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Abstract: Introduction: The increasing efficiency of the different lasers and the improved performance
of endoscopic devices have led to smaller stone fragments that impact the accuracy of microscopic
evaluation (morphological and infrared). Before the stone destruction, the urologist has the oppor-
tunity to analyze the stone and the papillary abnormalities endoscopically (endoscopic papillary
recognition (EPR) and endoscopic stone recognition (ESR)). Our objective was to evaluate the value
for those endoscopic descriptions. Methods: The MEDLINE and EMBASE databases were searched
in February 2021 for studies on endoscopic papillary recognition and endoscopic stone recognition.
Results: If the ESR provided information concerning the main crystallization process, EPR provided
information concerning the origin of the lithogenesis and its severity. Despite many actual limita-
tions, those complementary descriptions could support the preventive care of the stone formers in
improving the diagnosis of the lithogenesis mechanism and in identifying high-risk stone formers.
Conclusion: Until the development of an Artificial Intelligence recognition, the endourologist has to
learn EPSR to minimize the distortion effect of the new lasers on the stone analysis and to improve
care efficiency of the stone formers patients.

Keywords: papilla abnormalities; endoscopy; stone; kidney

1. Introduction

The number of endoscopic treatments of urinary stones increases all over the world.
As previously demonstrated by Daudon et al. [1–5], the morpho-constitutional stone

analysis plays a major role in identifying its etiology and thus consider its risk of recur-
rence. The increasing efficiency of lasers in “dusting” and “popcorning” modes [6–9] and
the improved performance of endoscopic devices led to smaller stone fragments, which
reduce the accuracy of the microscopic study (morphological and infrared) by the lack
of components representativeness (48.6% of the stones have a mixed composition [10])).
Moreover, Keller et al. [8,9] have demonstrated that laser-based Thulium fiber changed in
stone composition in the infrared spectra that resulted in insufficient information of stone
powder examination (Figure 1).

Since Randall’s works [11] in the 1930s, it is known that papillary calculi resulted
from subepithelial lesions [12–17]. The advent quality of images with flexible retrograde
ureteroscopy has allowed the in vivo description of papillary abnormalities [18–21] that
can be related to various lithogenesis mechanisms [22–28].
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Figure 1. Residual “dust” after laser treatment using dusting parameters. 
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Before the destruction of the stone, the urologist has the opportunity to hold a key 
role in stone prevention by recognizing the papillary abnormalities (endoscopic papillary 
recognition (EPR)) and the stone’s type (endoscopic stone recognition (ESR)). 

The aim of this review was to report the current literature on endoscopic stone and 
papillary descriptions in order to help the urologist to improve the management of stone 
disease. 

2. Methods 
2.1. Search Strategy 

The systematic review was conducted according to the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) extension statement. The PubMed, 
Cochrane library, and Embase databases were searched to identify reports published until 
February 2021 on endoscopic recognition of papillary abnormalities and stones by retro-
grade flexible ureteroscopy. 

The following search terms were used: “endoscopy”, “stone”, “kidney”, and “pa-
pilla”. Manual searches of reference lists of relevant articles were also performed to iden-
tify additional studies. The primary outcome of interest was to assess the value of endo-
scopic description of papillary abnormalities and kidney stones in improving the diagno-
sis and the preventive care of stone formers. 

Figure 1. Residual “dust” after laser treatment using dusting parameters.

Before the destruction of the stone, the urologist has the opportunity to hold a key
role in stone prevention by recognizing the papillary abnormalities (endoscopic papillary
recognition (EPR)) and the stone’s type (endoscopic stone recognition (ESR)).

The aim of this review was to report the current literature on endoscopic stone
and papillary descriptions in order to help the urologist to improve the management of
stone disease.

2. Methods
2.1. Search Strategy

The systematic review was conducted according to the preferred reporting items
for systematic reviews and meta-analyses (PRISMA) extension statement. The PubMed,
Cochrane library, and Embase databases were searched to identify reports published
until February 2021 on endoscopic recognition of papillary abnormalities and stones by
retrograde flexible ureteroscopy.

