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Abstract: Since the approval of ibrutinib for relapsed/refractory mantle cell lymphoma (MCL), the
treatment of this rare mature B-cell neoplasm has taken a great leap forward. Despite promising
efficacy of the Bruton tyrosine kinase inhibitor, resistance arises inevitably and the underlying
mechanisms remain to be elucidated. Here, we aimed to decipher the response of a sensitive
MCL cell line treated with ibrutinib using time-resolved single-cell RNA sequencing. The analysis
uncovered five subpopulations and their individual responses to the treatment. The effects on the
B cell receptor pathway, cell cycle, surface antigen expression, and metabolism were revealed by
the computational analysis and were validated by molecular biological methods. The observed
upregulation of B cell receptor signaling, crosstalk with the microenvironment, upregulation of CD52,
and metabolic reprogramming towards dependence on oxidative phosphorylation favor resistance to
ibrutinib treatment. Targeting these cellular responses provide new therapy options in MCL.

Keywords: mantle cell lymphoma; scRNA-seq; ibrutinib; drug resistance

1. Introduction

Mantle cell lymphoma (MCL) represents a rare subtype among B-cell non-Hodgkin’s
lymphoma (NHL) accounting for 3–10% of adult-onset NHL in the western world [1].
Besides the typical translocation t(11;14)(q13;q32) causing Cyclin D1 overexpression, the
specific MCL marker SOX11 is overexpressed in most cases [2–4]. These features character-
ize the classical MCL subtype showing localization of aberrant B cells in lymph nodes or
at extranodal sites prone to progress into even more aggressive blastoid or pleomorphic
variants due to high risk for oncogenic abnormalities [5]. While the “watch and wait”
strategy is applied to the indolent forms, symptomatic patients undergo chemotherapy
or immunochemotherapy. A high-dose cytarabine-based treatment including rituximab
followed by autologous stem cell transplantation serves as an aggressive therapy option for
the young cohort, whereas the main subgroup of elderly patients receives a less aggressive
drug combination [6]. Even though, the progression-free survival (PFS) can be prolonged
by Rituximab maintenance, relapses occur inevitably at all ages [7,8]. Therefore, targeted
therapies in MCL are investigated more intensively [9]. Ibrutinib belongs to the class
of Bruton tyrosine kinase (BTK) inhibitors representing promising novel agents [6]. By
blocking the BTK, B cell receptor signaling and consequently the activation of downstream
NF-κB signaling, presumed to function as an essential proliferation stimulation pathway in
MCL, are impeded [10–12]. Wang et al. reported a satisfactory response rate in pretreated
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MCL patients [13]. However, even the responding patients will relapse suggesting that
some tumor cells evade treatment [14].

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to profile
the transcriptomic landscape of thousands of tumor cells and decipher drug responses
with unprecedented resolution [15,16]. The single-cell approach allows the identification
of distinct subpopulations bearing differing risk for aggressiveness, metastasis, or drug
resistance [17,18]. As these features either already exist prior to therapy or are acquired
during increasing chemotherapy pressure, the comparison of tumor cells collected at
different therapy phases may uncover the origin of resistance [19]. Wang et al. investigated
bone marrow samples from one multidrug resistant MCL patient and reported a decreased
immunogenicity and marker genes involved in various drug resistance mechanisms in
the malignant B cells [20]. Longitudinal single-cell transcriptomic analysis is currently an
interesting topic in the mantle cell lymphoma field to unveil drug resistance mechanisms.
However, little is known about the time-resolved response of MCL cells to ibrutinib
monotherapy at the single-cell level.

Here, we studied the transcriptomic landscape of a well characterized MCL cell line
model REC-1 across ibrutinib treatment [21]. Despite sensitivity to ibrutinib, 20% of the
MCL cell line REC-1 can persist a five-day treatment indicating higher resistance of this
subpopulation to BTK inhibition. We investigated the surviving cells of untreated (Ctr), 6 h,
and 48 h ibrutinib treated samples by scRNA-seq. As pharmacokinetic studies revealed a
maximal achievable clinically relevant concentration of 408 nM and with respect to titration
studies in REC-1, the cells were treated with 400 nM ibrutinib [21–23]. In order to capture
the early response to ibrutinib on a transcriptomic level, we chose the 6 h time point.
The 48 h time point identified the adaptations of cells surviving the initial drug response.
Additional validation assays were performed to corroborate the scRNA-seq data.

2. Results
2.1. High Reproducibility of Replicates

The single-cell RNA sequencing experiment was performed across two independent
biological replicates including a control of untreated REC-1 cells (Ctr) and REC-1 treated
with 400 nM ibrutinib for 6 h and 48 h. Side-by-side viability assays ensured the previously
shown cell death of REC-1 cells after ibrutinib treatment (data not shown) [21]. Cell sorting,
sequencing, and quality control left a total number of 16708 cells for analysis (Figure 1A,
Table S1).

