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Abstract: Individuals with Autism Spectrum Disorder (ASD) experience challenges with social
communication, often involving emotional elements of language. This may stem from underlying
auditory processing difficulties, especially when incoming speech is nuanced or complex. This study
explored the effects of auditory training on social perception abilities of children with ASD. The
training combined use of a remote-microphone hearing system and computerized emotion perception
training. At baseline, children with ASD had poorer social communication scores and delayed mis-
match negativity (MMN) compared to typically developing children. Behavioral results, measured
pre- and post-intervention, revealed increased social perception scores in children with ASD to the
extent that they outperformed their typically developing peers post-intervention. Electrophysiol-
ogy results revealed changes in neural responses to emotional speech stimuli. Post-intervention,
mismatch responses of children with ASD more closely resembled their neurotypical peers, with
shorter MMN latencies, a significantly heightened P2 wave, and greater differentiation of emotional
stimuli, consistent with their improved behavioral results. This study sets the foundation for further
investigation into connections between auditory processing difficulties and social perception and
communication for individuals with ASD, and provides a promising indication that combining
amplified hearing and computer-based targeted social perception training using emotional speech
stimuli may have neuro-rehabilitative benefits.

Keywords: Autism Spectrum Disorder; speech prosody; auditory processing; hearing amplification;
training intervention; cortical auditory evoked potentials

1. Introduction

Autism Spectrum Disorder (ASD) is a lifelong, pervasive, neurodevelopmental con-
dition characterized by restrictive, repetitive patterns of behavior and deficits in social
language and communication [1]. People with ASD often experience difficulty under-
standing irony, conflicting emotions, jealousy, social blunders, and others’ intentions [2,3].
Accordingly, a number of researchers have suggested that the core language impairments
in ASD reflect problems with language pragmatics [4–8]. Pragmatics, here, refers to the
social, emotional, and communicative elements of language, which include nonverbal
communicative cues such as prosody—the minimal distinctions in spoken language that
convey the speaker’s emotion and intent [9,10].

The perception of prosody is thought to depend on a number of acoustic parameters
such as variations in fundamental frequency (pitch), intensity, timbre, and timing [11–14].
Electrophysiological studies indicate that the human auditory system engages immediately
with prosodic cues while processing spoken language [15], and that specific cortical regions
respond to variation in affective prosody (i.e., emotion) [16].

Because perception of prosody relies on the accurate processing of subtle variations
in acoustic parameters, the perception of the subtle nuances in social or emotional speech
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can be impaired by difficulties with auditory pattern recognition, auditory discrimination,
sound localization, and temporal processing [17]. It is likely that at least a portion of the
difficulties in prosodic processing experienced by people with ASD can be attributed to
impaired central auditory processing of spoken language. Over the past two decades,
a number of researchers have documented atypical auditory processing in individuals
with ASD [18–21]. While some studies show that children with ASD have superior pitch
discrimination and categorization in music processing [22,23], they do not show the same
advantage in responses to speech [24].

Auditory processing challenges become more salient in individuals with ASD when
the input is more complex, such as with tasks involving sentences and intonation [25],
speech recognition in the presence of background noise [26,27], auditory filtering [28], com-
peting speech streams [29,30], and when prosody-based cues are processed simultaneously
with semantic information [31,32]. These challenges are more disruptive in children with
ASD than they are in adults [21].

Electrophysiological studies of individuals with ASD have largely measured cortical
auditory evoked potentials (CAEPs), and have mainly focused on ascertaining whether
individuals with ASD possess the auditory processing abilities to detect prosodic changes,
for example in phonemic intensity, pitch, and duration [33–35], and emotional undertones
in the speaking voice [36–38]. Studies have demonstrated that delayed responses (longer
latencies) across various CAEP components are correlated with impaired vocal affect
recognition [39,40]. Studies investigating pre-attentive processing of vocal emotion [41–43]
have typically calculated a mismatch response (MMR) from CAEPs recorded in an oddball
experimental paradigm. The MMR is derived by subtracting evoked potentials elicited in
response to a numerously repeated “standard” stimulus, from evoked potentials elicited in
response to a less frequently and randomly presented “deviant” stimulus [44].

The foregoing suggests that training that targets central auditory processing—particularly
for the acoustic discrimination abilities involved in prosodic processing—could ameliorate
problems in social communication in people with ASD, perhaps addressing secondary prob-
lems such as academic underachievement, inattention, hypersensitivity, hyperactivity, and
oppositional behavior [45], as well as noise sensitivity and anxiety [46]. Training studies with
children with ASD [47–49] have demonstrated measurable post-training improvements, both
in terms of improved behavioral performance [47,48] and in faster neural responses [49].

Several research groups have pursued interventions using sound amplification
technology—remote-microphone hearing systems (RMHSs)—with the aim of managing
the auditory functioning of children with ASD and other language and learning disor-
ders [50–56]. These studies have reported benefits to academic performance in noisy
classroom environments, reduced listening difficulties, improved speech recognition,
and improved spatial and temporal processing of auditory stimuli [50–54,56], as well
as decreased cortisol levels, indicative of reduced stress [55].

In this study, we trial an intervention in a group of children with high-functioning ASD
in which we combine and RMHSs with a computerized training program in emotion percep-
tion. There is growing interest in this approach of enhancing traditional auditory training
tasks with hearing amplification devices, with innovative studies from the University of
North Texas reporting behavioral [53] and neuro-electrophysiological improvements [56].