The following search terms were used: “endoscopy”, “stone”, “kidney”, and “papilla”.
Manual searches of reference lists of relevant articles were also performed to identify
additional studies. The primary outcome of interest was to assess the value of endoscopic
description of papillary abnormalities and kidney stones in improving the diagnosis and
the preventive care of stone formers.

Two investigators performed the initial screening based on the titles and abstracts of
the articles to identify eligible and ineligible reports. Reasons for exclusion were noted.
Potentially relevant reports were subjected to a full-text review, and the relevance of the
reports was confirmed after the data extraction process. Disagreements were resolved via
consensus with the co-authors and consultation of the senior author.
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2.2. Inclusion and Exclusion Criteria

Studies were included if they included patients with urinary stones (participants) who
had undergone flexible ureteroscopy with ESR or EPR (intervention) or another endoscopy
procedure (comparison) to assess the effect of therapy on OS and AEs (outcome).

We excluded letters, editorials, meeting abstracts, replies from authors, case reports,
and articles not published in English. References of all papers included were scanned for
additional studies of interest. There was no time limitation for included studies.

2.3. Data Extraction

Two investigators independently extracted the following information from the in-
cluded articles: first author’s name, publication year, the period of patient recruitment,
number of patients, type of treatment, study design, and study funding and/or support.
All discrepancies regarding data extraction were resolved by consensus with the co-authors
or by discussion with the senior author.

3. Results
3.1. Study Selection and Characteristics

After a bibliographic search and the removal of duplicates, a total of 54 articles
were screened.

After full text assessment, a total of 17 publications met the inclusion criteria (Figure 2
and Table 1).
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Table 1. Identified and selected publications on ESR and EPR.

Type Subject Number Year

Low [18] EPR RP 57 1997

Darves-Bornoz [27] EPR RP in pediatric
stone formers 8 2019

Strohmaier [29] EPR RP and number of
stone episodes 100 2013

Kim [30] EPR RP and number of stones 17 2005

Wang [31] EPR Low RP and CaOx
stone formers 42 2014

Matlaga [19] EPR Anchored stone and RP 23 2006

Borofsky [20] EPR Grading Score 342 2016

Almeras [21] EPR Classification 164 2016

Jaeger [22] EPR Struvite 119 2016

Cohen [23] EPR Score use and correlation
RP/pitting 76 2019

Borofsky [24] EPR Anchored stone/pitting 28 2019

Almeras [25] EPR
Classification use and

correlations RP,
stones, . . .

88 2021

Pless [26] EPR Score use 46 2019

Sabaté [28] EPR Description 41 2020

Fernandez [32] EPR CP plugs detection by AI 200 2019

Estrade [10] ESR Correlation
endoscopy/microscopy 399 2020

Marien [33] EPR Review 13 2016
ESR: endoscopic stone recognition; EPR: endoscopic papillary recognition; AI: artificial intelligence.

3.2. Evidence Synthesis

Obviously, good vision represents an important condition to perform EPR-ESR. Al-
though main papillary abnormalities could be observed with fiberoptic devices, poor image
quality [34] may alter the ability of accurate diagnosis such as “intratubular plugging”. For
that reason, the use of digital flexible ureteroscopes has been found to be of utmost impor-
tance to provide a better diagnosis. The percutaneous approach was generally inaccurate
for EPR because of the incomplete exploration of the calices with a rigid nephroscope and
its impaired vision due to bleeding and local inflammatory conditions.

