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Abstract: Steroid hormones are essential biomolecules for human physiology as they modulate
the endocrine system, nervous function and behaviour. Recent studies have shown that the gut
microbiota is directly involved in the production and metabolism of steroid hormones in the periphery.
However, the influence of the gut microbiota on levels of steroids acting and present in the brain
(i.e., neuroactive steroids) is not fully understood. Therefore, using liquid chromatography–tandem
mass spectrometry, we assessed the levels of several neuroactive steroids in various brain areas and
the plasma of germ-free (GF) male mice and conventionally colonized controls. The data obtained
indicate an increase in allopregnanolone levels associated with a decrease in those of 5α-androstane-
3α, 17β-diol (3α-diol) in the plasma of GF mice. Moreover, an increase of dihydroprogesterone and
isoallopregnanolone in the hippocampus, cerebellum, and cerebral cortex was also reported. Changes
in dihydrotestosterone and 3α-diol levels were also observed in the hippocampus of GF mice. In
addition, an increase in dehydroepiandrosterone was associated with a decrease in testosterone
levels in the hypothalamus of GF mice. Our findings suggest that the absence of microbes affects the
neuroactive steroids in the periphery and the brain, supporting the evidence of a microbiota-mediated
modulation of neuroendocrine pathways involved in preserving host brain functioning.

Keywords: liquid chromatography–tandem mass spectrometry; hippocampus; cerebellum; cerebral
cortex; hypothalamus; plasma; androgens; allopregnanolone

1. Introduction

Information relating to the chemical composition of ingested food, the dynamic equilib-
rium of the microbial ecosystem and the physiological state of the gastrointestinal (GI) tract
reaches the brain through the so-called microbiome–gut–brain axis (MGBA). This is a com-
plex bi-directional set of neuronal, immune, endocrine signaling pathways and molecules
allowing communication between the gastrointestinal tract and the central nervous system
(CNS) [1]. The gut microbiota is a key orchestrator of gut–brain axis communication, as
besides maintaining the intestinal epithelial barrier integrity and providing information
to the immune system, gut microbes are able to produce a number of neurotransmitters
as well as microbial-derived neuroactive products such as short-chain fatty acids, and to
directly signal the peripheral and central nervous systems, and potentially modulate their
function [2,3]. In the brain, physiological processes such as the stress response, blood circu-
lation, and digestion as well as tissue functioning, cell proliferation, and organ maturation
are finely tuned by the combined action of the nervous and the endocrine systems, which
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utilize neurotransmitters and steroid hormones to exchange information among the differ-
ent brain regions and with the peripheral organs [4]. Recent studies have shown that the
gut microbiota is capable of influencing the production of glucocorticoid hormones from
adrenal glands [1,4,5]. Additionally, a role of sex steroids synthesized from the gonads (i.e.,
androgens, estrogens and progesterone) has also been ascertained. Indeed, sex differences
have been reported in the composition of the gut microbiota, with specific phyla, families
and genera variances occurring with clear effects of gonadectomy and steroid hormone
replacement on gut bacteria in rodents [6–15]. Furthermore, behaviour usually linked to
estrous cycle stage such as visceral pain is not evident in germ-free (GF) mice [13], hence
an appropriate microbiota colonization is necessary for appropriate functioning of the
endocrine and nervous systems. This interaction of steroid hormones and the microbiome
is also evident in human studies where sex differences have been noted in gut microbiota
composition and diversity [14–16]. The gut microbiota itself also influences sex steroid
levels both in rodents and humans [17–20]. Both human and animal studies highlight
the reciprocal connections between sex steroid hormones (i.e., steroids synthesized by
peripheral glands) and gut microbiota [6–11]. Interestingly, sex steroids are not only synthe-
sized by gonadal glands but also within the nervous system (i.e., neurosteroids). Indeed,
precursors of these steroids, such as pregnenolone (PREG) and dehydroepiandrosterone
(DHEA), as well as the sex steroids themselves, such as progesterone (PROG), testosterone
(T) and their metabolites, dihydroprogesterone (DHP), allopregnanolone (ALLO), isoal-
lopregnanolone (ISOALLO) and dihydrotestosterone (DHT), 5α-androstane-3α, 17β-diol
(3α-diol) and 17beta-estradiol (17β-E) have been identified in different brain regions [21,22].
Both steroid hormones and neurosteroids, which are both found in the nervous system, are
collectively referred to as neuroactive steroids and are important physiological regulators
of nervous system functioning [23]. In particular, DHP controls reproductive functions,
as well as glutamatergic and GABAergic neurotransmission [24], whereas isoallopreg-
nanolone influences the lipid bilayer model system containing cholesterol [25,26]. In the
brain, androgen molecules have been shown to regulate dendritic spine maturation [27,28],
behaviour [29,30], neurite growth [31], neurogenesis and neuronal survival [32], apopto-
sis [33] and catecholamine production [34]. To date, only one study, performed in male
animals, has focused on the possible influence of the gut microbiota on neuroactive steroid
levels. Indeed, as recently observed, specific pathogen-free (SPF) male mice displayed
differential levels of neuroactive steroids in specific brain areas [35]. Nevertheless, GF ani-
mals, which are born and raised without any microorganisms, represent an invaluable tool
for understanding the role of microbiota in modulating brain development and behaviour
via the gut–brain axis [1,36–38]. Therefore, the current study investigates, for the first time,
the impact of a complete lack of microbiome on the concentration of neuroactive steroids
in both the periphery and the central nervous system of GF male mice [36], setting the
base for understanding the biomolecular mechanisms behind the microbial-dependent
modulation of the neuroendocrine system, with important implications for brain function
and behavioral phenotypes.