We seek to expand on the emerging view that the difficulties people with ASD experi-
ence in perceiving and understanding subtle nuances in speech may, in part, stem from
underlying auditory processing difficulties. We present behavioral and electrophysiological
results, measured pre- and post-intervention, from the ASD group and a control group of
typically developing (TD) peers who were only assessed at one time point. We aimed to
address the following questions:

1. Do social perception abilities differ between the TD and ASD groups?
2. Do these differences change after the training intervention?
3. Do neural responses to changes in emotional undertones in speech differ between the

TD and ASD groups?
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4. Do neural responses change after the training intervention?

2. Materials and Methods
2.1. Ethical Approval

All participants gave their written informed consent for inclusion before they par-
ticipated in this study. This study was approved by the University of Auckland Human
Participants Ethics Committee (reference number 9657).

2.2. Participants

We recruited two groups of children—an ASD group and a TD control group. The
ASD group consisted of 12 children with existing diagnoses of ASD previously made
by an individual or multidisciplinary team of health care practitioners. As part of the
eligibility criteria for this study, the children with ASD were also evaluated with a rating
scale of autism symptoms to re-confirm their diagnosis. There were 9 males and 3 females
(M = 9.91 years, SD = 2.23 years, Range = 7–13 years). Two children in this group had
comorbid diagnoses of dyslexia (they were twins), and one child had ADHD. Of the
12 children with ASD, two did not assent to the evoked potential recording sessions,
therefore CAEP results are only available for 10 of the 12 children with ASD.

The TD group consisted of 14 children with no current or previous diagnosis of any
clinical disorders, as confirmed by their parents/caregivers. There were 4 males and
10 females (M = 9.43 years, SD = 1.87 years, Range = 7–12 years).

Participants in this study were all born in New Zealand, and would have been exposed
to verbal cues, and prosodic intonation and expression specific to New Zealand English.
All participants were enrolled in mainstream school. Two children with ASD required
teacher aides to assist them in a group setting (not one-on-one assistance), but otherwise,
there was a strong indication that participants with ASD were managing well in class with
peers of the same age. A medium to high level of SES was also assumed for the participants
in this study, since the public schools (where students enroll by residential zones) had the
resources to cater for students with learning difficulties.

2.3. Study Design

We used a prospective longitudinal study design to evaluate intervention outcomes
for children with ASD. We assessed participants with ASD four times, twice before and
twice after an intervention period of three weeks. Session 1 served as a baseline assessment.
Evaluations of autism symptoms and communication behaviors were completed. The
children completed a hearing screen, a behavioral social perception assessment, and we
recorded their baseline CAEPs.

Two weeks later, Session 2 involved the re-assessment of the behavioral social per-
ception task only and served as a second baseline reference point. During this session,
we fitted and verified RMHSs for each child with ASD in preparation for the 3 week
intervention period.

Session 2 was followed by a week-long familiarization period, during which the ASD
group were introduced to using RMHS and briefed about the upcoming intervention.
They also received various aids to support this familiarization, including social stories,
step-by-step instructions, and a demonstration video (contact corresponding author to
request material).

For the 3 week intervention period, all children with ASD completed nine computer-
ized training sessions. These were 20–30 min in duration and occurred three times a week.
The activities were all completed on a Dell Latitude laptop in the presence of the researcher.
The children wore their RMHS while they were engaged in these training sessions. With
agreement from each child with ASD, and the support of parents and teachers, the ASD
group also wore their RMHS in school for the duration of the intervention period to maxi-
mize exposure to amplified hearing. Full details on the development of intervention and
CAEP materials and processes are outlined in the supplementary material.
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Session 3 took place the week immediately after the intervention period to eval-
uate intervention-related effects. The behavioral social perception assessment was re-
administered, and CAEPs re-recorded. Finally, Session 4 occurred after a further two weeks.
During this session, the behavioral social perception assessment was administered for the
final time as an evaluation of the retention of any intervention-related effects.

The children from the TD control group only participated in a one-off session that
included the hearing screen, parental report of communication behaviors, the behavioral
social perception assessment, and recordings of their CAEPs. It is noteworthy that we were
only able to test the TD children once each, rather than the four times for the ASD group,
so the TD group cannot be considered a true control group. Rather, the TD group provided
data that we used for cross-sectional comparison of behavioral and CAEP results.

We offered all participants the choice of having their behavioral assessments and
training sessions (for the ASD group) at the University of Auckland’s clinic space, or in
a quiet space in their own homes. It was important to ensure that the children with ASD
had the opportunity to be in a space where they were comfortable and least anxious. We
recorded all CAEPs at the University of Auckland in a sound-attenuating chamber.

2.4. Assessment Materials and Apparatus
2.4.1. Hearing Screen

All participants received an evoked otoacoustic emissions screen measured via dis-
tortion product (DPOAE) using a Grason-Stadler GSI Audioscreener (version 3.21). OAE
testing is a recommended hearing screening approach for young children [57,58]. The
pass criterion was a signal-to-noise ratio (SNR) above 6 dB across five frequency levels
(2–6 kHz) [59,60].

2.4.2. Autism Characteristics and Communication Behaviors

The primary researcher, who met the requirement of qualification level C, observed
the ASD participants during Session 1 and completed the high-functioning version of the
Childhood Autism Rating Scale (CARS-HF) [61]. Results from the CARS-2 questionnaire
for parents/caregivers (CARS-2-QPC) were used to complement and validate the autism
symptom severity ratings given by the researcher. Standardized T-scores were derived from
the raw total and corresponded to the following categories: between <20 and 41 indicates
that individuals scored in the minimal–no symptoms of ASD range, between 42 and
50 indicates mild–moderate symptoms, and 51 and higher indicates severe symptoms
of ASD.