3.3. Endoscopic Papillary Recognition (EPR)

Through the 15 studies and 1 review that met the inclusion criteria, and according to
the three pathways for kidney stone formation (overgrowth on interstitial plaque, crystal
deposits in renal tubules, and free solution crystallization) described by Coe et al. [14],
the observation of the papillary abnormalities has the aim to determine the origin of the
lithogenesis and to evaluate its severity and risk of recurrence. Because of the recent
concepts of EPR and classification/grading system, no recurrence rate data according to the
different endoscopic papillary abnormalities has been found in the literature at this time.
Although the relation between recurrence rate and observed endoscopic abnormalities has
not been clearly demonstrated yet, Strohmaier et al. [29] showed that the extent of Randall
plaques (RP) was correlated with the number of calcium oxalate stone episodes (p = 0.012).
Moreover, Ciudin et al. [35] showed that the number of papillae tip attenuation >43 HU on
unenhanced abdominal CT images were correlated with stone recurrence.
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EPR should be the first step during flexible ureteroscopy in view of assessing all the
calyces and the papillae before impairing the vision by blood or stone dust and to avoid
misleading traumatic thermal laser induced lesions that may be caused mainly by direct
shot of the laser beam on the papillae. The appearance of one papilla is not accurate enough
to predict the type and the severity of the disease, and a papillary abnormality could be
also explained by the appearance of neighboring papillae. Almeras et al. [25] reported a
mean duration of 81.4 s (range: 48–149; median 64) in exploring the entire kidney. A scoring
system [20] and a classification [21] have been proposed to standardize the descriptions and
store the data. As previously described and such as their quantification, the multifactorial
aspect of the abnormalities needs to be described: the presence or not of calculi (anchored
or intraductal) and their types, the description of the papillary lesions (that may be a cause
or a consequence of the lithogenesis or stone growth), and the description of the presence
of deposits (Randall’s plaques, intratubular deposits, etc.).

The prevalence of RP described during ureteroscopy in stone formers is high, ranging
from 83% to 91% [19,25]. Their prevalence was impacted by the lithogenesis type: decreased
in case of struvite and less present in case of intraductal crystallization [22,25,26] and CP
stones [25,27]. Papilla’s percent surface area occupied by RP in stone formers differed
significantly from that in non-stone formers (p < 0.0001) and was correlated with the
number of stones [30]. Wang et al. [31] demonstrated that low-plaque Calcium Oxalate
stone formers tended to be obese (50% vs. 10%; p = 0.03) and had a history of urinary tract
infection (34% vs. 0%; p = 0.04).

The observation of “erosions” or “pits” at the tip of the papilla and the presence of
anchored COM stones were also frequent (55.7% and 18.2%, respectively) and correlated
with the amount of Randall’s plaques (Figure 3) [23–25]. They resulted from a dietary cause
(especially low fluid intake) in most cases [36–39].
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Figure 3. Lithogenesis on Randall’s Plaques (RP). (A) Papilla with RP. (B) Papilla with anchored
stones and erosion secondary to RP. 1—RP originate from the basement membranes of thin loops
of Henle, spread with CA in the surrounding interstitium, and may erode the epithelium. Their
aspect is a not well delineated infiltrate of the papilla. 2—Erosion or pit, that is the footprint of a
previous anchored stone drop off. 3—Typical COM anchored stones, owing to the small size of the
COM crystals that are the first able to combine with the plaques.

The description of intrapapillary or intraductal crystallization (Bellini plug origin)
(Figure 4) was less common (15.9%) but was correlated with calcium phosphate stones
(especially IVa2) and with a higher incidence of hypocitraturia (55.6%) and hypercalciuria
(33%) [25]. Intraductal crystallization was related with different etiologies such as distal
tubular acidosis [5] with the threat of impaired kidney function secondary to interstitial
fibrosis that surrounds the Bellini ducts [17].
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deposits. (A) Intraductal Bellini plugs, located in the central part of the papilla. (B) Intraductal crystallization, with the
presence of small stones in the Bellini ducts. (C) Intraductal crystallization and intense peripheric intraductal plugging (that
may begin in the loop of Henle), with the development of nephrocalcinosis.

Nonetheless, some difficulties were reported to determine if some stones were “Ran-
dall’s Plaque-anchored” or “plug-anchored”. It has been suggested to remove the an-
chored stone with a basket to examine the papilla and note the presence of plugs beneath
(Figure 5) [25].
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Figure 5. Bed observation of a removed anchored stone may reveal the presence of tubular plugs.
(A) Observation before anchored stone retrieval. (B) Bed observation after anchored stone retrieval
(shown by the black arrow).