To reveal whether both replicates of Ctr reflected similar cell populations, the data
was aggregated, clustered, and visualized by uniform manifold approximation and pro-
jection (UMAP) technique (see Materials and Methods—Data Analysis). The Ctr sample
comprised 5177 cells expressing an average of 3382 genes (Figure 1B, Table S1). The effect
of the cell cycle was mitigated implementing Seurat’s cell cycle regression approach to in-
vestigate underlying sources of heterogeneity (Figure S1). Overall, we could delineate five
transcriptionally distinct clusters (cluster 0–4). These subgroups were consistently present
as indicated by the equal expression of their marker genes in both biological replicates,
confirming the high reproducibility of the two data sets (Figure 1B).
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Figure 1. Overview of scRNA-seq approach and evaluation of reproducibility. (A) REC-1 cells were cultured for 48 h in 
total, one sample stayed untreated (Ctr), the second was treated for 6 h and the third for 48 h with ibrutinib (400 nM). Scatter 
plot (SSC-A vs. fluorescence intensity (propidium iodide)) of 48 h is shown representative for all treatments, cells of gate P1 
(red) entered scRNA-seq (relative proportion of included cells are indicated for each sample). Droplet-based single-cell RNA 
sequencing was performed using the 10x Genomics platform with encapsulation of single cells in GEMs (gel bead-in-emul-
sions). The data was analyzed implementing Cell Ranger (10x Genomics), and R packages such as Seurat, clusterProfiler, and 
SCENIC; (B) uniform manifold approximation and projection (UMAP) representation visualized the five subpopulations in 
the aggregated (replicate 1 and 2) and cell cycle regressed data set of Ctr and the corresponding dot plot shows the expression 
of selected top 10 marker genes for every subpopulation; size of dots refers to the percentage of cells expressing the gene, 
color intensity represents the average expression level. 
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Figure 1. Overview of scRNA-seq approach and evaluation of reproducibility. (A) REC-1 cells were cultured for 48 h in
total, one sample stayed untreated (Ctr), the second was treated for 6 h and the third for 48 h with ibrutinib (400 nM).
Scatter plot (SSC-A vs. fluorescence intensity (propidium iodide)) of 48 h is shown representative for all treatments, cells
of gate P1 (red) entered scRNA-seq (relative proportion of included cells are indicated for each sample). Droplet-based
single-cell RNA sequencing was performed using the 10x Genomics platform with encapsulation of single cells in GEMs
(gel bead-in-emulsions). The data was analyzed implementing Cell Ranger (10x Genomics), and R packages such as Seurat,
clusterProfiler, and SCENIC; (B) uniform manifold approximation and projection (UMAP) representation visualized the five
subpopulations in the aggregated (replicate 1 and 2) and cell cycle regressed data set of Ctr and the corresponding dot plot
shows the expression of selected top 10 marker genes for every subpopulation; size of dots refers to the percentage of cells
expressing the gene, color intensity represents the average expression level.

2.2. Heterogeneity of REC-1

To study the heterogeneity of REC-1 cells in the Ctr sample, the integrated data was
employed. Unsupervised clustering detected seven clusters (cluster 0–6) (Figure 2A).