Parents/caregivers of all children (TD and ASD) completed the second edition of the
Childhood Communication Checklist (CCC-2) [62]. The CCC-2 screens for communication
problems in children aged 4 to 16 years. Seventy questions make up 10 subscales that
assess language structure, vocabulary, discourse, pragmatics (social rules of language),
and impaired communicative behaviors commonly displayed by children with ASD. A
General Communication Composite (GCC), scaled to individual age groups, indicated
whether children may have clinically significant communication issues. Children with
ASD (and specific language impairment) score below 55 according to validation data [62].
A Social Interaction Deviance Composite (SIDC), calculated separately, indicated whether
an individual child may show a communicative profile that is characteristic of ASD. SIDC
values below 0 are most commonly seen in children with Autism [62].

2.4.3. Behavioral Social Perception

We assessed social perception using the Wechsler Advanced Clinical Solutions (ACS)
Social Perception Subtests [63]. There were three subtests in total.

The ‘Affect Naming’ task required the participant to identify the emotion that is being
expressed on a series of 24 facial photos. They were given a choice out of the following
emotions: happy, angry, sad, afraid, surprised, disgusted, and neutral.
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The ‘social perception face matching’ task required the participant to listen to an audio
recording of a statement, and then select one facial photo out of six that they thought
matched the emotional tone behind what was said. There was no need to verbally identify
the emotion; participants were instructed to disregard the gender of the voice and the
photos, and to focus on the affective facial expressions. There were cases where vocal-
gender was incompatible with facial-gender. There were 12 items in this subtest.

The ‘social perception pair matching’ task followed a similar procedure as above, but
instead of single faces, each item was accompanied by four photos depicting a scenario
with two people. The participant chose one option out of the four, depending on which
one they thought matched the emotional tone in the audio recording. Participants were
asked to use the characters’ facial expressions and body language to inform their decision.
Once again, some items out of the 12 had incompatible vocal- and facial-gender.

We derived two scores from these subtests—an ‘Affect Naming’ score, and a ‘Social
Perception Prosody’ score (face- and pair-matching tasks combined), as per the ACS
guidelines. Raw scores were used because published normative data are not available for
individuals younger than age 16 years [63].

Average internal consistency across ACS scores is reported as r = 0.69–0.81, with test–
retest reliability reported as a corrected coefficient of r = 0.60–0.70, and inter-rater agreement
between 98 and 99% [63]. The Social Perception Subtests have previously been successfully
administered to adults with high-functioning ASD, Asperger’s syndrome, and a typically
developing control group [64], and revealed significantly worse performance from those
with ASD compared to controls, only for social perception face- and prosody-matching
tasks, but not Affect Naming.

2.4.4. Cortical Auditory Evoked Potentials
Stimuli and Sequences

Speech stimuli were sampled from existing recordings of monosyllables (/ba/) pro-
duced by a male speaker in Angry, Happy, Sad, and Neutral emotional tones of voice [65].
See supplementary material for information on the selection of the four speech stimuli. All
the speech stimuli were 200 milliseconds (ms) in length. The time waveforms in Figure 1
show that the speech stimuli were, on average, matched for root mean square intensity and
duration but differed in their temporal characteristics.

We used a modified “oddball” paradigm to investigate auditory discrimination of An-
gry/Happy/Sad against Neutral. The stimuli were programmed into sequence blocks us-
ing the NeuroScan STIM2 Gentask software. Each block consisted of a ratio of 70 standard
stimuli to 10:10:10 deviant stimuli. Every sequence began with 20 standard stimuli, fol-
lowed by a pseudorandom presentation of standard and deviant stimuli. The order of emo-
tional deviants inserted into the sequence was randomized but was adjusted so that at least
2 or 3 standards occurred between each deviant. There was a 640 ms inter-stimulus interval.

Experimental Setup and Data Acquisition

CAEP recording sessions took place in a sound-treated two-room setup, with a leather
reclining chair for the participants to sit in. Stimuli sequences were presented (via Gentask
software on NeuroScan STIM2) at 70 dB SPL via an Australian Monitor Synergy SY400
power amplifier and Sabine Graphi-Q GRQ-3102 equalizer, connected to a Turbosound
IMPACT 50 loudspeaker. A half-inch polarized condenser free-field microphone, connected
to a Bruel and Kjaer measuring amplifier and oscilloscope, was used to calibrate and
externally monitor the sound levels of the stimuli in the enclosed testing environment.
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We positioned the loudspeaker at a 150 cm distance at zero degrees azimuth in front
of the participant seated on the recliner. Behind the loudspeaker was a television on a
stand. We instructed participants to watch a movie of their choice with the audio turned
off and the subtitles on, and to minimize their blinking and body movements during
the recordings.

We recorded CAEPs using the NeuroScan Inc. Evoked Potential System (version 4.5)
with a SynAmps 2 amplifier. Eight 10 mm gold electrodes were placed on Cz, Fz, F3, F4, A1,
and A2 locations, with a ground electrode on the forehead, and an eye blink electrode above
the right eye. The electrode on the right mastoid (A2) served as the reference electrode.
During offline processing, we linked the left and right mastoid electrodes, and re-referenced
Cz, Fz, F3, and F4. We kept electrode impedance at or below 5 kΩ and used a sampling
rate of 500 Hz and a bandpass filter setting of 0.1–100 Hz.