2. Results

The levels of different neuroactive steroids were assessed in the plasma and different
brain regions of male GF mice and compared with those observed in conventionally
colonized (CV) mice. Quantitative analysis of all steroids was achieved based on calibration
curves; each steroid concentration was calculated as pg/sample. Total pg/sample values
were normalized by tissue weight (i.e., µL for plasma and mg for hippocampus, cerebellum,
cerebral cortex and hypothalamus).

2.1. Assessment of Neuroactive Steroid Levels in Plasma

LC–MS/MS analysis showed a significant increase in ALLO concentrations (p = 0.043),
associated with a decrease in the levels of 3α-diol (p = 0.028) in the plasma of GF in
comparison to CV mice (Figure 1). No significant changes in the other neuroactive steroids
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assessed (i.e., PREG, PROG, DHP, ISOALLO, DHEA, T, DHT and 17β-E) were observed,
even if a tendency to towards a decrease that did not reach the statistical significance was
reported in the case of T in GF male mice.
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Figure 1. Levels of neuroactive steroids in the plasma of germ-free (GF) and conventional (CV) male mice. Data are
expressed as pg/µL ± SD, n = 8 for each group. Unpaired Student’s t-test analysis: * p < 0.05 vs. CV mice.

2.2. Assessment of Neuroactive Steroid Levels in Brain Areas
2.2.1. Hippocampus

In the hippocampus, LC–MS/MS analysis evidenced a significant increase of DHP
(p = 0.007), ISOALLO (p = 0.003), and 3α-diol (p = 0.033) levels in GF compared to CV mice
(Figure 2). In the same brain region, DHT concentrations were found to be significantly
reduced (p = 0.049) in GF compared to CV mice (Figure 2). Similar to what was noted
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in the plasma of GF animals, the levels of PREG, PROG, DHEA, T and 17β-E present in
the hippocampus of GF animals were not significantly different vs. those reported in CV
animals (Figure 2). Some tendencies towards a decrease (i.e., DHEA and T) and towards
an increase (i.e., ALLO) that did not reach statistical significance were reported in GF male
mice (Figure 2).
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Figure 2. Levels of neuroactive steroids in the hippocampus of germ-free (GF) and conventional (CV) male mice. Data are
expressed as pg/mg ± SD, n = 8 for each group. Unpaired student’s t-test analysis: * p < 0.05 ** p < 0.01 vs. CV mice.
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2.2.2. Cerebellum and Cerebral Cortex