The clusters 1 and 2 comprised 42% of Ctr cells and showed common marker genes
of mitochondrial and ribosomal origin such as RPS23 and COX7C (Figure 2A). Although
cluster 4 (7% of Ctr cells) showed increased expression of these markers as well, it was
separated owing to the additional expression of genes encoding for the nucleosome binding
protein HMGN3, chemokine CXCL10, the extracellular matrix protein SPP1 (Osteopontin),
and the proangiogenic galectin-1 encoded by LGALS1 (Figure 2A, Figure S2A). The clusters
0 and 3 (43% of Ctr cells) were characteristic for the expression of MARCKSL1, HMGB3,
and LTB encoding for an actin binding protein, for a chromatin binding protein, and for
a cytokine, respectively (Figure 2A). Apart from the gene expression pattern separating
the clusters 2 and 3, they shared the markers HILPDA, BNIP3, DDIT4, NFKBID, REL, and
DUSP2 (Figure 2A). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis linked these genes to a higher activity of NF-κB signaling leading to the upregula-
tion of the NF-κB associated genes NFKBID, REL, and DUSP2 (Figure 2B). The same cohort
of cells showed a metabolism associated with hypoxia (HILPDA, BNIP3, and DDIT4) and
dependent on glycolysis (SLC16A3) (Figure 2A, Figure S2B). After reclustering of the cluster
4, the differential gene expression according to glycolysis/hypoxia became apparent in this
subgroup leading to the separation into two clusters (Figure S2C). On the contrary, cells of
cluster 1 were assigned to a metabolism based on oxidative phosphorylation (OXPHOS)
(Figure 2B). The upregulation of DDIT3, TRIB3, and CIRBP defined cluster 5 (6% of Ctr
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cells) (Figure 2A). The interplay of these genes suggested an altered regulation triggered by
nutritional, endoplasmic reticulum stress, and unfolded protein response (Figure 2B). Com-
pared to the other clusters, cluster 5 expressed least CD52, a favored target for lymphoma
therapy (Figure 2C), and contained the highest amount of non-cycling cells assigned to G1
(Figure 2D) [24]. Regarding the low information content of only 1% of Ctr cells, cluster 6
was not included into further functional analyses.
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matches were detected for cluster 6 due to few differentially expressed genes (DEGs); (C) violin plot of CD52 expression 
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Figure 2. Heterogeneity of REC-1 cell line on the single-cell level. (A) Uniform manifold approxima-
tion and projection (UMAP) representation visualizing 7 clusters at resolution 0.4 in the integrated
and cell cycle regressed data set of untreated cells (Ctr) and the corresponding heatmap showing
selected top 10 marker genes (see Table S2 for cluster markers); (B) gene set enrichment analysis
for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontologies (biolog-
ical processes) including genes of Ctr with a log fold change > 0.1 and adjusted p-value < 0.001
(no. = number); no matches were detected for cluster 6 due to few differentially expressed genes
(DEGs); (C) violin plot of CD52 expression in Ctr (clustering is shown in (A); and (D) bar plot showing
the proportions of predicted cell cycle phases (G1, G2/M, or S) across clusters of Ctr by Seurat’s cell
cycle scoring.

This data showed heterogeneity of REC-1 cells caused by distinct properties of clusters
and a further differentiation due to prevalent glycolysis/hypoxia related metabolism.
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2.3. Evolution and Common Response of Subpopulations

The combined data set included both replicates of the three treatments (Ctr = untreated,
6 h, and 48 h ibrutinib) (Figure 3A). After cell cycle regression, 16,708 high-quality cells
with mean 3035 expressed genes were investigated in downstream analysis (Table S1).
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Figure 3. Evolution of subpopulations across ibrutinib treatment. (A) Uniform manifold approximation and projection
(UMAP) representations of the combined data set including replicate 1 and 2 of Ctr, 6 h, and 48 h after cell cycle regression
(clusters are shown for resolution 0.4 with additional subclustering of subpopulation D at resolution 0.3); (B) proportions of
subpopulations across treatment; (C) heatmap of selected marker genes of Ctr, 6 h, and 48 h (see Table S3 for treatment
markers); (D) distribution of predicted cell cycle phases (G1, G2/M, and S) across treatment by Seurat’s cell cycle scoring;
(E) distribution of cell cycle phases acquired by flow cytometry (sensitive REC-1 compared to resistant MAVER-1 cell line,
D = DMSO control, 48 h = 48 h 400 nM ibrutinib treatment; n = 3, * p ≤ 0.05, ns = not significant); (F) violin plot of LDHA
expression levels of the single-cell sequencing data; (G) Western blot of LDHA expression after ibrutinib treatment (DMSO
as control, 400 nM ibrutinib for 2 d, 3 d, and 4 d) in sensitive REC-1 and in resistant MAVER-1, β-actin served as loading
control, relative expression (Rel. Expr.) to DMSO control was calculated after normalization to β-actin (Western blot and
relative expression values are shown representative for three independent replicates); and (H) extracellular flux analysis
of 3 d ibrutinib (400 nM) or DMSO (control) treated cells (sensitive REC-1 compared to resistant MAVER-1) by Agilent
Seahorse XF 96 Analyzer; the ratio of oxygen consumption rate (OCR) to extracellular acidification rate (ECAR) is shown
(n = 3, ** p ≤ 0.005, ns = not significant).
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The UMAP plot visualized the transcriptional change of five subpopulations across
treatment (Figure 3A). As the gene expression patterns of Ctr still resembled mostly the
ones of 6 h for subpopulation A and B, the enclosed cells clustered together. In contrast,
the clusters shifted from 6 to 48 h indicating great transcriptomic alterations triggered by
longer ibrutinib incubation periods. To investigate the evolution over time in detail, the
subpopulations were reclustered revealing the separation of Ctr/6 h from 48 h cells for
subpopulation D as well (Figure S3A).

All subpopulations persisted following ibrutinib treatment except subpopulation C
disappearing in 48 h. While A and D increased, the proportion of B decreased across
treatment (Figure 3B).