Data Processing

Post-acquisition, we performed further offline processing using the Edit software from
NeuroScan Inc. Continuous recording files were epoched from -100 ms pre-stimulus to
850 ms post-stimulus, followed by baseline correction. Any responses exceeding ±150 µV
were rejected as artifacts. A minimum of 20 blinks were required to estimate an average
blink. We filtered the data using a low-pass filter at 30 Hz (12 dB/octave slope, zero
phase shift). We generated separate average files for each participant for each of the
four emotions.

On average, approximately 20% of responses were rejected from the TD participants,
as a result of ocular and other noise artefacts. For the children with ASD, an average of
approximately 40% of responses were rejected.
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All grand average waveforms are plotted from −100 ms to 850 ms to encompass
pre-stimulus responses, the 200 ms stimulus length, and post-stimulus responses for the
duration of the 640 ms ISI, without overlapping with the subsequent stimulus.

Data Analysis

The complexities of using emotions tones as auditory stimuli contribute to the current
dearth of evidence in the mismatch response literature, and there is little consensus on
what a “typical mismatch waveform” looks like and what components are expected to
be observed. The heterogeneous nature of CAEPs recorded from clinical populations
like children with ASD adds to this, thus we took some additional steps to maximize
consistency in the analysis of individual waveforms and quantify latencies and magnitudes
of specific waveform components in a consistent manner.

Firstly, we averaged responses across individuals within each group of waveforms (TD,
Pre-intervention ASD, and Post-intervention ASD) to create grand averaged waveforms for
the standard (Neutral) and deviant (collapsed across Angry, Happy, and Sad) stimuli. We
then subtracted the standard waveform from the deviant waveform to create a difference
waveform for each participant group, which was then collapsed across electrode sites.

We conducted single-sample t-tests on these difference waveforms at each millisecond.
We highlighted contiguous time periods of more than 30 ms where the waveform deviated
at a significance level of p ≤ 0.001 from 0 µV. These contiguous time periods formed
“mismatch windows”.

We superimposed the mismatch windows back onto original CAEP recordings from
each electrode site for each individual participant. They were used as references for peak
latency and mismatch response (MMR) magnitude quantification. MMR magnitudes were
calculated by taking an absolute average of the amplitudes included within ±20 ms either
side of the peak latency for shorter windows (<100 ms), or by ±50 ms either side of an
approximate midpoint for the longer windows (>100 ms).

Only the selected windows were used to provide comparable data between groups.
Each individual participant had the following data for each relevant mismatch window,
for each electrode site:

• Peak latency for Combined-emotions-minus-Neutral difference waveform,
• Peak latency for Angry-minus-Neutral difference waveform,
• Peak latency for Happy-minus-Neutral difference waveform,
• Peak latency for Sad-minus-Neutral difference waveform,
• MMR magnitude for Combined-emotions-minus-Neutral difference waveform,
• MMR magnitude for Angry-minus-Neutral difference waveform,
• MMR magnitude for Happy-minus-Neutral difference waveform, and
• MMR magnitude for Sad-minus-Neutral difference waveform.

2.4.5. Statistical Analyses

The following statistical analyses (using IBM SPSS Statistics, v20.0) were conducted:

1. Related-samples analyses to determine whether behavioral results from the social
perception assessment differed from each other at the two baseline time points, and
at the two post-intervention time points.

2. Independent-samples analyses to compare behavioral social perception results be-
tween the TD and ASD groups (pre- and post-intervention vs. TD).

3. Related-samples analyses to explore the effects of the intervention on behavioral
social perception within the ASD group.

4. Repeated-measures analyses of variance (ANOVAs) were conducted on peak latencies
and MMR magnitudes within each mismatch window to explore differences between
each electrode site (Cz, Fz, F4, and F3).

5. Independent-samples analyses to compare peak latencies and MMR magnitudes
between the TD and ASD groups (pre- and post-intervention vs. TD), for Combined-
emotions difference waveforms.
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6. Related-samples analyses to explore the effects of the intervention on peak latencies
and MMR magnitudes between the ASD pre- and post-intervention waveforms, for
Combined-emotions difference waveforms.

7. Related-samples analyses to explore peak latencies and MMR magnitudes differences
between emotions within each group of waveforms (TD, ASD pre-, and ASD post-
intervention).

3. Results
3.1. Participant Characteristics

All participants passed the DPOAE screen, which indicated that they did not have
significant middle-ear pathology or damage to the outer hair cells in the cochlea that would
be associated with peripheral hearing loss. TD and ASD groups did not differ significantly
from each other, and both groups were within normal range [66].

Autism characteristics from the CARS-2 ratings showed that nine of the 12 children in
the ASD group obtained standardized T-scores in line with “minimal severity” (M = 33.44,
SD = 3.21), and three of the children scored in the mild–moderate ASD severity category
(M = 47.67, SD = 1.53). Results from the CARS-2 re-confirmed the diagnoses of all the
children in the ASD group.

Table 1 details mean DPOAE signal-to-noise ratios (SNR), from left and right ears sep-
arately, measured in decibels (dB) across frequencies 2–6 kHz; group mean, minimum, and
maximum T-scores from the CARS-2 (from ASD participants only); and group mean and
standard deviations of General Communication Composite (GCC) and Social Interaction
Deviance Composite (SIDC) scores from the CCC-2 (communication behaviors). Parental
reports from the ASD group highlighted significantly more communication difficulties
compared to the TD group, for both the GCC (t(24) = −4.24, p < 0.001), and the SIDC
(t(24) = −2.55, p = 0.017).

