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Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered
important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary,
secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to
provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal
encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to
know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the
critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent
evidence that intervention may be feasible also days-weeks after the insult.

1. Introduction

Brain injury occurring during the perinatal period is a com-
mon cause of life-long neurological disability. The etiol-
ogy is complex and multifactorial, but hypoxia-ischemia
(HI), infection/inflammation, and excitotoxicity are consid-
ered important causes or precipitating insults of prevent-
able/treatable forms of perinatal brain injury. Genetic back-
ground, maturational age, sex, and degree of brain devel-
opment of particular regions affect vulnerability and the
mechanisms of brain injury [1, 2]. Furthermore, antecedents
like infection/inflammation, intrauterine growth restriction,
or preexposure to hypoxia can modulate brain vulnerabili-
ty [3–5]. Brain injury evolves over time, and different mech-
anisms are critical during the primary, secondary, and ter-
tiary phases. Indeed, recent experimental data suggests that
interventions can be effective if administered hours, days, or
even weeks after the primary insult [6, 7].

The aim of the present paper is to describe the critical
mechanisms of brain injury during the different stages after
an acute insult with particular emphasis on mitochondrial
impairment, apoptotic events and the tertiary phase of
injury.

2. Secondary Brain Injury

Cerebral HI that is sufficiently severe to cause depletion of
tissue energy reserves (primary insult) is often followed by
transient but complete restoration of glucose utilization, ATP
and phosphocreatine upon reoxygenation [8–10]. Thereafter
a secondary decrease of high energy phosphates occurs in
experimental studies that parallel a decrease in tissue glucose
metabolism and development of cell injury [8–10]. In a
similar way, infants with neonatal encephalopathy exhibit
characteristic abnormalities in cerebral energy metabolism,
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which is frequently normal soon after birth, but shows a pro-
gressive decline in [PCr]/[Pi] some hours later [11]. Infants
displaying this phenomenon develop neurodevelopmental
impairment or die, and there is a close relationship between
the magnitude of the late decline in [PCr]/[Pi] and the
severity of long-term neurodevelopmental impairment [12].

These findings suggest that most of the injury after HI
evolves with delayed onset after rather than during the insult.
There are many examples of successful posttreatment after
HI in animals suggesting a therapeutic window following
HI prior to the secondary phase of tissue impairment [13].
Hypothermia following HI reduces secondary energy failure
and brain injury in newborns with neonatal encephalopathy
[14]. However, the mechanisms involved in secondary brain
injury are largely unknown and such knowledge is critical
for development of future therapies for preterm infants or
to be combined with hypothermia in severely asphyxiated
infants at term, hopefully, to further reduce serious disability
in children and adults.

3. Mitochondrial Functional Impairment

Mitochondria are small membrane-enclosed organelles, re-
markably mobile and plastic, constantly changing their
shape and undergoing fusion and fission [15]. Many factors
can challenge mitochondrial balance and good functioning:
DNA mutations, increase of intracellular calcium, reactive
oxygen species, inflammation, decrease in trophic factors,
and mitochondrial dysfunction plays a crucial role in brain
injury [16]. Because of the heterogeneity of mitochondria
existing in the brain, to understand variations in mitochon-
dria functioning and consequent selective vulnerability to
injury, the organelle must be placed within the context of
its cellular, functional, developmental, and neuroanatomical
environment [17, 18]. The location of mitochondria in the
cell varies between cell types, but they are most often lo-
calized near sites of high ATP utilization as their major role
is to produce and supply energy, ATP, to the cells through the
enzyme complexes forming the respiratory chain. Mitochon-
drial function is critically important during development
and throughout life in metabolic tasks like cellular prolifer-
ation, regulation of the cellular red-ox state, apoptosis, and
excitotoxic injury.

Interest is growing in mitochondrial diseases or mito-
chondria-related injury where the respiratory chain/oxida-
tive phosphorylation system starts to malfunction. Mito-
chondrial diseases are principally due to mutations in either
nuclear or mitochondrial DNA, provoking impairment of
transcription, translation and assembly of the enzyme com-
plexes, leading to the malformation and/or malfunction of
the mitochondria [19, 20]. Impairment of the respiratory
chain is associated with ageing, neurodegenerative disorders
[21], and mitochondrial diseases [19]. During ageing, inef-
ficiency of the respiratory chain has been linked to the
decreased activity of AMP-activated protein kinase (AMPK)
leading to decreased mitochondrial biogenesis and function
[22, 23]. In neurodegenerative disorders, like Parkinson’s and
ALS, an increase of oxidative stress is shown to be a crucial

initiator affecting respiratory chains, leading ultimately to
cell death [21, 24]. As well, recent discoveries of mutation
associated with hereditary form of those diseases render the
story even more complex [25].

Very little is known of what happens to the respiratory
chain in injuries like stroke or during perinatal brain dam-
age. After neonatal hypoxia-ischemia (HI), there is a sig-
nificant energy failure in the brain, followed by a recovery
period before a second energy failure [2, 26–29]. Those pri-
mary and secondary energy failures are associated with the
primary and secondary injury [30]. Currently, most of˜the
research on perinatal brain damage is focusing on the sec-
ondary insult leading to cell death and tissue injury [31].
However, what is happening during the primary energy fail-
ure, what is happening during the short recovery, and what
mechanisms lead to the second energy failure and injury
remain unknown.