Although each subpopulation developed independently, a common response to ibru-
tinib was determined in all cells of 48 h (Figure 3C). Indeed, NF-κB target genes (DUSP2,
CD83, BCL2A1, and CXCL10), and REL encoding for a NF-κB-subunit, NF-κB regulating
genes (NFKBID and NFKBIA), and CD40 were downregulated already after 6 h treatment
(Figure 3C). In 48 h, the upregulation of B cell receptor associated genes (CD79A, CD79B,
and VPREB3) and genes involved in B cell receptor signaling (BANK1) followed. Besides
the B cell receptor, the expression of the genes encoding for the surface markers CD52 and
CD37 increased in all surviving cells after 48 h treatment (Figure 3C). Flow cytometric
analysis of REC-1 cells confirmed increased CD52 and CD37, and decreased CD40 protein
expression only in sensitive cells after 3 day ibrutinib treatment (Figure S4). In contrast,
MAVER-1 representing an ibrutinib-resistant MCL cell line did not alter the expression of
these surface antigens.

Comparing the ratio of cells assigned to the G1, G2/M, or S phase revealed an increase
of G1 cells in 48 h (Figure 3D). This effect was validated by flow cytometric analysis of fixed
and propidium iodide stained cells. The proportion of cells cycling in G1 (with single DNA
amount) increased solely in the sensitive REC-1 cells, whereas ibrutinib did not impact the
cell cycle of resistant MAVER-1 (Figure 3E).

Focusing on the aforementioned glycolysis and hypoxia associated cells unveiled their
continuous development from Ctr towards 6 h and 48 h. While they clustered together
with the rather OXPHOS related cells in Ctr/6 h of subpopulation A, B, and D, they
diverged into separated clusters in 48 h, in one smaller, glycolysis/hypoxia (BNIP3 and
DDIT4) associated and one larger OXPHOS cluster (Figure S3A,B). This effect was caused
by the distinct expression of several glycolysis/hypoxia related genes. LDHA, IGFBP2,
and PGK1 expression switched to two distinct levels across ibrutinib treatment leading to
two metabolic species in 48 h, one subgroup with higher and one with lower glycolytic
activity (Figure 3F, Figure S3C). The altered expression of LDHA was confirmed by Western
blot revealing decreased LDHA protein levels after prolonged ibrutinib exposure time in
sensitive REC-1 (Figure 3G). Moreover, the metabolic shift was reflected by measuring
oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) after 3 d
ibrutinib treatment. The ratio of OCR/ECAR raised in the sensitive cell line significantly
(Figure 3H) by a decrease of the ECAR (data not shown), suggesting the survival of a
population with greater dependence on OXPHOS. On the contrary, ibrutinib resistant
MAVER-1 did not alter their metabolic activity (Figure 3H).

2.4. Gene Regulatory Networks during Ibrutinib Treatment

Single-cell regulatory network inference and clustering (SCENIC) was applied to
investigate the gene regulatory network (GRN) in REC-1 cells and its adjustments triggered
by ibrutinib.

The heatmap visualized the shift of the GRN across treatment (Figure 4A shows an
excerpt, Figure S5 displays the entire heatmap). In accordance with the Seurat analysis, NF-
κB transcription factors (NFKB1, REL, NFKB2, and RELB) were more dominant in Ctr/6 h
cells. Only the glycolytic/hypoxic cells of subpopulation D (cluster 9) maintained slight
activity of NFKB1 in 48 h. The GRNs of TP53, SP1, and ETS1 distinguished the surviving cell
population after 48 h ibrutinib treatment. Due to its functions in mediating apoptosis, DNA
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repair, and cell cycle arrest, TP53 represents a tumor suppressor frequently mutated in MCL.
ETS1 activates metastasis or invasion associated genes, while SP1 is involved in essential
biological processes like cell proliferation, apoptosis, and differentiation. Furthermore,
the influence of several transcription factors (TFs), playing essential roles in proper B cell
function, changed across treatment. SPIB, IRF4, and BATF represented specific TFs for the
Ctr/6 h cells. After 48 h ibrutinib treatment, SPI1 (SPI1 gene encodes for PU.1), POU2F2,
and POU2AF1 prevailed (Figure 4B).
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Subpopulation C comprising only Ctr/6 h cells was marked by the activity of DDIT3,
CEBPB, ATF3, and XBP1 referring to the cellular stress response.

A unique GRN was assigned to subpopulation B due to a pattern of HMGB3, a
chromatin-binding protein, and SOX11, a neural transcription factor. In general, REC-1
cells were reported to be SOX11 positive [25]. Referring to our analysis, B exhibited greater
activity of the TF SOX11 than the other subpopulations, even though the gene expression
of the transcription factor was not enhanced in this subgroup (Figure 4B).

The subpopulation D was characterized by activity of the TF HES4 encoded by a
NOTCH1 target gene, and IKZF1, involved in B cell differentiation and function. Further-
more, SPIB activity is solely maintained in this subpopulation in 48 h.