The microscopic analysis of an anchored stone should also complete EPR in becoming
the best method to provide a reliable analysis of the entire stone and a chance to examine
the nucleus that represents one of the primary steps of kidney stone formation.

Assigned to its ability to identify the origin of crystallization (intratubular or on
PR) [5,13,14,17,21,25] and the amount of the abnormalities that may predict the risk of
recurrence [20,21,25], EPR is a way to understand the origin of lithogenesis to elucidate its
mechanism and to improve high risk etiology diagnosis.

3.4. Endoscopic Stone Recognition

Only one study met the inclusion criteria for ESR. Today, 48.6% of the stones are
reported to have a mixed composition (Figure 6). If the outer layers represent the most
recent crystallization, they may differ from the inner part of the stone and the nucleus
(Figure 7). Laser fragmentation or dusting make the “history of the stone growth” vanish
and modify the proportions of fragments microscopically analyzed [8,9]. Consequently, a
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loss of information may arise such as a decrease in diagnosis capacities. Therefore, ESR is
proposed as a useful tool to prevent the loss of information due to stone destruction.
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Figure 6. Example of a stone with a pure outer COD aspect (A) and during Laser treatment (B) the
emergence of a central COM part (shown by the black arrow). After treatment, and notably, dusting
of the outer part, the remaining fragments (presumably COM) will be extracted for analysis and may
underestimate the whole composition of the stone in case ESR was not performed.
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Figure 7. Examples of ESR. (A1) Typical COM stone with a smooth or mammillary dark-brown
surface. In this case, papillary anchored with a RP. (A2) Typical transection aspect of a pure COM
stone with a radiating organization of layers starting from a nucleus. (B) Typical COM (subtype
Id [1]) stone with a pale brown-yellowish budding surface. (C) Typical COD stone with a yellow light
spiculated surface (aggregated crystals with sharp angles and edges). (D) Typical UA (subtype IIIa [1])
stone with a homogeneous smooth orange surface, and after transection a concentric organization
of the layers around a well-defined nucleus. (E) Typical Cystine stone with a bumpy or rough light
brown yellow surface with a waxy aspect.

ESR should describe the external layer (surface) of all the stones during the same
procedure, including the small papillary anchored stones that represent the first steps of
crystallization. The final report should also mention the polymorphism of kidney stones
in case of various aspects described during the same procedure in order not to ignore a
potential lithogenesis mechanism. The internal part and center of the main stone have then
to be examined. To optimize the inner description, Estrade et al. [10] recommended a stone
transection in two parts using Holmium laser with the following settings: frequency, 5 Hz;
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energy, 1.2–1.4 J; power, 6–7 W; short pulse length; fiber diameter, 230 or 270 µm. For an
experienced endourologist, the concordance between the endoscopic description and the
microscopic analysis was 86.1% (COM), 85% (COD), 91% (UA), 79% (CP), 65% (Brushite),
75% (Struvite), and 100% (Cystine).

The endourologist becomes the only witness able to recognize the entire stone’s aspect
and the papillary abnormalities owing to his skills and his endoscopic devices. Using and
reporting ESR, he also obtains the opportunity to rectify the results of the microscopic
analysis according to his endoscopic descriptions.

4. Discussion

In the last century, eating habits have changed with an increased intake of salt, animal
proteins, and refined sugar and a decreased intake of vegetables [39]. That consequently
implied a change in stone composition and a prevalence increased [40]. These changes are
especially concerning COM (subtype Ia [1]) that are mostly correlated with the prevalence
of RP [19,25], low fluid intake [37], and the evolution of dietary habits [40–42].

As previously demonstrated by Daudon et al. [1–5], the morpho-constitutional stone
analysis plays a major role in identifying the etiology of the stone disease and thus in stone
recurrence. The increasing efficiency of lasers in “dusting” and “popcorning” modes [6–9]
decreases the size of stone fragments and the accuracy of the microscopic study (morpho-
logical and infrared), thus impairing the etiologic investigation’s results. This lack of data
may be balanced by EPR-ESR [10,18,20,25] and the papillary anchored stones analysis.