The LC–MS/MS analysis of neuroactive steroids showed an increase of DHP and
ISOALLO levels in the cerebellum (p = 0.028; p = 0.0003, respectively; Figure 3) and
cerebral cortex (p = 0.010; p < 0.0001, respectively; Figure 4) of GF compared with CV mice.
However, in these two brain areas, the concentrations of the other neuroactive steroids
were comparable between the GF and CV mice. Even if a tendency towards an increase
was reported in the cerebral cortex of GF male mice for 17β-E and 3α-diol, this did not
reach statistical significance.
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Figure 3. Levels of neuroactive steroids in the cerebellum of germ-free (GF) and conventional (CV) male mice. Data are
expressed as pg/mg ± SD, n = 8 for each group. Unpaired student’s t-test analysis: * p < 0.05 *** p < 0.001 vs. CV mice.
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Figure 4. Levels of neuroactive steroids in the cerebral cortex of germ-free (GF) and conventional (CV) male mice. Data are
expressed as pg/mg ± SD, n = 8 for each group. Unpaired student’s t-test analysis: ** p < 0.01 *** p < 0.001 vs. CV mice.

2.2.3. Hypothalamus

As showed in Figure 5, in the hypothalamus of GF animals, the LC–MS/MS analysis
revealed a significant increase in DHEA concentration (p = 0.027), whereas the levels of T
were found to be significantly reduced (p = 0.040). The concentrations of the other neuroac-
tive steroids assessed were similar in both the GF and CV mice (Figure 5). In the cases of
PREG and ALLO, a tendency towards an increase was reported in the hypothalamus of GF
male mice that, however, did not reach statistical significance.
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Figure 5. Levels of neuroactive steroids in the hypothalamus of germ-free (GF) and conventional (CV) male mice. Data are
expressed as pg/mg ± SD, n = 8 for each group. Unpaired student’s t-test analysis: * p < 0.05 vs. CV mice.

3. Discussion

The complexity of the bidirectional communication between the gut microbiota, the
GI system, and the brain mediated by the multiple signaling pathways and mechanisms of
the gut–brain axis is beginning to be elucidated. One of the key pathways in this system
is represented by the host–microbe interactions. The possibility of having animals raised
without any microorganisms facilitates the investigation of the physiological units and
biochemical processes by which such microbes finely tune the development and function
of the GI tract and the brain. This study shows for the first time that in the absence of
the microbiome, as in GF mice, the concentration of several neuroactive steroids both in
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plasma and in the brain is altered compared with that of conventionally colonized mice.
Our findings highlight a critical role of the microbiome in modulating these important
physiological regulators of the nervous system, supporting the existence of a microbial-
neuroendocrine signature in preserving brain integrity and function.

Interestingly, two main aspects emerged from these observations. Firstly, the gut
microbiota influenced both plasma and CNS levels of neuroactive steroids, but these two
compartments appeared to be differentially influenced, as the alterations noted in the
plasma differed from those occurring in the brain. Thus, this finding suggests a divergent
impact of the gut microbiota on peripheral steroidogenesis and neurosteroidogenesis. This
is in line with observations reported in several physiopathological experimental models
indicating the divergence of these two pools of steroids [21,39,40].

Secondly, in certain brain regions of GF animals, namely the hippocampus, cerebellum
and cerebral cortex, the levels of the same neuroactive steroids were similarly altered.
Indeed, in these three brain regions an increase in DHP and its metabolite, ISOALLO, was
noted. This finding suggests that these two neuroactive steroids may represent a common
signal for several brain areas in the MGBA.

On the other hand, depending on the brain areas considered, specific changes in
neuroactive steroids also occurred. Indeed, in the hippocampus of GF mice a decrease
in DHT and an increase in 3α-diol levels were observed, while in the hypothalamus, we
reported an increase in DHEA and a decrease in T. Thus, there is not only a common pattern
of changes (i.e., altered DHP and ISOALLO levels), but also specific changes of neuroactive
steroid levels depending on the brain regions considered. DHEA and T levels have been
reported to be altered in the hypothalamus of SPF animals as well; however, in this case an
opposite pattern was observed [35]. Indeed, in SPF animals, a decrease in DHEA and an
increase in T was reported [35], suggesting that different microbiota populations evoked
different effects on the levels of these neuroactive steroids. In this context, it is important
to highlight that in the hypothalamus of SPF male animals, DHEA levels were positively
correlated with Calditrichaeota phylum [35].