A concordant GRN pattern emerged in the glycolytic/hypoxic part of A, B, and D
(cluster 5, 6, and 9). The transcription factors MXI1, BHLHE41, and BHLHE40 share
the ability to be upregulated due to hypoxia. This observation supported the uncovered
coexistence of two metabolic species (OXPHOS vs. glycolysis/hypoxia) in the Seurat
analysis.

SCENIC unveiled a gene regulatory shift in cells from Ctr/6 to 48 h caused by reduced
NF-κB activity and changing dominance of important B cell associated transcription factors,
and special GRNs characterizing the subpopulations.

3. Discussion

Although ibrutinib improved the outcome of relapsed/refractory MCL patients, re-
sistance remains a major challenge in therapy. Reasons for resistance to the BTK inhibitor
ibrutinib are diverse and include activation of the alternative NF-κB pathway, missense
mutation at the BTK binding site (BTKC481S), and sustained PI3K/AKT signaling [11,26].
Though the MCL cell line REC-1 is ibrutinib sensitive, a small proportion of cells survive
the five-day treatment [21]. These cells may harbor or gain specific features leading to
reduced vulnerability to ibrutinib. Therefore, we dissected the transcriptional response of
REC-1 cells to ibrutinib over time by scRNA-seq.

Across ibrutinib treatment, all surviving cells underwent similar transcriptomic adap-
tations. A fast response was the downregulation of NF-κB signaling. In the further course
of treatment, the surviving cells increased the expression of B cell receptor subunits, CD79A
and CD79B, representing a potential feedback mechanism to compensate for the weakened
BCR signaling and the resulting impeded NF-κB signaling. These modifications were
accompanied by a changeover in crucial gene regulatory networks of B cells. As SPIB with
its partner IRF4 were reported to promote NF-κB signaling [27], the reduced activity of
these TFs following ibrutinib treatment forced the cells to sustain proper BCR signaling by
enhancing SPI1, sharing partially redundant functions with SpiB in mouse models [28,29].

Besides CD79A and CD79B, CD37 levels were enhanced. Even though the exact
functions of this surface glycoprotein are poorly understood, therapeutics were already
under investigation to treat NHLs. Pagel et al. included MCL patients to study the effect
of Otlertuzumab, a humanized anti-CD37 protein therapeutic, on relapsed/refractory
NHLs, resulting in a poor response in this subtype [30]. Apart from upregulated surface
antigens, we detected the downregulation of the gene encoding for the tumor necrosis
factor (TNF) receptor CD40. Upon CD40 stimulation canonical and noncanonical NF-
κB signaling pathways can be activated, whereas CD40 itself represents a NF-κB target
gene [31]. Therefore, we trace the decreased levels to the impaired B cell receptor signaling
by BTK inhibition.

Our findings correspond to the previously observed downregulation of NF-κB sig-
naling triggered by ibrutinib in a scRNA-seq approach investigating peripheral blood
mononuclear cells from chronic lymphocytic leukemia (CLL) patients collected at different
therapy phases. Additionally, the downregulation of CD52 and CD37, and reduced activity
of the transcription factor SPI1/PU.1 were determined over a 240-day treatment period
by Rendeiro et al., whereas we detected an upregulation of CD52, CD37, and increased
activity of SPI1/PU.1 in our MCL cell line model after 48 h ibrutinib treatment [32].
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Single-cell analysis unveiled the heterogeneity that is dominating the transcriptional
landscape of REC-1 cells. The heterogeneity of cancer cell lines was already reported with
respect to the recurrent existence of cellular programs like cell cycle, stress, and interferon
responses amongst others in cell lines originating from diverse tumor entities [33]. Here, a
subpopulation of cells showed activity of a HES4 regulated gene network indicating active
NOTCH1 signaling [34]. Unique features such as CXCL10, SPP1, and LGALS1 suggested a
subtype with aggressive features, higher potential of metastasis, promotion of angiogenesis,
and immune escape [35–40]. These characteristics might determine a specialized MCL
population, conserved in the REC-1 cell line, interacting with the microenvironment to
build a protective niche. As MCL cells localize not only at nodal sites, but also in extranodal
compartments like bone marrow or the gastrointestinal tract, the interplay between tumor
cells and microenvironment are implicated and associated with tumor growth and drug
resistance leading to re-emergence of the disease after therapy [41].

Another small subpopulation comprising 6% of the untreated REC-1 population
characterized by weakest CD52 expression succumbed solely to 48 h ibrutinib treatment.
As all surviving cells upregulated CD52 over ibrutinib treatment, this surface antigen
represents a promising target. Alemtuzumab, an anti-CD52 monoclonal antibody was
applied successfully to B cell chronic lymphocytic leukemia (B-CLL) patients since 2001, but
was only secondarily tested in MCL without a break-through [42,43]. A study investigating
the combination of ibrutinib and alemtuzumab in patients diagnosed with advanced-phase
CLL was terminated due to severe adverse events, however, an efficient response was
determined [44].