4. The Role of AMPK in Mitochondrial
Energy Crisis

Challenges to mitochondrial biogenesis and integrity are
most likely to happen quite early in the cascade of events
leading ultimately to injury. Before being involved in the
apoptotic process after HI ([31–33] and see paragraph
below) and considering the role of mitochondria as a major
ATP supplier, it is most likely that mitochondria are involved
from the first steps of the injury process after the insult.
For instance, our group recently identified a peak of AMPK
activity as early as 20 min after an HI insult in the brain of
neonatal mice (Rousset et al., unpublished data). AMPK is
well known as the energy sensor of the cell and is activated
when there is an imbalance in the AMP : ATP ratio such as
that which occurs in heat shock, anoxia, and so forth [34].
Once activated, AMPK will inhibit energy-consuming path-
ways (fatty acid/cholesterol synthesis) and promote energy-
producing pathways (glycolysis, e.g., or through PGC-1α
increasing mitochondria biogenesis, [35, 36]) in an attempt
to restore energy balance which is critical to cell survival.
AMPK is activated through two upstream kinases: LKB1 and
CaMKKβ [37–41]. The latter is activated by a surge of intra-
cellular calcium within the cell [40], which happens during
excitotoxicity, a well-described feature of HI injury mech-
anism [42]. Furthermore, AMPK has recently been shown
to mediate apoptosis through expression of the proapoptotic
protein Bim after an excitotoxic challenge in vitro [43].

Hypothetically, as a first step, the calcium surge provoked
by excitotoxicity and ROS signalling [44, 45] could not only
activate CaMKKβ and then AMPK but could also simultane-
ously challenge the mitochondrial respiratory chain leading
to an imbalance in the AMP/ATP ratio, reinforcing AMPK
activation through the second upstream kinase LKB1. The
activation of downstream pathways of AMPK to restore
energy balance, could logically explain the return to basal
level of ATP in the brain after the primary energy failure.
Subsequently, events in the mechanistic cascade responsible
for HI injury, like inflammation [32], could theoretically
once again impede mitochondrial function, causing the
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Figure 1: A potential role for AMPK in neonatal brain injury.
AMPK is activated in response to stresses which change either
intracellular calcium levels (e.g., excitotoxicity) or deplete intra-
cellular ATP concentrations (e.g., inflammation, reactive oxygen
species). Although AMPK works to return energy levels to baseline,
prolonged activation results in upregulation of the proapoptotic
protein, Bim.

secondary energy failure (Figure 1). This, cumulating with
an overactivation of AMPK, which has been reported to
exacerbate injury after stroke [46, 47], and still ongoing dele-
terious consequences from previous events, could provoke
in the most vulnerable cells a final mitochondrial challenge,
leading to its membrane permeabilisation and ultimately cell
death through apoptotic pathways.

5. Mitochondrial Fusion and Fission

Mitochondria constantly fuse and divide, and the mecha-
nisms governing this aspect of mitochondrial behaviour are
currently the focus of many investigations. This property
to fuse and divide appears to be crucial for a number of
functions, the maintenance of organelle fidelity, mediating
DNA or protein quality control, and, finally, it may be
an important feature during apoptosis [48]. Mitochondrial
fusion proteins attenuate apoptosis by inhibiting the release
of proapoptotic agents like cytochrome c, while mitochon-
drial fission protein DRP-1 promotes apoptosis through Bax,
leading to mitochondrial outer membrane permeabilization
and cell death [49]. However, it is of note that fusion and
fission have not yet been investigated in the immature brain,
but this is surely something of great interest to push forward.

6. Intrinsic Pathway of Apoptosis and
Secondary Brain Injury

Apoptosis (programmed cell death) is essential for the nor-
mal development of tissues and is especially key in neuronal
development. The balance between cell survival and cell
death is therefore required to be highly regulated; as such it is

unsurprising that aberrant activation of apoptotic pathways
occurs in a number of pathological conditions including
stroke and a variety of neurodegenerative diseases [50].

Cellular apoptosis can be achieved through two routes,
the extrinsic pathway (discussed later) activated in response
to extracellular signals such as Fas and TNFα and mediated
by death receptors [51] and the intrinsic pathway activated
in response to DNA damage or cellular stress. Although each
pathway has unique members, both mechanisms converge
downstream at the level of the mitochondrion, where if the
insult is severe enough, there is catastrophic permeabilisation
from which the cell cannot recover. Mitochondrial permeabi-
lisation results in the release of mitochondrial apoptogenic
factors into the cytosol including apoptosis-inducing factor
(AIF), endonuclease g (endo G) cytochrome c (cyt c), and
Smac/Diablo. These proteins have a number of pro-apoptotic
functions; cyt c interacts with Apaf-1 to form an active
apoptosome, providing a platform for procaspase-9 cleavage;
Smac/Diablo interacts with inhibitors of apoptosis (IAP) re-
ducing their negative influence on the activity of caspases
[50]. In contrast with cyt c and Smac/Diablo, AIF and endo
G operate through a caspase-independent pathway. Both
are translocated to the nucleus from the mitochondria in
response to death—inducing stimuli where they induce frag-
mentation of nuclear DNA [52, 53].

