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Production animals are often exposed to several oxidative stress conditions, including,
but not limited to, heavy metals, alternative protein sources, environmental stress, disease,
high densities, as well as handling, which may suppress growth performance, animal
health and production, subsequently impacting economic feasibility. Promising research
results have revealed that the administration of natural or synthetic antioxidants in the
diet would be an important nutritional strategy to mitigate the negative influence induced
by oxidative stress conditions. The Special Issue “Antioxidants in animal feed” has been
conceived to set out the knowledge on the effects of dietary antioxidants on host health
and performance of production animals, including livestock, poultry and fish. It provides
various nutritional approaches to improve antioxidant capacity and benefit host health in
animal production. Here, we offer an overview of the contents of this Special Issue, which
collects 17 original articles.

For livestock and poultry, oxidative stress could affect ovarian function. Wang et al.
found that oxidative stress could decrease the laying performance, ovarian function and
influence gut microbiota and body metabolites in the layer model [1]. They then explored
the role of melatonin on ovary oxidative stress, suggesting melatonin could exert an ame-
lioration in ovary oxidative stress through the SIRT1-P53/FoxO1 pathway. Melatonin is
considered as a bio-antioxidant. Peng et al. evaluated the impacts of dietary melatonin
supplementation during pregnancy on reproductive performance, maternal–placental–
fetal redox status, placental inflammatory response and mitochondrial function [2]. They
concluded that melatonin supplementation during gestation could improve maternal–
placental–fetal redox status and reproductive performance by ameliorating placental an-
tioxidant status, inflammatory response and mitochondrial dysfunction. The work from
Xu et al. focused on the potential effects of adding acidifiers to drinking water [3]. The
results showed that supplementing drinking water with an acidifier has potential as an
antioxidant, which was reflected in improvements in growth performance, immunity, an-
tioxidant capacity and intestinal flora. The study by Liu et al. determined the effects and
mechanisms of increased consumption of methionine by sows and piglets on the capacity
of the progeny to counteract lipopolysaccharide (LPS) challenge-induced injury in the liver
and spleen of piglets [4]. The results showed that dietary methionine supplementation
alleviated liver and spleen damage that was induced by the LPS challenge. In addition, the
results indicated that beneficial effects of dietary methionine were potentially due to the
increased antioxidant capacity and inhibition of the TLR4 and NOD signaling pathway.

Various studies focused on the use of antioxidants in ruminates to improve health,
performance and product quality. Wang et al. explored the effects of L-glutamine (L-Gln) on
calves during weaning [5]. They found that a dietary lower-level L-Gln supplementation (1
and 2% of DMI) had higher average daily gain, glutathione peroxidase and IgG concentra-
tion and villus height/crypt depth of the duodenum and jejunum, as well as lower cortisol,
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haptoglobin and interleukin-8 concentration in weaned calves. These results provided
evidence that the addition of L-Gln in the diet improved the negative effects of sudden
weaning in calves. A study from Ma et al. investigated the effects of rumen-protected
glucose (RPG) on the hepatic oxidative/antioxidative status and protein profile [6]. They
showed that RPG supplementation reduced insulin sensitivity but increased the liver
triglyceride concentration and the oxidative stress in early postpartum cows, which may
indicate an increased risk of liver metabolic disorders caused by RPG supplementation.
Wang et al. found that a plant-protein-based milk replacer had a negative effect on calves’
liver function, immunity and antioxidant capacity [7]. In addition, transcriptome analysis
revealed that energy metabolism, immune function and mineral metabolism showed differ-
ences during the pre-weaning period, while during the post-weaning period, osteoclast
differentiation and metabolic pathways showed a difference. Kong et al. studied the
potential of Acremonium terricola culture (ATC) of ATC as a new feed additive in dairy
cow feeding [8]. The results showed that ATC improved milk yield and milk protein
yield. Furthermore, the improvement in milk yield was likely related to improved immune
function and antioxidant capacity.

Regarding fish production, various studies show how to mitigate the oxidative stress
caused by unconditional production conditions using micronutrients. In particular, Wu
et al. explored the effects of vitamin A on the muscle quality, nutritional quality and
antioxidative ability of grass carp [9]. The results highlighted that dietary Vitamin A could
improve flesh quality by increasing antioxidant capacity via the Nrf2/Keap1 signaling
pathway. Similarly, dietary vitamin C can attenuate oxidative damage, inflammation and
acute hypoxia-induced apoptosis in gibel carp via the Nrf2/Keap1 signaling pathway [10].
These findings further suggest that vitamins A and C, as essential micronutrients, could
be powerful antioxidants in the diet to regulate antioxidant capacity via certain potential
signaling pathways, such as Nrf2/Keap1. Further, the work of Xu et al. focused on
docosahexaenoic acid (DHA), as a nutritional modulator, to alleviate palmitic-acid-induced
inflammation of macrophages via the TLR22-MAPK-PPAR/Nrf2 pathway in large yellow
croakers, thereby improving the utilization rate of palm oil in aquafeed [11]. Another
study found that dietary glutamine could regulate immune and antioxidant capacity
to protect against Flavobacterium columnare infection in yellow catfish [12]. The authors
suggest their study firstly demonstrated the regulatory roles of glutamine in the fish
immune and antioxidant system and reported its inhibitory effects on fish apoptosis and
autophagy during pathogenic infection. Furthermore, Shi et al. found that oxidized-
fish-oil diets can cause negative physiological health effects in channel catfish, while
adding taurine can increase growth and antioxidant ability, reduce lipid deposition and
improve intestinal health [13]. These findings could advance the understanding of the
molecular mechanism of oxidative stress and provide nutritional mitigative strategies via
supplemented micronutrients in aquaculture production.

Special attention has also been paid to plant extracts, functional components or al-
ternative protein sources. Starch is necessary as a binder and sweller during extrusion
processing of pelleted aquatic feeds. However, carnivorous fish, for example, largemouth
bass, fed excess starch may induce metabolic liver disease [14]. Liang et al. found that
largemouth bass fed high-starch feed induced oxidative stress and lipid metabolic dis-
order, while dietary olive extract could improve antioxidant capacity, anti-inflammatory
responses and lipid metabolism, but could not completely repair high-starch-diet-induced
lipid metabolic disorder [15]. Xu et al. also reported that probiotic Lactobacillus plantarum
MR1 ameliorated high-carbohydrate-diet-induced hepatic lipid accumulation and oxida-
tive stress by increasing the circulating uridine [16]. Additionally, conventional soybean
meal, replacing fishmeal protein in aquatic feed, could adversely influence the growth
performance and health of the host. Wang et al. showed that the mixture of plant extracts
(thymol and carvacrol) and chelated trace elements (Cu, Mn and Zn) in the diet could
mitigate soymeal-induced adverse effects on growth and disease resistance through the
improvement in antioxidant capacity and regulation of gut microbiota [17]. Interestingly,
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Arthrospira platensis, a blue-green alga, could activate the antioxidant response and alleviate
oxidative stress and pigmentation disorder induced by air exposure in yellow catfish [18].

All the research articles in this Special Issue show that establishing a better under-
standing of oxidative stress is of pivotal importance in production animals. The variety of
subjects treated proves that this is a complex and multifaceted topic, on which researchers
are working from different viewpoints and perspectives. We thank all the authors for their
contributions. We hope that this Special Issue will encourage more scientists to move for-
ward on the path to increasing knowledge on the effect of natural or synthetic antioxidants
on the growth and health of production animals.
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