Distinct metabolic states contributed to an additional source of heterogeneity, which
strengthened during ibrutinib treatment. While Zhang et al. postulated, that metabolic
reprogramming to oxidative phosphorylation empowers MCL cells to evade ibrutinib [45],
the theory of the Warburg effect links increased glycolysis to greater tumor growth [46].
Contrary to the reported higher basal OCR/ECAR ratio values of resistant MAVER-1
compared to the sensitive REC-1 [45], the here observed basal OCR/ECAR ratio values did
not differ significantly in the two cell lines. Nevertheless, the decreased level of LDHA and
the increased OCR/ECAR ratio of the surviving population of sensitive cells after ibrutinib
treatment supports the observation of a metabolic shift towards greater dependence on
oxidative phosphorylation in cells with limited LDHA activity by Fantin et al. [47]. Our
data encourage the approach of targeting the OXPHOS pathway with an ETC complex
I inhibitor like IACS-010759 in MCL patients relapsing from ibrutinib. This is currently
tested in a phase 1 clinical trial for refractory lymphoma (NCT03291938) and reported to
negatively impact proliferation of ibrutinib-resistant MCL cell lines [45].

In this study, we combated confounding or noisy scRNA-seq data, resulting from
potential transcriptional burst events induced by drug exposure, dropout events, or other
technical variation, performing two independent biological replicates [48]. To prove our
findings on the protein level, we studied the effects of ibrutinib by molecular biological
methods, considering the delay between altered mRNA and corresponding protein lev-
els [49]. Indeed, we confirmed the greater proportion of quiescent cells after 48 h, and
the altered regulation of the surface antigens CD52, CD37, and CD40 and the reduced
glycolytic capacity of the surviving cell population with pronounced dependence on oxida-
tive phosphorylation after 3 d ibrutinib treatment. As these observations might arise from
indirect effects, we compared the results with the effects on a resistant MCL cell line char-
acterized by less dependence on the impaired classical NF-κB pathway by ibrutinib [50,51].
Thus, we could show that the detected adaptations were unique to the sensitive cell line.

As our work focused on the transcriptional landscape at early stages of treatment,
longer incubation periods would reveal whether the observed alterations persist and define
a resistant cell population, even though the time frame is restricted due to feasible cell
culture conditions. Despite the limitation to a single cell line, the transfer of promising
validated in vitro results to the clinics will further push towards new therapeutic opportu-
nities in MCL. Moreover, in future scRNA-seq studies of primary material originating from
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patients before, during, and after relapse from ibrutinib treatment, the acquired findings
from established cell lines might serve as starting points to understand the heterogeneous
data sets and might be reflected in a subgroup of patients.

4. Materials and Methods
4.1. Cell Lines and Reagents

The REC-1 (ACC 584) and MAVER-1 (ACC 717) cell lines were acquired from Deutsche
Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany).
Cells were cultured in RPMI1640 (Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with 10% (REC-1) or 20% (MAVER-1) heat-inactivated fetal bovine serum (Gibco,
Thermo Fisher Scientific, Waltham, MA, USA) and 2 mM L-Glutamine (Pan Biotech, Aiden-
bach, Germany) at 37 ◦C with 5% CO2 in a humidified atmosphere. Cells were regularly
tested for mycoplasma (Venor GeM OneStep kit, Minerva Biolabs, Berlin, Germany) and
are cultivated in a master/working stock system.

Ibrutinib was purchased from Selleck Chemicals (Absource Diagnostics, Munich,
Germany). Primary antibodies LDHA (#3582), β-actin (#4970), and secondary horseradish
peroxidase (HRP)-conjugated anti-rabbit IgG antibody (#7074) were obtained from Cell
Signaling Technologies (Danvers, MA, USA). CD52-PE (#130-123-972), CD40-PE (#130-111-
063), and CD37-PE (#130-123-329), and the human IgG1 isotype control (#130-113-438) were
purchased from Miltenyi Biotech (Miltenyi Biotech, Bergisch Gladbach, Germany).