7. The Role of Caspases in Neonatal Brain Injury

Caspases play a key role in apoptosis and inflammation. Cas-
pases can be divided into three groups: initiator caspases
(caspase-2, -8, -9, -10), effector caspases (caspase-3, -6, -7),
and inflammatory caspases (caspase-1, -4, -5, -11, -12).
Whereas effector caspases are activated by the initiator cas-
pases, initiator caspases are activated by different, more com-
plex mechanisms [54].

In the extrinsic pathway, binding ligands to death recep-
tor leads to recruitment of adaptor protein, which recruits
caspase-8, forming DISC (death-inducing signaling com-
plex) leading to dimerization and activation of caspase-8.
Caspase-8 then cleaves and activates effector caspases. In the
intrinsic pathway, after cyt c is released from mitochondria
into cytosol, it interacts with Apaf-1. This complex binds to
procaspase-9 in the presence of dATP/ATP and forms the
apoptosome which cleaves and activates initiator caspase,
caspase-9 which, in turn, activates effector caspases (in par-
ticular, caspase-3) by cleaving between their large and small
subunits [55]. Activated effector caspases cleave cellular sub-
strates, such as PARP (poly(ADP-ribose) polymerase), lamin,
fodrin, ROCK1 (Rho-associated kinase 1), and ICAD (inhib-
itor of CAD), leading to DNA fragmentation, cell shrinkage,
and membrane blebbing [56–58]. Among the effector cas-
pases, caspase-3 cleaves a broad range of substrates and the
main effector caspase in the brain.

During brain development, a large number of neurons
are eliminated by apoptosis to optimize neural networks.
The activation of caspase-3 appears in the execution of
neuronal apoptosis in the brain during development and
after acute injury like HI. The extent of caspase-3 activation



4 Neurology Research International

following brain injury is greater in immature brain than
adults [59, 60]. Caspases are important for apoptosis in
developing brain. Nevertheless, there is the implication that
caspase-independent death pathways may also influence
nervous system development and may provide an alternative
mechanism for regulating neuronal death.

The initial report characterising caspase-3-deficient mice
showed defects of apoptosis in the nervous system; these
mice die during embryonic development or in the perinatal
period, in a manner similar to the phenotype of caspase-
9 and Apaf1-deficient mice. Subsequently, it was reported
that caspase-3 deficiency on C57/BL/6J background pro-
duced only minor neuropathological changes and caspase-
3-deficient C57/BL/6J mice survived into adulthood [61].
Moreover, neonatal HI brain injury in caspase-3-deficient
mice is worse compared with the previous model [62]. In
rats subjected to neonatal HI, there is a peak of caspase-3
activity observed 24 h after the insult which remains elevated
for a significant number of days [63]. These data suggest
that the apoptotic pathway is likely to be strain dependent
and caspase-independent death pathways may also influence
nervous system development and may provide an alternative
mechanism for regulating neuronal death. Recent studies
have also revealed the nonapoptotic function of caspases. In
particular, caspase-3 is suggested to function in neurogenesis
and synaptic activity [64].

Caspase-6 is an effector caspase, and, in apoptotic path-
ways, lamin, a structural protein of nuclear envelope, is
thought to be the only substrate cleaved exclusively by cas-
pase-6. In other pathways, caspase-6 is also known to cleave
cytoskeletal and structural proteins, such as the microtubule-
associated protein tau and amyloid precursor protein (APP),
and caspase-6 is detected in neurodegenerative diseases, such
as Alzheimer’s disease and Huntington’s disease. Recently,
Nikolaev and colleagues identified APP/death receptor-6
(DR6)/caspase-6 pathway as the mechanism specific for axo-
nal pruning and degeneration by trophic factor withdrawal
in developing neurons [65]. As a result, the involvement of
caspase-6 in axonal degeneration has come under a high
degree of scrutiny [66, 67]. Recently, it was demonstrated
that caspase-6 gene deficiency conferred protection in a
mouse model of adult stroke with a reduction of axonal
degeneration and improvement of functional outcome [66].
We have recently found that caspase-6 is activated (cleaved)
also in neurites in the immature brain after HI (Miyakuni
et al., personal communication), but its pathophysiological
importance remains unknown.

8. A Role for Mitochondrial Permeabilisation in
Secondary Brain Injury in Neonatal HI

Mitochondrial permeabilisation (MP) therefore represents
the “point of no return” in the life cycle of the cell. Two
forms of permeability have been identified. Mitochondrial
outer membrane permeability (MOMP) is the result of
Bcl-2 family members such as Bax relocating from the
cytosol to the mitochondria. Once there, Bax interacts with
another Bcl-2 family member Bak to form pores in the

outer membrane enabling proteins located between the inner
and outer membranes to leak into the cytosol [68]. In
contrast, a permeability transition pore (PTP) is formed
at points where both the inner and outer leaflets of the
mitochondrion are at their closest points. In contrast with
MOMP, the inner mitochondrial membrane is permeabilised
resulting in leakage of solutes, depolarisation due to proton
gradient equilibration, and generation of reaction oxygen
species. ATP production ceases and the mitochondrion swells
ultimately disrupting the outer membrane. PTP-mediated
cell death is predominantly necrotic (through calcium im-
balance and bioenergetic failure), although in extreme cases,
if sufficient ATP is present, apoptosis can occur through
activation of caspases [69]. Induction of the PTP is enhanced
by cyclophilin D, a mitochondrial matrix protein which
has previously been implicated in adult ischaemic injury
[70]. However, our recent studies demonstrated that Bax-
mediated MOMP rather than cyclophilin-D-mediated PTP
is critical in mouse models of neonatal HI [71]. Indeed,
previous work from our group and others suggests that, in
neonatal brain, Bax-dependent mitochondrial outer mem-
brane permeabilisation is implicated (Figure 2).