Table 1. DPOAE (dB), CARS-2, and CCC-2 results from TD and ASD participants.

Measure TD Group (n = 14) ASD Group (n = 12)

DPOAE SNRs (right
ear)

2 kHz 12.66 12.89
3 kHz 14.62 14.63
4 kHz 13.11 14.82
5 kHz 13.69 14.37
6 kHz 14.97 15.49

DPOAE SNRs (left
ear)

2 kHz 12.97 14.64
3 kHz 14.73 15.17
4 kHz 13.35 15.77
5 kHz 13.64 14.97
6 kHz 15.75 15.40

CARS-2
Mean - 37.00

Minimum - 29.00
Maximum - 49.00

CCC-2 (GCC)
Mean 66.36 38.42

SD 18.92 13.75

CCC-2 (SIDC)
Mean −1.86 −8.50

SD 5.61 7.62

3.2. Behavioral Social Perception

Behavioral results from the social perception assessment were all normally distributed,
according to the Shapiro–Wilk test, with the exception of the Affect Naming scores at
Session 3 and 4. Parametric paired-samples t-tests (and Wilcoxon signed ranks test for not
normally distributed variables) were used to compare Affect Naming and Social Perception
Prosody scores between Session 1 vs. 2, and Session 3 vs. 4. These scores (at baseline,
and post-intervention) were not significantly different. Hence, results from Sessions 1 and
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2 were averaged together to form a “pre-intervention” score; and Sessions 3 and 4 were
averaged together to form a “post-intervention” score.

For the Affect Naming score, independent-samples t-test results showed that the
TD group (M = 19.29, SD = 2.23) performed significantly better (t(24) = −4.33, p < 0.001)
than the ASD group pre-intervention (M = 15.37, SD = 2.37). Paired-samples t-test results
showed that the ASD group improved their scores significantly after participating in the
3 week intervention period (M = 21.33, SD = 0.94) (t(11) = −9.71, p < 0.001). Cohen’s d
for repeated measures yielded an effect size of 2.96 for the pre- vs. post-intervention
comparison. Independent-samples t-test results showed that the ASD group surpassed the
TD group on Affect Naming performance post-intervention (t(17.99) = −3.12, p = 0.006).

For the Social Perception Prosody score, independent-samples t-test results showed
that the TD group (M = 18.79, SD = 2.29) performed significantly better (t(24) = −4.75,
p < 0.001) than the ASD group pre-intervention (M = 13.75, SD = 3.10). Paired-samples t-test
results showed that the ASD group improved their scores significantly after participating
in the 3 week intervention period (M = 19.42, SD = 1.16) (t(11) = −7.36, p < 0.001). Cohen’s
d for repeated measures yielded an effect size of 2.05 for the pre- vs. post-intervention
comparison. Independent-samples t-test results showed that the ASD group did not
significantly differ from the TD group on Social Perception Prosody performance post-
intervention (t(24) = −0.86, p = 0.398). Figure 2 illustrates these results.
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3.3. Cortical Auditory Evoked Potentials

Figure 3 shows the Combined-emotions difference waveforms derived for each group
of waveforms (TD, ASD pre-intervention, and ASD post-intervention). As detailed in the
Methods, single-sample t-tests were conducted on these difference waveforms at each
millisecond. Contiguous time periods where the waveform deviated from 0 µV at a
significance level of p ≤ 0.001 formed the “mismatch windows” illustrated in Figure 4.
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Mismatch windows consisted of both positive and negative deviances, and ranged
from 30 ms windows to longer periods, which were considered as late discriminative
negativities (LDN). LDN components are thought to reflect the processing of more complex
auditory stimuli, especially with regard to language and speech processing [67–69]. Long
deviance periods were clearly identified in both groups of children in this study.

The shaded mismatch windows in Figure 4 represent the selected ones where peak
latency and MMR magnitude data were computed. The first negative window (“MMN”)
has data for all three groups (TD, ASD pre-intervention, and ASD post-intervention).
The following positive window (“MMP”) has data for TD and ASD post-intervention
comparisons. Data for the last negative window “LDN” can be compared across all three
groups of waveforms.

Repeated-measures ANOVAs were conducted within each mismatch window to
explore differences between electrode sites (Cz, Fz, F4, and F3). For the ASD group (pre-
and post-intervention), there were no significant differences between electrode sites. For
the TD group, there was a significant main effect of electrode for MMR magnitudes at two
mismatch windows and peak latencies at one mismatch window. However, Bonferroni
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corrected post hoc comparisons revealed no significant differences between electrodes.
Thus, peak latency and MMR magnitude data were averaged across electrode sites.

Table 2 details the results from the between-group (independent-samples t-tests) anal-
yses comparing peak latencies and MMR magnitudes for Combined-emotions difference
waveforms. Table 2 also details pre vs. post analyses (paired-samples t-tests) to explore the
effect of the intervention on CAEPs for the children with ASD.

Table 2. Comparative analyses of peak latency and MMR magnitude data between three participant groups (TD, ASD
pre-intervention, and ASD post-intervention) for combined emotions difference waveforms. * denotes group differences at
a significance level of p ≤ 0.05.