4.2. Single-Cell RNA Sequencing
4.2.1. Experiment Set-Up

In 5 mL medium per sample, 3 × 106 REC-1 cells grew for 48 h. Ibrutinib was added
to the 48 h sample after seeding and to the 6 h sample 6 h prior to harvest obtaining a
final drug concentration of 400 nM. The Ctr sample stayed untreated. After harvest, the
cells were washed with phosphate-buffered saline (PBS), stained with propidium iodide
(2 µg/mL), and 30,000 cells were sorted by FACS (ARIA III, BD Biosciences, San Jose,
CA, USA) to exclude possible cell debris, apoptotic cells, and doublets (Figure 1A). After
counting the cells using trypan blue staining, they were loaded into the 10x Genomics
Chromium (10x Genomics, Pleasanton, CA, USA). To generate the libraries, the Chromium
Single Cell 3′ Kit v2 Chemistry was applied and all steps were performed following the
recommended 10x Genomics protocol. For the quantification of the libraries a QubitTM
3.0 Fluometer (Thermo Fisher) was utilized and a 2100 Bioanalyzer with High Sensitivity
DNA kit (Agilent Technologies, Waldbronn, Germany) was used for quality check. The
reads were sequenced to a length of 100 bp in paired-end format on a S1 flowcell with a
Novaseq 6000 (Ilumina, San Diego, CA, USA).

The two biological replicates were generated separately in an interval of three months
from individually thawed and cultured REC-1 cells. Owing to the working/master stock
system, the risk of cross-contamination of an originally purchased cell line is reduced.

4.2.2. Data Analysis

The Cell Ranger software (version 3.0.1; 10x Genomics) was used to generate FASTQ
files, to align reads (GRCh38 as a reference genome), to aggregate the data sets (default
settings with depth normalization of data), and to create the feature-barcode matrices. The
resulting raw data was further analyzed in R (version 3.6.0, https://www.r-project.org/,
accessed on 15 January 2021) with the R package Seurat (version 3.0.2, manufacture, city,
abbreviated state (for USA/Canada), country) adhering to the default settings unless
otherwise specified [52].

To get rid of low-quality cells, thresholds for UMI (unique molecular identifier as a
measure for mRNA content), gene, and mitochondrial gene content were adjusted (see
Table S1). The data included for downstream analysis underwent log normalization.
Highly variable features were identified serving as input for principal component analysis,
a linear dimension reduction technique. The first 40 principal components were selected

https://www.r-project.org/
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to cluster the cells (graph-based clustering). Different resolution parameters were tested
to ascertain appropriate clustering. The uniform manifold approximation and projection
(UMAP) served as a non-linear reduction technique to visualize the single-cell datasets.
Differentially expressed genes (DEGs) were computed by the FindAllMarkers (log fold
change > 0.1) function applying the Wilcoxon Rank Sum test (default). The heatmaps were
created using the R packages ComplexHeatmap and Circlize [53,54].

4.2.3. Batch Correction and Cell Cycle Regression

The aggregated dataset of the two replicates of Ctr were corrected for batch effects
applying Canonical Correlation Analysis. Therefore, the standard integration workflow
offered by Seurat was adapted to the analysis and performed after the quality control
step [55].

Cell cycle regression reduced the effect of different cell cycle phases on the hetero-
geneity of the data. Each cell received a score based on canonical markers for S or G2/M
phase and was then assigned to one of them. Cells that did not express any of these G2/M
or S phase genes were categorized as G1 cells or rather resting cells. During data scaling,
the impact of cell cycle genes was regressed out of the data according to Seurat’s cell-cycle
scoring and regression approach [56].

4.2.4. ClusterProfiler

To investigate upregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways or characteristic gene ontologies (biological processes), the R package ClusterProfiler
(version 3.14.3) was applied [57]. The differentially expressed genes with a log fold change
> 0.1 and adjusted p-value < 0.001 computed by Seurat’s FindAllMarkers function were
considered for the analysis.

4.2.5. SCENIC Analysis

Gene regulatory networks in the scRNA-seq data were analyzed by the R package
SCENIC (version 1.1.2.2) [58]. The raw count matrix of the combined data set including
both replicates of Ctr, 6 h, and 48 h was used as input after exclusion of low-quality cells
(subpopulation E was not included due to low information content). Default settings
were maintained for analysis. To identify possible regulons by RcisTarget, the hg19 motif
ranking database for the human species offered by SCENIC was applied. Transcription
factor modules with more than 10 mapped genes were kept for further analysis (suffix
“_extended” indicated “low confidence” annotations). For exploration of gene regulatory
networks, the regulon activity data from SCENIC (Figure 4A) was visualized based on the
clustering shown in Figure 3A.

4.3. Cell Cycle Analysis

Cells were incubated as indicated, harvested, and resuspended in PBS. The cell sus-
pension was added dropwise to ice-cold absolute ethanol to a final ethanol concentration
of 70% while gently vortexing. The samples were stored in a freezer at −20 ◦C overnight.
After centrifugation, the cells were washed with PBS and then incubated with propidium
iodide (PI) solution (0.05 mg/mL propidium iodide in PBS; 0.1% Triton X; 0.2 mg/mL
RNAse A (7000 units/mL)) at 37 ◦C for 40 min. The samples were diluted with PBS,
centrifuged, and resuspended in PBS for analysis by flow cytometry (FACS Canto II, BD
Biosciences) measuring PI signal in linear mode. The data was analyzed with Flowing
Software (version 2.5.1, Perttu Terho, Turku Centre for Biotechnology, University of Turku,
Turku, Finland, in collaboration with Turku Bioimaging).