9. Involvement of Bax and Other Proapoptotic
Bcl-2 Family Members in Neonatal HI

A study examining Bax-deficient mice found that these
animals were protected in immature brain injury paradigms
[72]. Furthermore, studies which ablate the effects of Bax-
mediated mitochondrial membrane permeabilisation (e.g.,
knockout models of Bim and Bad [73], Tat-Bcl-xL-mediated
neuroprotection [74], Bcl-xL transgenic mice [75]) all exhibit
reduced brain injury after neonatal HI. Pharmacologically,
intracerebroventricular injection of Bax inhibitory peptide
prior to induction of HI in a neonatal mouse model con-
ferred neuroprotection in both grey and white matters [76].
Finally, both caspase-dependent and AIF pathways are acti-
vated to a much greater extent in the immature brain com-
pared with the adult brain [60]. Taken together, these data
suggest that Bax-dependent mitochondrial permeabilisation
is a critical event in delayed brain injury because it leads to
both activation of caspase-dependent and caspase-independ-
ent cell death and mitochondrial functional impairment.

10. Upstream Regulators of Proapoptotic
Bcl-2 Family Members

10.1. p53. It is a tumour suppressor that triggers apop-
tosis via multiple pathways including cell cycle arrest and
the regulation of autophagy through transactivating pro-
apoptotic and repressing antiapoptotic genes [77]. It is highly
conserved and regulates cell death resulting from a wide
variety of both physiological and pathological stimuli [78].
p53 also has transcription-independent, cytoplasmic actions
at the mitochondrial level and can promote Bax-dependent
mitochondrial permeabilisation [79]. In unstressed neurons,
p53 expression is generally low, limited by its association with
its negative regulator MDM2 which functions as a ubiquitin
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Figure 2: The development of secondary brain injury. Energy depletion culminating in Bax-dependent mitochondrial permeabilisation
represents an irreversible commitment to cell death in neonatal brain injury.

ligase, targeting polyubiquitinated p53 for degradation [80].
Cellular stress displaces p53 from MDM2, and subsequently
p53 expression is stabilised through substantial posttransla-
tional modification [77]. The classical role for p53 is as an
activator of transcription, and, on stabilisation, it accumu-
lates in the nucleus where it upregulates the transcription
of proapoptotic genes such as PUMA, BAX, and Noxa
[81]. More recently a cytosolic, transcription-independent
role was described in which activated p53 accumulates in
the cytosol where it is sequestered by the antiapoptotic
Bcl2 proteins for example, Bcl-xL [79]. However, increased
PUMA expression mediated by nuclear p53 displaces Bcl-
xL allowing p53 to activate Bax, promoting its oligomerisa-
tion, mitochondrial outer membrane permeabilisation, and
inducing apoptosis [79, 82].

A previous study found that p53 was upregulated and
accumulated in the nucleus and mitochondria in an in vivo
rat model of neonatal HI. In consequence, there was an
upregulation of apoptotic pathways leading to activation of
caspase-3. The authors identified a pathway involving NFκB
upstream of p53 and were able to decrease p53 accumulation
(thus increasing neuronal survival), in response to neonatal
HI by treating with the NFκB inhibitor NBD peptide [83, 84].
Subsequently, this has translated into improved long-term
function in behavioural tests [85]. More recently, the same
group confirmed the importance of p53 activation in neona-
tal HI by use of a small molecule inhibitor of p53, pifithrin-
μ. Injection of this peptide into mice which have previously
been subjected to an HI paradigm results in a high degree of
protection in both white and grey matters which translates
into long-lasting behavioural benefits compared with sham-
injected animals [86]. As pifithrin-μ is widely believed to
inhibit the mitochondrial but not nuclear functions of p53
[87], this strengthens the case for critical involvement of a
p53-Bax pathway in neonatal HI.

10.2. C-Jun N-Terminal Kinases (JNKs). These are members
of the mitogen-activated protein kinase (MAPK) family and,

as such, are activated in response to stress. There are three
mammalian jnk genes and 10 expressed isoforms as the
result of alternative splicing; however, it is JNK3 that is pre-
dominantly active in the brain [88]. In a mouse model in
which JNK3 expression is ablated (JNK3 KO), both adult
and neonatal animals were partially protected against HI
insult, and, in newborn animals, levels of c-jun were reduced
compared with wild-type animals [89, 90]. This correlates
with an earlier study suggesting that expression of c-Jun and
its subsequent phosphorylation was increased on ischaemic
injury [91]. JNK3 is hypothesised to act upstream of the
proapoptotic Bcl-2 family as JNK3-mediated increases in
Bim and PUMA expression were absent in the JNK3 KO ani-
mal [90]. In addition, activation of caspase-3 was also de-
creased suggesting that activation of JNK3 in response to
hypoxic-ischaemic insult results in caspase-dependent apop-
tosis.