However, some limitations are still debated. First, the literature addressing the endo-
scopic papilla and stone recognition is poor and most of the published studies were from a
single institution and had a small cohort.

As the endoscopic interpretations of the papillary abnormalities are only based on
endourologist descriptions, their reliability, especially concerning the type of deposits (RP,
plugs) and the origin of the crystallization (RP anchored, intraductal origin), remain a
potential limitation and a potential interpretation bias [10,18–21,25,28].

The main problem in recognizing papillary abnormalities and stones composition
is the very large array of descriptions and entities [20,21,25]. Thus, the learning curve
for EPR and ESR is long and difficult, it has been shown that a perfect recognition of
the stone was obtained in only 40.7% of the cases for urologist in training who benefited
from nine specific teaching classes [43]. Nevertheless, the concordance between expert
endoscopic description and microscopic analysis was much better with 86.1% (COM),
85% (COD), 91% (UA), 79% (CP), 65% (Brushite), 75% (Struvite), and 100% (Cystine) [10].
Although learning this specific skill might be time-consuming, training is certainly the key
until the development of recognition models created by artificial intelligence (AI). In vitro,
automatic detection of kidney stones composition from digital stone pictures has been
described with a prediction of 94% (UA), 90% (COM), 86% (Struvite), 75% (Cystine), and
71% (Brushite) [44]. AI is about to be applied to in vivo validated endoscopic pictures,
but stone morphological laser changes and heterogenous vision quality may hamper its
development. AI will also be used to simplify EPR. Indeed, the efficacy of deep learning to
segment the renal papilla, plaque, and plugs has already been described 46].

The backbone of ESR and EPR remains the recognition, which is based on a good
intraoperative vision. Therefore, some variables have to be considered, such as fiberop-
tic devices that do not have high-definition vision quality [34], single-use and reusable
digital ureteroscopes that do not seem to be equivalent in term of color, brightness, and
definition [45–47]; and PCNL that cannot allow a complete exploration of the papillae.
Today and for those reasons, the best way to proceed EPR and ESR is the use of digital
flexible ureteroscopes.

Recently, it has been shown that lasers impacted the infrared analysis regarding stone
composition [8,9]. Moreover, recognition could be biased by the dusting settings (high
frequency and long pulse) that might change the surface appearance (Figure 8) especially
due to a carbonization effect (Figure 9) (mainly described with Thulium Fiber Laser).
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To limit these biases, an initial transection of the stone has been proposed but remains
difficult, time consuming, and provides more fragments to treat. Therefore, the use of
the fragmentation setting might help to properly assess the internal layers and the use of
dusting should be used only after the complete description [8,9].
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Although it represents the origin of crystallization, stone analysis and ESR often
miss the nucleus structure analysis due to stone destruction. Hence, the additional EPR
analysis could provide essential information regarding the lithogenesis mechanism and
avoid misdiagnosis of high-risk diseases like distal tubular acidosis. Although it is still
under evaluation, the intensity and the amount of the papillary abnormalities may also
have a prognostic value regarding stone recurrence.

Combining these complementary methods should be gathered in a single process
of endoscopic papilla and stone recognition (EPSR). It could support the preventive care
of the stone formers in improving the diagnosis of the lithogenesis mechanism and in
identifying the high-risk stone formers.

In this way, the urologist should play a key role in lithiasis prevention and stone
formers’ care improvement.

5. Conclusions

The morpho-constitutional stone analysis plays a major role in identifying the etiology
of the stone disease. The increasing efficiency of the lasers decreases the fragments’ size and
their representativeness, induces laser-based changes in composition, and thus decreases
the accuracy of the microscopic study.

The urologist has the opportunity to play a key role in stone prevention by recognizing
the papillary abnormalities (endoscopic papillary recognition (EPR)) and the stone type
before dusting or fragmentation (endoscopic stone recognition (ESR)). EPR and ESR should
be gathered in a single process of endoscopic papilla and stone recognition (EPSR). Until
the development of an AI recognition, the endourologist has to learn EPSR to minimize the
distortion effect of the new lasers on the stone analysis and to improve care efficiency of
the stone formers patients.
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