Difference Waveform Measure Group 1 (M, SD) Group 2 (M, SD) Statistical Results

Combined
Emotions—Neutral

Peak latency at MMN
TD (179.32, 10.11) ASD Pre (259.10, 18.59) t(12.81) = 12.33, p < 0.001 *
TD (179.32, 10.11) ASD Post (196.03, 9.01) t(22) = −4.17, p < 0.001 *

ASD Pre (259.10, 18.59) ASD Post (196.03, 9.01) t(9) = 8.42, p < 0.001 *

Magnitude at MMN
TD (3.06, 1.60) ASD Pre (5.05, 3.19) t(12.27) = 1.81, p = 0.094
TD (3.06, 1.60) ASD Post (4.71, 2.96) t(22) = −1.77, p = 0.091

ASD Pre (5.05, 3.19) ASD Post (4.71, 2.96) t(9) = 0.34, p = 0.746

Peak latency at MMP TD (356.27, 45.85) ASD Post (361.85, 11.43) t(15.20) = −0.44, p = 0.668

Magnitude at MMP TD (4.46, 2.88) ASD Post (5.27, 3.31) t(22) = −0.64, p = 0.532

Peak latency at LDN
TD (618.20, 16.00) ASD Pre (722.00, 38.76) t(11.21) = 8.00, p < 0.001 *
TD (618.20, 16.00) ASD Post (633.70, 24.10) t(22) = −1.90, p = 0.071

ASD Pre (722.00, 38.76) ASD Post (633.70, 24.10) t(9) = 9.09, p < 0.001 *

Magnitude at LDN
TD (5.32, 2.03) ASD Pre (3.82, 2.89) t(22) = −1.50, p = 0.149
TD (5.32, 2.03) ASD Post (4.28, 3.64) t(22) = 0.90, p = 0.378

ASD Pre (3.82, 2.89) ASD Post (4.28, 3.64) t(9) = −0.52, p = 0.615

Figures 3 and 4 show that at the first negative window—the MMN—the TD group
demonstrated faster responses compared to the ASD group, when comparisons are con-
ducted for both pre- and post-intervention waveforms. There were no significant differ-
ences in MMN amplitudes between groups. However, MMN latencies were significantly
faster post-intervention for the children with ASD. At the positive window—the MMP—
no statistically significant differences were found between responses from the TD group
compared to the positive spike observed in the ASD waveform post-intervention. Finally,
at the last negative window—the LDN—there were also no significant differences in the
magnitude of responses.

Thus, the main group effect was for CAEP latencies; the ASD group pre-intervention
showed significantly slower responses compared to the TD group. The significant increase
in response speed post-intervention narrowed the gap, resulting in no significant latency
differences between the TD and ASD groups after the ASD group received combined
RMHS and computerized social perception training.

When the difference waveforms are examined for separate emotions, data were incon-
sistently normally distributed for both peak latency and MMR magnitude variables and
hence non-parametric tests were used.

Figure 5 illustrates separate emotion difference waveforms for (a) the TD group, (b) the
ASD group pre-intervention, and (c) the ASD group post-intervention. The shaded regions
depict the MMN, MMP, and LDN windows where peak latency and MMR magnitude data
were extracted and included in the related-samples analyses. Friedman tests revealed no
significant latency differences between emotions for any group. Table 3 details Friedman
analysis results for MMR magnitudes. For the TD group, there was a significant magnitude
difference between emotions at the MMN window (X2

(2) = 7.02, p = 0.030). For the ASD
group pre-intervention, there were no magnitude differences between emotions for any
mismatch window. For the ASD group post-intervention, there were significant magnitude
differences between emotions at the MMP (X2

(2) = 16.20, p < 0.001) and LDN (X2
(2) = 17.59,

p < 0.001) windows.
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Table 3. Friedman analyses results (magnitude only) for all participant groups (TD, ASD pre-intervention, and ASD
post-intervention) at each mismatch window. Additional information including median values, interquartile ranges, and
individual Wilcoxon signed-ranks pair-wise comparison results are reported for significant main effects. * denotes emotion
differences at a significance level of p ≤ 0.05.

Participant Group Region Friedman Results Emotion 1 (Mdn,
IQR)

Emotion 2 (Mdn,
IQR) Wilcoxon Results

TD

MMN X2
(2) = 7.02, p = 0.030 *

Angry (2.50, 3.49) Happy (2.89, 2.99) Z = −0.52, p = 0.600
Angry (2.50, 3.49) Sad (5.00, 3.19) Z = −2.67, p = 0.008 *
Happy (2.89, 2.99) Sad (5.00, 3.19) Z = −2.73, p = 0.006 *

MMP X2
(2) = 1.71, p = 0.424 - - -

LDN X2
(2) = 0.11, p = 0.947 - - -

ASD Pre
MMN X2

(2) = 1.40, p = 0.497 - - -

LDN X2
(2) = 5.00, p = 0.082 - - -

ASD Post

MMN X2
(2) = 7.40, p = 0.025 *

Angry (7.21, 7.06) Happy (4.14, 3.22) Z = −2.50, p = 0.013 *
Angry (7.21, 7.06) Sad (8.06, 4.12) Z = −0.15, p = 0.878
Happy (4.14, 3.22) Sad (8.06, 4.12) Z = −2.09, p = 0.037 *

MMP X2
(2) = 16.20, p < 0.001 *

Angry (4.13, 2.32) Happy (11.03, 4.31) Z = −2.80, p = 0.005 *
Angry (4.13, 2.32) Sad (7.73, 2.96) Z = −2.50, p = 0.013 *

Happy (11.03, 4.31) Sad (7.73, 2.96) Z = −2.40, p = 0.017 *

LDN X2
(2) = 17.59, p < 0.001 *

Angry (9.44, 6.39) Happy (4.74, 3.41) Z = −2.67, p = 0.008 *
Angry (9.44, 6.39) Sad (3.96, 2.99) Z = −2.80, p = 0.005 *
Happy (4.74, 3.41) Sad (3.96, 2.99) Z = −2.09, p = 0.037 *

4. Discussion

This study investigated how the perception of affective prosody (i.e., emotion) differs
between children with ASD and their TD peers. It was hypothesized that difficulties
with perceiving and understanding subtle nuances in speech may stem from underlying
auditory processing challenges, thus a second aim of this study was to evaluate the effects
of an auditory-based intervention with children with ASD. Affective prosodic perception
was investigated via a behavioral social perception task and cortical auditory evoked
response recordings.