10.3. Caspase-2. It is a member of the initiator subgroup of
caspases and is developmentally regulated [92]. Activation
of caspase-2 is dependent on its dimerisation and subse-
quent cleavage which is facilitated through interaction with
PIDD (p53-induced death domain-containing protein) and
RAIDD (RIP-associated ICH-1/CED3 homologous protein
with a death domain) [93–95]. Once activated, caspase-2
promotes Bid cleavage resulting in Bax translocation and
release of cyt c [96]. In a very recent study, caspase-2
null newborn mice were found to be partially protected
in both excitotoxic and HI paradigms [97] in contrast
with the adult caspase knockout mouse model [98]. As the
study also showed high expression of caspase-2 in neonatal
mice and rats which decreased postnatally, it is probably
unsurprising that there are age-dependent differences in
caspase-2 function. Interestingly, a group II caspase inhibitor,
TRP601, has recently been developed which targets caspase-
2 and caspase-3 functions. Neonatal animals subjected to
excitotoxicity, arterial stroke, or HI insult were significantly
protected against white and grey matter loss [99].
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11. Death Receptors and the Extrinsic
Pathway of Apoptosis

During inflammation such as that which has been reported
in perinatal brain injury [32], activation of mast cells [100]
and microglia will produce reactive oxygen species, release
excitatory amino acid agonists, proinflammatory cytokines
(e.g., IL-1γ, IL-18, TNF-α), chemokines [101, 102], and
tumour necrosis factors (e.g., TNF-α, TNF-β, FasL, TRAIL,
TWEAK) [101, 103–105] that will contribute to cell death
most often characterized by a mixed apoptotic-necrotic phe-
notype [59, 106].

From the time TNF was cloned and characterized in 1984
[107], roughly 20 ligand-receptor pairings are now included
in the TNF superfamily. These TNF and TNF-receptor-like
molecules are similar in structure to TNF and are functioning
as trimers (both ligands and receptors). The receptors are
largely membrane-bound signalling molecules with excep-
tion of some soluble decoy receptors (e.g., Osteoprotegerin).
The ligands instead can be either membrane or soluble forms
and both forms can have physiological activity. Because of
the similarity of their structure, multiple ligands are able
to bind and induce signalling through one receptor, or a
single ligand is able to bind multiple receptors. Some of
the receptors contain the so-called death domain in their
intracellular domain (e.g., TNF-R1, DR4, DR5, Fas) and are
able to trigger apoptosis when activated from the binding of
the corresponding ligand (e.g., TNF- α, TRAIL, FasL). This
extrinsic pathway of apoptosis continues with the activation
of a death-inducing signalling complex (DISC) adjacent to
the death domain of the receptor. Activated DISC catalyzes
the proteolytic cleavage and transactivation of procaspase-8
[108]. Activated caspase-8 either directly activates caspase-
3 or mediates cleavage of Bcl-2 interacting domain (Bid) to
truncated Bid (tBid), which integrates different death path-
ways at the mitochondria ([109]; Figure 3). tBid translocates
to mitochondria where it interacts with other proapoptotic
proteins and triggers the release of apoptogenic factors
like cyt c and apoptosis-inducing factor (AIF) from the
mitochondria. Apoptosis then proceeds in the same way
as for the intrinsic pathway with caspase-dependent and
caspase-independent cell death.

12. Necroptotic Cell Death

Activation of death receptors in the presence of broad-spec-
trum caspase inhibitors induces a newly described cell death
process called necroptosis. Necroptotic cell death initiated by
TNF-α, Fas, or TRAIL is mediated by formation of a complex
of two kinases, RIP1 and RIP3. This complex promotes
mitochondrial reactive oxygen species (ROS) production and
eventual collapse of cellular energy production [110].

13. Involvement of Death Receptors in
Neonatal Brain Injury

TNF-α activity is mediated through activation of two recep-
tors: low, affinity TNFR1 (p55) and the high-affinity TNFR2

(p75) [111], found on both neuronal [112, 113] and glial
cell populations [114]. Although the extracellular domains
of both receptors have a high degree of homology, their in-
tracellular domains differ significantly [115]. This leads to
complex signal transduction pathways that can be triggered
and may result in activation of the antagonistic functions of
these two receptors [111, 116]. When activated, the intracel-
lular part of TNFR1 containing the death domain triggers
apoptosis [117], whereas TNFR2 lacks that domain—its acti-
vation triggers neuroprotection through activation of NFκB
[118]. There are several pieces of evidence that suggest the
involvement of the TNF pathway in the development of white
matter damage (WMD). Children who develop cerebral
palsy show increased blood levels of TNF-α [119], and TNF
receptor 1 is critical for LPS-mediated sensitization to oxygen
glucose deprivation in vitro [120]. Moreover, deletion of the
TNF gene cluster abolishes LPS-mediated sensitization of the
neonatal brain to HI insult [121]. TNF-α treatment appears
to be toxic for the oligodendroprecursor (OPC) cell [122]
and potentiates the IFN-γ toxicity on those cells in vitro
[123]. TNF-α has also been shown to stimulate astrocyte
[124] and microglial [114] activation and proliferation.
TNF-α-mediated cell destruction may be mediated directly,
via activation of its TNFR and subsequent cell death sig-
nalling pathways, or indirectly by enhancing glutamate exci-
totoxicity [125]. TNF is also implicated in brain neuropro-
tection. It is shown that neuronal damage by focal cerebral
ischemia and excitotoxic insults are enhanced in TNFR KO
mice [126]. The neuroprotective role for TNF in cerebral
ischemia is mainly attributed to TNFR2 activity [127].