4.4. Western Blot

Cells were harvested after incubation periods as indicated, washed with PBS, and
lysed in lysis buffer (20 mM HEPES, pH 7.9; 350 mM NaCl; 1 mM MgCl2; 0.5 mM EDTA,
pH 8.0; 0.1 mM EGTA, pH 8.0) supplemented with protease and phosphatase inhibitors
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for 20 min on ice. Protein concentrations were quantified by Bradford assay. 4× loading
buffer (200 mM Tris, pH 6.8; 40% glycerol; 8% SDS; 4% β-mercaptoethanol; 50 mM EDTA,
pH 8.0; 0.01% bromophenol blue) was added and the lysates were boiled to 96 ◦C for
5 min. After separation by dodecyl sulfate polyacrylamide gel electrophoresis, the proteins
were blotted on nitrocellulose membranes and visualized by Ponceau S (Sigma-Aldrich, St.
Louis, MO, USA) staining. Before incubation with primary and HRP-conjugated secondary
antibodies, the membranes were blocked in Tris-buffered saline with 5% milk powder
and 0.1% Tween 20. The protein bands were detected by Thermo Scientific SuperSignal
West Pico Chemiluminescent Substrate (Thermo Fisher) and then visualized on Amersham
Hyperfilm ECL (GE Healthcare, Freiburg, Germany). The area of protein bands determined
by Image J software was used to perform normalization to β-actin and to calculate relative
expression subsequently [59].

4.5. Extracellular Flux Analysis

The Seahorse XF 96 Metabolic Flux Analyzer (Seahorse Bioscience, Lexington, MA,
USA) was used to measure the oxygen consumption rate (OCR) and extracellular acidifica-
tion rate (ECAR). Cells entered the analysis after culturing as indicated. After harvesting,
the cells were resuspended in prewarmed Seahorse medium (Agilent Seahorse XF RPMI
Medium pH 7.4, supplemented with 10 mM Seahorse XF D-Glucose and Seahorse XF 2 mM
L-Glutamine). Cells were counted by the Countess Automated Cell Counter (Thermo
Fisher) and 1.1 × 105 viable cells per well (6 technical replicates per condition) were plated
into a poly-D-lysine (P6407, Sigma-Aldrich) coated Agilent Seahorse XF96 Cell Culture
Microplate (Seahorse Bioscience). To immobilize the cells on the bottom, the plate was
centrifuged at 500× g for 5 min. Subsequently, the plate was put in a non-CO2 incubator at
37 ◦C for 30 min, 130 µL of Seahorse medium were added to each well and the plates were
returned for another 25 min to the non-CO2 incubator at 37 ◦C until analysis. OCR and
ECAR were measured five times with 30 s intervals of mixing.

4.6. Flow Cytometric Analysis of Cell-Surface Antigens

After incubation, cells were washed, and resuspended in autoMACS Running Buffer
(Miltenyi Biotech) before staining with antibodies and isotype control (dilution according
to the manufacturer’s instructions) at 4 ◦C for 10 min. Then, the cells were washed and
resuspended in autoMACS Running Buffer for flow cytometric analysis. The data was
analyzed with Flowing Software using GeoMean as mean fluorescence intensity (MFI) to
determine the shifts in surface antigens. The isotype control values of every condition
were subtracted, e.g., MFI(CD52, DMSO) = GeoMean(CD52, DMSO) − GeoMean(isotype
control, DMSO).

4.7. Statistical Analysis

Error bars represent the standard error of the mean of three independent experiments.
After testing the homogeneity of variances by F-test, statistical significance was determined
by the Student’s t-test either for equal or unequal variances using excel (Microsoft, Red-
mond, WA, USA); p-values ≤ 0.05 (* p ≤ 0.05, ** p ≤ 0.005) were considered statistically
significant (ns = not significant).

5. Conclusions

Our single-cell sequencing approach allowed us to evaluate the changeover of the
heterogeneous transcriptome profile of a mantle cell lymphoma cell line triggered by 48 h
ibrutinib treatment. The surviving cells adjusted their gene expression to deal with the
drug-induced pressure on crucial signaling pathways. We here described the upregulation
of B cell receptor subunits, crosstalk with the microenvironment, upregulation of CD52,
and metabolic reprogramming towards reliance on oxidative phosphorylation as potential
mechanisms favoring ibrutinib resistance. Based on these findings and future continuative
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studies, novel therapeutic approaches may improve the outcome of MCL patients in
ibrutinib-relapse settings.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/5/2276/s1.
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