4.1. Behavioral Results and Implications

Overall behavioral results showed that TD and ASD children (pre-intervention) did
exhibit differences in their abilities to identify facial expressions (Affect Naming score), as
well as matching facial to vocal emotions (Social Perception Prosody score). Future work
could expand the collection of normative data from TD children so that raw scores from
the ACS Social Perception [62] test can be standardized for ages younger than 16 years, the
current cut off point for available standardized data. All participants were able to complete
the ACS tasks successfully, indicating the suitability of the tool for younger ages.

Significant improvement in social perception abilities was seen in the children with
ASD after receiving computer-based training accompanied by amplified hearing via RMHS
during the 3 week intervention period. Abilities improved to the extent that the children
with ASD surpassed the TD group (who received no intervention) on Affect Naming and
matched the performance of their TD peers on Social Perception Prosody scores. The TD
group were not tested twice to determine whether their scores would be stable over time,
however, the test–retest reliability of these measures has been previously reported [63].

A number of studies report similarly successful computer-based training for emotion
recognition [70–73] and attention to prosodic cues [74,75] in individuals with ASD. A recent
review [76] revealed that the largest training-related improvements for individuals with
ASD result from specifically targeting, for example, speech prosody, and interventions
using evidence-based practices and spanning across more than one treatment session. A
clear future progression from many of the existing studies is the integration of auditory
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with visual stimuli, as was done in this study, to improve social understanding and making
the learnt skills more generalizable to the real world [45,77–79].

Studies that have investigated computer-based training alongside use of hearing
amplification technology (RMHS) have largely focused on evaluating auditory processing
specific outcomes measures, self-perceived hearing difficulties, and classroom listening
behaviors [53,56]. The use of RMHSs in conjunction with prosodic-specific training has
received little attention in the literature to date, and to our knowledge the effects on emotion
recognition and social perception have not been reported previously.

4.2. Electrophysiological Results and Implications

This study demonstrated that the natural speech stimuli spoken with four different
emotions, presented in an oddball paradigm, evoked measurable obligatory CAEP com-
ponents and significant mismatch responses from children with and without ASD. Most
previous auditory change-detection studies in the literature involve non-speech sounds and
simple speech stimuli, which reliably elicit prominent mismatch negativities in children
between 150 and 250 ms [80–82].

The presence of positive MMRs elicited by the TD children in this study is supported
by other studies looking at the manipulation of speech-related factors [83,84]. Due to the
complex nature of stimuli used in this study compared to earlier studies it was difficult
to predict where mismatch would occur and hence the statistical identification of mis-
match windows (Figures 3 and 4) was useful for documenting the responses in TD and
ASD children.

TD children displayed a more complex mismatch response compared to the responses
of ASD children pre-intervention who, in contrast, displayed a simpler pattern that con-
sisted of two large mismatch negativities (Figures 3 and 4). The first negativity is consistent
with the pattern reported in the literature for TD children for non-speech stimuli [80]. It is
possible that the children with ASD processed the stimuli as simple sounds, as their mis-
match response did not reflect the spectral and temporal complexity of the speech stimuli.
Post intervention, the difference waveforms of the ASD children still showed mismatch
negativity, but with significant reduction in latency, i.e., a more rapid neural response
to affective prosodic changes (Table 2). This suggests that the combined intervention of
computer-based training and a clearer speech signal received through the RMHSs was
associated with improved auditory processing.

A large mismatch positivity, as observed in the TD group and the ASD group post-
intervention, could be attributed to increased sensitivity towards changes in prosody.
Consistent with this, other training studies involving TD children and different CAEP
paradigms have also found evidence for improved post-training evoked responses in
this latency region. For example, studies with normal hearing, neurotypical children
have reported significantly enhanced P2 amplitudes after auditory discrimination training
targeting different voice onset times [85,86], phoneme changes [87], and pitch [88]. A
mismatch positivity was not present in the ASD group pre-intervention in the current
study, but this emerged post-intervention, consistent with reports that the auditory evoked
P2 is a potential biomarker of learning and plasticity [89].

In terms of individual emotion differentiation, TD children produced a significantly
larger first mismatch negativity in response to the Sad emotion, whereas Angry and Happy
response did not differ (Table 3). These findings suggest that emotion differentiation may
primarily be pitch driven, as anger and happiness are characterized by increased mean
pitch, pitch range, and vocal intensity, whereas these acoustic parameters are usually
reduced for sadness, coupled with a slower rate of speech and longer inter-articulation
silences [90,91]. Future work in this area would benefit from more sophisticated analyses
of natural speech stimuli, which would better inform future studies regarding which
parameters to manipulate. Delving deeper into whether emotion is primarily modulated
by changes in pitch contours and temporal resolution, and its correlation with valence and
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arousal strength [92], may deepen our understanding of the emotion perception difficulties
of individuals with ASD and other neurological conditions.