FasL is able to bind with Fas death receptor triggering
apoptosis and with Decoy receptor 3 (DcR3) [128]. Fas
death receptor is one of the most extensively studied of this
group of receptors. Lack of functional Fas receptor is neu-
roprotective in adult models of HI [129, 130]. HI also acti-
vates Fas death receptor signalling in the neonatal brain
especially in areas where apoptosis is a prominent fea-
ture [131–133]. Although the Fas/FasL system is primarily
linked to apoptosis, Fas activation can also induce caspase-
independent cell death [134], initiate cell necrosis [135], or
induce proliferation and differentiation signals [136]. It is
shown that Fas expression in primary OPC is higher than
in mature oligodendrocytes [123], implying higher suscepti-
bility to FasL at earlier developmental stages. Fas expression
can be upregulated in OPCs exposed to an inflammatory
stimulus [123] which may imply that in an inflammatory
environment these cells would have increased vulnerability
to Fas-induced apoptosis.

In humans, four membrane-bound and one soluble re-
ceptor for TRAIL have been identified. Of these, two contain
cytoplasmic death domain (DR4 and DR5) and have the
capacity to induce apoptotic cell death [137, 138], whereas
DcR1 (TRAIL-R3) and DcR2 (TRAIL-R4) lack functional
death domains and thus are considered to act as decoy
receptors [139, 140]. Osteoprotegerin (OPG) is a secreted
TNF receptor family member that besides receptor activator
of nuclear factor kappa-B ligand (RANKL) can bind TRAIL
as well [141, 142]. In mice, two membrane decoy receptors
mDcTRAILR1 and mDcTRAILR2 have been reported [143],
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one soluble OPG [142], and only one death-mediating
TRAIL receptor which has the highest homology with the
human TRAIL receptor DR5 [144].

Only one receptor for TWEAK has been identified so
far in both humans and rodents, fibroblast growth factor-
inducible 14 (Fn14) [145]. Binding of TWEAK to this recep-
tor can trigger proliferation, differentiation, migration, and
cell death [146]. The Fn14 cytoplasmic tail does not contain
a canonical death domain, and TWEAK binding to Fn14
can induce multiple cell death pathways in different cellular
contexts [147, 148].

Although many studies have been conducted in the can-
cer- or inflammation-related systems, the role of TRAIL and
TWEAK in the development of WMD after HI is still unclear.
The studies that implicate TRAIL and TWEAK signalling in
the pathogenesis of ischemic cerebral damage are performed
in adult models of stroke or multiple sclerosis and concern
mainly neurons [105, 148–150]. To date very few studies
relate these pathways to OPC death [61]. However, intrac-
erebroventricular injection of soluble DR5 receptor [150] or
Fn14 [105] is able to reduce significantly the infarct volume

after HI in adult rodent models, strongly implicating TRAIL
and TWEAK signalling in neuronal cell death after HI.

14. Tertiary Brain Injury

Tertiary brain injury will be defined as that occurring follow-
ing the commonly defined events of primary and secondary
cell death. As outlined previously, perinatal brain injury
is predominantly caused by inflammation/infection and
hypoxic-ischemic events that cause metabolic dysfunction
and cell death. Even after secondary cell death has subsided,
effects on the brain persist including sensitisation to inflam-
mation or injury, increased seizure susceptibility, impaired
oligodendrocyte maturation and myelination, and persistent
inflammation and gliosis [151–156]. More speculatively,
perinatal inflammation is suggested to play a critical role in
the pathogenesis of autism and schizophrenia [157–159].

When considering treatments for tertiary brain injuries,
we could distinguish between strategies aiming at extending
the window of therapeutic intervention from the acute
phase to the subacute phase and strategies targeting more
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long-term events such as chronic inflammation or postle-
sional plasticity.

15. Extending the Window

One key issue for protecting the perinatal brain is the
available window for intervention in the processes leading
to cell death. From a clinical point of view, the longer this
window, better the chance to implement viable interventions.
For example, hypothermia has to be initiated within the first
6 hours of life to be protective in term infants with neonatal
encephalopathy [160]. Such a short window does not allow
applying this treatment to all neonates who might benefit
from it. As a strategy to enhance the efficacy of hypothermia,
some groups have been trying to extend the window of
intervention of hypothermia by giving first an antiepileptic
drug prior to delayed hypothermia. Using the classical Rice-
Vannucci P7 rat model, Liu and colleagues have shown
that a combination of low-dose topiramate administered
15 minutes after the HI insult and 3-hour hypothermia
initiated 3 hours after the insult was neuroprotective while
topiramate alone or hypothermia alone had no significant
effect [161]. More recently, the same group showed that
early administration of Phenobarbital also enhanced the
efficacy of delayed hypothermia [162]. It remains to be seen
if drugs used successfully in parallel with hypothermia, such
as melatonin and xenon, might also be able to extend the
therapeutic window of this treatment [163, 164].

An alternative strategy would be to use early but short-
term hypothermia to enhance the window of opportunity
for a protective drug. This strategy could allow reducing
the duration of hypothermia. Accordingly, it was shown that
fructose-1,6-biphosphate (FBP) was neuroprotective against
neonatal excitotoxic cortical damage [165]. However, the
drug had to be given within the first 8 hours to be neuropro-
tective. Interestingly, a moderate but transient (4 hours)
cooling immediately after the insult extended the therapeutic
window for FBP, as FBP administered 24 h after the excitoto-
xic insult was still significantly neuroprotective in these pups.