All these neuroactive steroids exert a variety of physiological effects on the nervous
system [39,40]. In this context, it is important to highlight that neuroactive steroids in-
teract with different receptors. Indeed, while DHP—like its precursor PROG—is able to
bind with the PROG receptor, ISOALLO—much like ALLO (i.e., another metabolite of
PROG)—interacts with the GABA-A receptor. However, ISOALLO, in contrast to ALLO—
which is a potent ligand of the GABA-A receptor [41,42]—does not bind directly to this
neurotransmitter receptor [43], but instead antagonizes the effect of ALLO on the GABA-A
receptor [44,45]. In addition, T and DHT, even if with different affinities, bind to the
androgen receptor (AR), while their metabolite 3α-diol interacts with the GABA-A receptor.
The mechanism of action of DHEA in the nervous system has not yet been fully character-
ized. Observations so far obtained show modulatory effects of this neuroactive steroid on
membrane receptors, such as GABA-A, NMDA and sigma 1 receptors [46–49], while others
suggest interactions with AR and its upregulation [50–53]. In this context, it is interesting to
note that gut microbiota disturbances alter the expression of GABA-A [54,55] and NMDA
receptors [56] in the rodent brain.

A further interesting link in the context of the gut microbiota–brain axis may be
provided by the finding that chronic treatment with finasteride (i.e., an inhibitor of steroido-
genic enzyme 5alpha-reductase that converts PROG and T into their metabolites) induced
changes in the gut microbiota populations of male rats (i.e., an increase in Bacteroidetes
phylum and in the Prevotellaceae family) [57] and in post-finasteride patients [58]. In ad-
dition, similarly to what we have reported in the cerebellum of GF animals, an increase
in DHP and ISOALLO also occurred in the cerebellum of finasteride-treated rats [59]. A
possible hypothesis for this increase in the cerebellum of GF animals could be an increase
in the gene expression of the enzyme 5alpha-reductase, as we previously reported in
finasteride-treated rats [59].
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Altogether, these observations show for the first time that also neuroactive steroids
in brain areas, like steroid hormones in the periphery [17–20], are affected by the gut
microbiota population. Therefore, these findings may suggest that important physiological
regulators of nervous function, such as neuroactive steroids, represent another molecular
signal in the context of the MGBA and potential markers of MGBA-dependent psychiatric
disorders. Future experiments will be needed to consolidate this important link and to
evaluate the biomolecular mechanisms involved.

4. Materials and Methods
4.1. Animals

C57/Bl6 mice were purchased from Taconic (Hudson, NY, USA), and were bred as
GF or conventionally raised in the animal facility of the Bioscience building, University
College Cork, Cork Ireland. Breeding was performed according to supplier guidelines,
and we used male offspring from F1-generation. GF male mice were housed 4 per cage
in individually ventilated cages (area: 420 cm2. Arrowmight, UK), sex- and age-matched
conventional mice were housed 4 mice/cage but in standard cages (area: 330 cm2. NKP
isotech, UK). GF and conventional mice were kept at the same temperature (21 ± 1 ◦C) and
humidity (55–60%) conditions on a 12 h light/dark cycle and maintained on an ad libitum
autoclaved water and autoclaved diet (pellet, Special Diet Services, Product code 801010).

4.2. Tissue Collection

Male GF (12 ±1 weeks old; n = 8) and age- and sex- matched conventional mice (n = 8)
were culled by decapitation and trunk blood was immediately collected in a K2 EDTA
lavender-top vacutainer (BD Life Sciences). Blood was centrifuged at 3500× g for 15 min at
4 ◦C, and plasma was collected in pre-weighed 1.5 Eppendorf tubes and stored at −80 ◦C
until analysis. Brains were immediately collected and placed in petri dished containing
wet ice. For each brain, regions such as the hypothalamus, hippocampus, cerebellum, or
cerebral cortex were manually dissected and placed in pre-weighed 1.5 Eppendorf tubes.
Brain regions were snap frozen at −80 ◦C and kept in these conditions until analysis.