Children with ASD did not show any differences between emotions in their MMRs
pre-intervention (Table 3). The grand average waveforms suggest that Sad is separable
from Angry and Happy waveforms, but there are large variations between individuals and
the sample size is small, which may account for the lack of significant difference. These
results are consistent, however, with earlier behavioral [93] and neurophysiological [36,38]
studies that show impaired emotion discrimination in children with ASD.

Post-intervention, the MMRs of the ASD group looked substantially different. As
highlighted in Table 3, the children now show responses that differ between the three
different emotions. These differences could have been driven by perceptual differences in
vocal pitch and intensity between the three emotional stimuli. Another possibility is that
this change does not reflect altered auditory processing at all. For example, it could be the
result of pitch- and intensity-related heightened anxiety in individuals with ASD resulting
in an altered attentional effect on the mismatch response. Studies of visual attention
and facial discrimination report a dominant reaction towards threatening environmental
stimuli [94]. Although changes in anxiety or other factors could have contributed to MMR
changes over time, behavioral scores were stable prior to and after training, suggesting
that MMR differences were more likely to reflect training effects.

Emotion differentiation occurred in the earliest MMN for TD children, suggesting
pre-attentive neural activity that does not engage later-occurring higher cognitive pro-
cesses. This was not the case for children with ASD. Significant emotion differentiation
was evident at the MMN, the MMP, and the LDN time windows (i.e., throughout the
mismatch waveform) post-intervention, which suggests both pre-attentive and conscious
appraisal of emotional differences. Thus, the intervention may have enabled the children
with ASD to differentiate the emotions, but did not ultimately ‘normalize’ underlying
auditory processing.

4.3. Limitations and Future Directions

The effects of the intervention on the behavioral and CAEP data should be interpreted
with caution, as one of the major limitations of this study remains that there were no
alternative ASD groups who received different versions of the intervention, nor was
there a control group of children with ASD that received no intervention. The method
of administering the behavioral test of social perception four times (twice pre- and twice
post-intervention), and the resulting lack of statistical differences between Sessions 1 vs.
2, and Sessions 3 vs. 4, strongly suggests that the changes in behavioral performance are
attributable to the intervention and not to test–retest effects. However, the same cannot be
said for changes in the CAEPs and should be addressed in future extensions of this work.

Data from the TD group had a number of limitations, due to the need to a) administer
a full range of assessment measures (both behavioral and electrophysiological) within a
tight time frame, b) minimize participant fatigue, and c) minimize the imposition on TD
volunteers. These limitations included not evaluating the TD children with the CARS-2
to rule out autism symptoms, only testing them at one time point, and not providing the
TD children with an intervention. Future studies with sufficient time and funding could
improve on this by conducting a randomized controlled trial of various interventions with
ASD and TD groups.

Hyper or hyposensitivity to sound was not specifically measured in either ASD or
TD groups. This is a potential confounding variable, as demonstrated in other studies
investigating the neural processing of auditory information [95]. All ASD and TD children
tolerated the hearing screening using DPOAEs well, which involved presentation of tones at
55–65 dB SPL across a range of frequencies from 2 to 6 kHz. We cannot, however, comment
on whether the children had atypical sound sensitivity or loudness perception. Future
studies in this area could benefit from including a subjective measure of sound sensitivity
(e.g., the Sensory Experiences Questionnaire [96], or measurements of loudness perception
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for the CAEP-evoking stimuli to determine whether these measures correlate with the
mismatch response. There are also limitations to using DPOAEs as a measure of hearing, as
it is most reliable for identifying the presence of moderate to severe hearing loss and does
not offer a continuous measure of hearing thresholds [97]. Children with autism are at risk
for peripheral hearing loss [98] as well as auditory processing difficulties [20], however with
this clinical population, it is important to reduce the complexity of task demands to ensure
that the quality of the data is upheld. Although desirable, use of the gold-standard method
of pure tone audiometric testing may not be feasible for all children with autism and hence,
in the current study, we relied on parent report and objective DPOAE measurement to
screen for moderate or greater hearing loss. In future studies, it would be of interest to
investigate the associations between sound sensitivity, hearing thresholds, and the neural
processing of auditory information and vocal affect recognition [95,99]. This research could
advance our understanding of electrophysiological biomarkers of autism, or quantifiable
measurements of neural benefit from auditory-based interventions.

5. Conclusions

This study was motivated by evidence that individuals with ASD experience sig-
nificant auditory processing difficulties [19,20,26]. It was hypothesized that this affects
discrimination of prosodic cues such as stress, pitch, and emotion, which hinders under-
standing of affective speech [4,8,99]. Consistent with this, children with ASD had poorer
social perception scores than TD children.

An intervention consisting of a combination of computer-based social perception train-
ing exercises, and a 3 week trial using RMHSs to provide an amplified hearing experience
was administered to a group of children with ASD. Behavioral performance on measures
of social perception significantly improved post-intervention. Electrophysiological results
showed altered neural activity in response to changes in vocal emotion post-intervention
in the ASD group. Improved performance and mismatch responses suggest that auditory
training may improve the perception of affective cues in speech and that this may enhance
social communication.

This study reports promising pilot data, but further work is required involving a
larger sample size and a longitudinal study design. Control or sham conditions are also
required to better understand the connection between underlying auditory processing
difficulties, perceptual discrimination and neural processing of affective speech, and social
perception and communication for individuals with ASD.
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