16. Targeting the Long-Lasting Inflammation

A recent and intriguing study performed in preterm infants
with cerebral palsy [155] suggests that, at least in some pa-
tients with perinatal brain damage, there could be a long-
lasting inflammation as measured by increased TNF-α levels
in the plasma and the supernatants of peripheral blood
mononuclear cells after lipopolysaccharide stimulation. This
long-lasting altered inflammatory response could have dele-
terious effects on the progression of disease and/or on
the clinical symptoms. If such a pathophysiological event
was confirmed, recognizing and blocking such a persistent
inflammation could be of therapeutic value.

Additional studies are necessary to confirm these new
hypotheses and to determine whether or not there is a long-
lasting CNS inflammatory process. Techniques such as PET
with markers of microglia or MRI using ferromagnetic par-
ticles taken up by activated microglia could be instrumental

in this perspective. Indeed, a study using this approach has
revealed that for many years after traumatic brain injury in
human adults microglia remain activated [166]. Although
these studies have not yet been reproduced in children/young
adults following perinatal injury, a similar activation might
be ongoing and therefore a target for reducing tertiary phase
injury.

17. Targeting Epigenetic Marks

The term epigenetics refers to the enzymatic (e.g., acetyla-
tion, methylation) and nonenzymatic mechanisms (micro-
RNA) by which gene expression/cell phenotype is modified
without altering the sequence of genomic DNA. Inflamma-
tion, growth restriction, and maternal stress are known to
alter the epigenome [167–170], and although in the perinatal
period these effects alone may not lead to classic brain
injury, they may cause long-lasting cognitive, motor, and/or
behavioural impairments [151, 167, 171].

The underlying mechanisms by which modifying the
epigenome could have lasting effects includes myelin deficit
linked to blockade of oligodendrocyte maturation, impaired
neuronal migration, increased neuronal cell death, impaired
axonal growth, or altered synaptogenesis [172–175]. Of par-
ticular interest, microRNAs with suggested roles in regenera-
tion and repair are upregulated from 3 days after MCAO
[176], and microRNAs are capable of enhancing the benefi-
cial microglial M2 phenotype [177]. If microRNAs do indeed
represent an endogenous repair and immunomodulatory
mechanism, they may be a novel strategy to treat brain injury
in the tertiary phase.

Drugs specifically targeting acetylation have shown great
efficacy in treating acute-phase adult cerebral injuries (see,
[178]), and evidence is mounting to suggest efficacy in neo-
natal models ([179]; Fleiss and Mallard, unpublished). We
do not yet know if modulating the epigenome after the
secondary phase will have any efficacy after inflammation
or HI. However, adult changes in behaviour stemming from
perinatal maternal stress and linked to increased methylation
can be abolished in adulthood by increasing acetylation
[180]. This raises hope for the future design of innovative
treatments that could be implemented way beyond the
perinatal insult.

18. Promoting Positive Post-Lesional Brain
Regeneration with M2 Microglia

Activated microglia have been shown to be detrimental for
the production of hippocampal neurons, but microglia and
macrophages can also be beneficial and support neurogene-
sis, progenitor proliferation, survival, migration, and differ-
entiation in other brain regions. Recent studies suggest that
the phenotypic expression of macrophages can vary depend-
ing on the situation and pro-inflammatory macrophages
(M1) can undergo transition into an anti-inflammatory-
reparative (M2) phenotype. More recently, three activation
states of microglia in CNS have been proposed: classical acti-
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vation (tissue defence, pro-inflammatory), alternative activa-
tion (repair, anti-inflammatory, fibrosis, extracellular matrix
reconstruction), and acquired deactivation (immunosup-
pression, phagocytosis of apoptotic cells [181, 182]).

Strategies aiming at activating microglia when it has
reached the M2 phase could be beneficial for facilitating
repair and plasticity. Of note, the early phases of microglial
activation (M1 type of activation) have typically been
described as deleterious for the brain. More recently, prevent-
ing early microglial activation has been shown to be detri-
mental in focal ischaemia [183, 184]. This suggests caution
in timing of any intervention to modify microglial activity.

Alternatively, or in parallel, strategies aiming at acceler-
ating the M1-M2 switch could also be of major interest. At
this point, it is not known if modulation of the activation
state of microglia/macrophages can be used for development
of novel therapeutic strategies in the developing brain,
but a recent report suggests that M2 (alternative activa-
tion/acquired deactivation) macrophage cell therapy indeed
can provide protective effects in an animal model of multiple
sclerosis [185].

19. Promoting Positive Post-Lesional Brain
Regeneration with Exogenous Stem Cells

The development of an adequate protocol for stem cell cul-
turing and application has envisaged the use of these cells
for the reparation of perinatal cerebral lesions. Some studies
have shown a positive effect of neural or mesenchymal stem
cell therapy on the lesion extent and/or cognitive or motor
outcome following perinatal brain lesions [7, 186]. Interest-
ingly, in some of these studies, positive effects were observed
when stem cells were injected several days (up to 10 days)
after the insult. Furthermore, in an adult MCAO model, stem
cells given even 30 d post-insult improved neurobehavioural
scoring assessed 50 d later suggesting efficacy may be possible
even in the tertiary phase of perinatal brain injury [187].

