
at the 3’ and 5 ends of the site, combined with those oc-
curring in the middle of the sequence, suggest the possibil-
ity of competing intramolecular interactions and secondary
structure formation in the absence of the target RNA. The
authors utilized NUPACK aiming to minimize compet-
ing intramolecular interactions, however, our analyses in-
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dicate that there exist substantial competing intramolecu-
lar interactions that can interfere with the intermolecular
interaction between the STAR:target complex. This aspect
was not predicted sufficiently by the NUPACK algorithm.
This presents an exciting opportunity to use novel compu-
tational and mathematical design approaches to inform ex-
perimental data and use the results to refine the design ap-
proach.

While direct Watson—Crick binding of the STAR to the
target is a critical component of the STAR function, the
function of this molecule will also likely be impacted by
its potential to form secondary structures in the absence of
the target RNA. Some level of secondary structure could
be beneficial, perhaps by providing the STAR a level of sta-
bility from spontaneous degradation or nuclease-mediated
degradation whereas other structures may negatively im-
pact its stability for the same reasons. Additionally, a high
amount of structural potential may create too much in-
tramolecular binding and not allow for the intermolecu-
lar binding between the STAR and the target. However, for
other reasons that might not be easily predicted, a certain
level of STAR structure might be beneficial in the inter-
molecular binding.

CONCLUSION

In conclusion, our methods provide a mathematical tool to
find patterns in sequence data and to quantify the effect of
the corresponding phenotype on the underlying sequence
structure. Using this vector-based orthogonal polynomial
approach, we can not only look at global patterns of se-
quence structure but can also identify the nucleotide state
at each given site and how this affects phenotype at first and
higher order levels.

Implementing this approach can be thought of as a two-
step process. First, we analyze the existing covariance struc-
ture in the sequence data to see how different parts of the
sequence might be correlated with one another (5). Second,
we use the observed patterns of covariance to construct an
orthogonal sequence space, into which we can project an-
other variable to see which, if any, properties of the sequence
predict the functional variable (Figures 7-9).

In the case of the STAR sequence, the covariance analy-
sis showed that a group of adjacent nucleotides near the 5’
end of the sequence were correlated with other nucleotides
spread throughout the rest of the sequence. To see if this
correlation corresponds to functional interactions between
those nucleotides, we projected the experimental STAR flu-
orescence data into the orthogonal sequence space. This
analysis identified a number of pairs of nucleotides that in-
teract in their effect on fluorescence (Figure 9). However,
these were not the pairs of nucleotides that were correlated
with one another (Figure 5). The method thus allows us to
tease apart structural properties of a sequence and func-
tional interactions between different elements of that se-
quence. Given structural data, our approach can be utilized
to yield insight into potential non-canonical base pairing in-
teractions for different RNA families. And when combined
with existing tools such as NUPACK, it can identify these
interactions and thus allow for the construction of candi-
date sequences that can be used for downstream experimen-
tal analyses.
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The limitations of this method largely lie with the com-
putational power and memory required to compute polyno-
mials for sequences with a large number of sites for which
higher than second order analyses are sought. The proof
of concept shown here consists of 99 sequences that are
40 sites long. However, a large number of sequences with
a smaller number of sites might be more optimal for this
method. A further area of investigation is potentially im-
plementing a hybrid approach that utilizes a deep neural
network to identify sites along the sequence that are func-
tionally more important and then using just these sites as in-
puts to the tensor-based orthogonal polynomial approach
described here. The existing program and the resulting com-
mand line tool is written in the Python programming lan-
guage, however, efforts to optimize and parallelize the pro-
gram using other languages such as C++ or Rust is one of
the current objectives.

While we have given proof of concept of this approach us-
ing an example of regulatory RNAs, this method can be ap-
plied to other questions that aim to understand sequence—
phenotype interactions such as transcription factor bind-
ing sites and how their sequence composition gives rise to
different TF binding energies along with applications in
synthetic biology that aim to understand the relationships
between the underlying RNA sequence and corresponding
secondary structure (25,28).

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.
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