4.3. Reagents and Chemicals

Pregnenolone (PREG), pregnenolone-20,21-13C2-16,16 D2 (13C2 D2–PREG), proges-
terone (PROG), progesterone-2,3,4,20,25-13C5 (13C5–PROG), 17β-Estradiol (17β-E), 17β-
Estradiol-2,3,4-13C3 (13C3-17β-E) dihydroprogesterone (DHP), allopregnanolone (ALLO),
isoallopregnanolone (ISOALLO), testosterone (T), dihydrotestosterone (DHT), 5α-androstane-
3α,17β-diol (3α-diol) and dehydroepiandrosterone (DHEA) were purchased from Merck
Life Science, Italy. Acetonitrile, acetic acid, formic acid, methanol, 2-propanol and water
were HPLC grade (Merck Life Science, Milano, Italy).

4.4. Liquid Chromatography–Tandem Mass Spectrometry Analysis

For the quantitative analysis of neuroactive steroids, brain tissues and plasma samples
were extracted and purified as previously described [21,60–62]. 13C3-17β-E (2 ng/sample),
13C5–PROG (0.4 ng/sample) and 13C2 D2–PREG (10 ng/sample) were used as internal
standards. For quantitative analysis of steroids, cerebral cortex, hypothalamus, hippocam-
pus, cerebellum and plasma were collected, and internal standards were added. Tissue
samples were homogenized using a Tissue Lyser (Qiagen, Italy), in ice-cold MeOH/acetic
acid 1%. All tissues and plasma were purified by organic phase extraction, as previously
described [21,60–62]. The analysis was conducted by liquid chromatography (LC) using an
LC Pump Plus and Surveyor Autosampler Plus (Thermo Fisher Scientific, San Jose, CA,
USA) with a linear ion trap-mass spectrometer (LTQ, Thermo Fisher Scientific, San Jose, CA,
USA) operating in positive atmospheric pressure chemical ionization (APCI+). The chro-
matographic separation was achieved with a Hypersil Gold column C18 (100 × 2.1 mm,
3 µm; ThermoFisher Scientific) maintained at 40 ◦C. The mobile phases consisted of 0.1%
formic acid in water (mobile phase A) and 0,1% formic acid in methanol (mobile phase B).
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The gradient elution was as follows: 0–1.50 min 70% A, 30% B; 1.50–2.00 min 55% A,
45%B; 2.00–3.00 min. 55% A, 45% B; 3.00–35.00 min. linear gradient to 36% A, 64% B;
35.00–40.00 min. 25% A, 75% B; 41.00–45.00 min. 1% A, 99% B; 45.00–45.20 min. 70% A,
30% B and 45.40–55.00 min equilibrated with 70% A and 30% B. A sample of 25 µL was in-
jected at a flowrate of 0.250 mL/min. The divert valve was set at 0–8 min to waste, 8–45 min
to source and 45–55 min to waste. The injector needle was washed with MeOH/Water
1/1 (v/v). Quantitative analysis was performed on the basis of calibration curves prepared
and analyzed using standards. LC–MS/MS peaks were appraised using the software
Excalibur® release 2.0 SR2 (Thermo Fisher Scientific, San Jose, CA, USA). Quantitative anal-
ysis of all steroids was achieved based on freshly prepared calibration curves. Detection
limits were 0.02 pg/µL or pg/mg for T and 17β-E, 0.05 pg/µL or pg/mg for PREG, PROG,
3α-diol, DHEA, DHT; 0.1 pg/µL or pg/mg for ALLO and ISOALLO; 0.25 pg/µL or pg/mg
for DHP.

4.5. Statistical Analysis

Data for LC–MS/MS (n = 8 per experimental group) were analyzed by unpaired
Student’s t-test, after checking for normal distribution with the Kolmogorov–Smirnov test.
p < 0.05 was considered significant. Analyses were performed using Prism, version 7.0a
(GraphPad Software Inc., San Diego, CA, USA).
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