The therapeutic potential of neural stem cells in acute
neonatal brain injuries has been evaluated in a rodent excito-
toxic model [186]. Early (4-hour) and late (72-hour) neural
stem cells implantation significantly reduced brain lesion size
in this neonatal model. The implanted cells, modified in vitro
prior to transplantation toward the oligodendrocytic lineage,
were capable of migrating toward the lesion site even when
implanted contralaterally to the lesion. At the lesion site,
the neural stem cells underwent transient differentiation into
neurons and oligodendrocytes but not astrocytes, suggesting
that fate specification was achieved by the culture conditions.
Pre-implantation cell fate determination may offer some
ability to specifically target white matter injury, such as
predominates in the injured immature brain [188–191]. In
parallel with the reduction in lesion size, the injured mice
displayed a persistent and marked improvement in temporal
and spatial memory at 3 and 6 weeks of age compared to
littermates given intracerebroventricular injections of saline
or fibroblasts.

Similarly, it was recently shown that two administra-
tions of bone marrow-derived mesenchymal stem cells to

neonatal mice 3 and 10 days after unilateral right carotid
artery occlusion on P9 produced a 46% improvement in
sensorimotor function as observed in the cylinder rearing
test and a 60% decrease in neuronal loss, compared with
vehicle-treated animals [7]. Moreover, cellular proliferation
and differentiation of the proliferated cells into cells express-
ing neuronal, oligodendroglial and astrocyte markers was
observed. Interestingly, remodeling of the corticospinal tract
correlated with sensorimotor improvement.

It is not clear yet whether the stem cells themselves or
factors secreted by stem cells mediate the positive effect.
Increased neurotrophin production with eventual loss of
injected cells is linked to improvements [186], while in
some studies cells become functionally integrated [192].
The ethical problem associated with the use of human
stem cells is less evident in mesenchymal stem cells or
stem cells derived from cord blood. Such cells permit an
autologous transplant and do not entail the problem of
immune tolerance of the transplanted cells. A clinical study is
currently being performed using stem cells in children with
neonatal encephalopathy at the Duke University [193].

A further intriguing alternative to treatment with stem
cells is to stimulate the production of endogenous neuronal
stem cells. It has already been shown that stem cells
accumulate in the subventricular zone following an acute
brain lesion. These results open a new perspective: the
stimulation of this stem cell population to support the
physiological reparation processes of a lesion. A variant of
this strategy would be to redirect new cell production from
astroglia to oligodendrocytes and neurons [194]. Critically,
stem cell therapies and stimulating endogenous proliferation
bears the theoretical risk of cancer induction [193].

20. Promoting Positive Post-Lesional Brain
Regeneration with Pharmacological Agents

Fostering positive post-lesional plasticity appears a very pro-
mising strategy for delayed interventions aiming at improv-
ing long-term neurological and cognitive function. However,
there is still limited knowledge about the cellular and molec-
ular mechanisms underlying post-lesional brain plasticity.

Different growth factors, such as brain-derived neuro-
trophic factor (BDNF), nerve growth factor (NGF), insulin-
like growth factor-1 (IGF-1), erythropoietin (EPO), or vas-
oactive intestinal peptide (VIP), have been shown to reduce
delayed neuronal death in various animal models of perinatal
brain damage [195–199]. As for hypothermia, the window
for intervention, when tested, was rather restricted to the first
hours after the insult. However, beyond their potential capa-
bility to prevent neuronal cell death, growth factors appear as
good candidates to target mechanisms involved in plasticity
such as proliferation of neuronal precursors, axonal growth
and sprouting, or synaptogenesis and synaptic stabilization.

Accordingly, BDNF and VIP have been shown to pro-
mote axonal sprouting following excitotoxic injury of the
periventricular white matter in newborn mice [198, 199].
Although growth factors like BDNF are big molecules un-
likely to cross easily through the intact blood-brain barrier,
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ampakines, allosteric positive modulators of glutamatergic
AMPA receptors, are small and diffusible molecules able to
induce BDNF production in the brain when administered
systemically. Interestingly, ampakines have been shown to
mimic BDNF effects on axonal sprouting in the mouse model
of excitotoxic white matter injury [200].

Similarly, melatonin was shown to promote plasticity
using the same model of neonatal excitotoxic white matter
damage [42]. Although melatonin did not prevent the ini-
tial appearance of white matter damage, it promoted repair
of secondary lesion with axonal regrowth and/or sprouting.
Recent data have shown that the window for intervention
is at least 24 hours after the insult (Gressens P, personal
communication). Behavioural studies support the hypothe-
sis that melatonin-induced white matter histological repair
is accompanied by improved learning capabilities. Neuro-
protective properties of melatonin have been confirmed in
several animal models of perinatal brain damage, including
fetal sheep [201]. Melatonin is a safe compound, including
newborns [202], and it crosses the blood-brain barrier as well
as the placenta. Based on these data, a clinical trial testing
the neuroprotective effects of melatonin has been initiated in
preterm infants at high risk of developing brain damage and
neurological handicap [203].

Although this study needs to be replicated, an intriguing
clinical study has recently shown that EPO, when given
on an average of 24 hours after birth, had very significant
neuroprotective effects in human term infants with neonatal
encephalopathy [204]. Evidently, the precise mechanism for
this neuroprotection is unknown, but the timing of inter-
vention argues on favour of an effect of EPO on post-lesional
plasticity although a direct effect on delayed neuronal cell
death cannot be excluded.
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