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INTRODUCTION

Network meta-analysis (NMA), also called multiple treatment 
meta-analysis, or mixed treatment comparison, aims to synthesize 
the effect sizes of several studies that evaluate multiple interven-
tions or treatments [1-4].

In the conventional pairwise meta-analysis, the researchers col-
lect studies that evaluate the same treatment, create pairs of the 
treatment group and control group, and directly calculate the ef-
fect size (direct treatment comparison). However, NMA can cal-
culate the effect size between treatment groups through indirect 
treatment comparison, even if there is no direct comparison study, 
or if the treatments are different between the treatment groups.

In the present study, the previous meta-analysis studies [1-3] 
are reviewed using R software. This study focuses on the technical 
implementation of Bayesian NMA and frequentist NMA using R. 
Thus, it requires understanding of the direct treatment compari-
son (which is the basic principle of NMA), indirect treatment com-
parison through common comparators, and mixed treatment com-
parison that combines direct and indirect treatment comparisons, 
as well as prior learning about the assumptions of NMA. These 
concepts are described in previous studies [1-3].

The objective of this study is to describe the general approaches to network meta-analysis that are available for quantitative data 
synthesis using R software. We conducted a network meta-analysis using two approaches: Bayesian and frequentist methods. 
The corresponding R packages were “gemtc” for the Bayesian approach and “netmeta” for the frequentist approach. In estimating 
a network meta-analysis model using a Bayesian framework, the “rjags” package is a common tool. “rjags” implements Markov 
chain Monte Carlo simulation with a graphical output. The estimated overall effect sizes, test for heterogeneity, moderator effects, 
and publication bias were reported using R software. The authors focus on two flexible models, Bayesian and frequentist, to deter-
mine overall effect sizes in network meta-analysis. This study focused on the practical methods of network meta-analysis rather 
than theoretical concepts, making the material easy to understand for Korean researchers who did not major in statistics. The 
authors hope that this study will help many Korean researchers to perform network meta-analyses and conduct related research 
more easily with R software.

KEY WORDS: Network meta-analysis, Multiple treatments meta-analysis, Mixed treatment comparison, Consistency, Transi-
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lows the prior distribution P(θ). When event χ is observed in the 
present study, the likelihood is P(χ|θ).

Therefore, the posterior distribution function of the updated 
parameter of interest θ, becomes P(θ|χ) by multiplying the prior 
distribution by the likelihood function, as follows:

In the conditional probability equation (1), P(χ) is a fixed con-
stant and omitted in general; thus, the equation can be expressed 
as (2), where ∝ means “proportional”. If the sample size is large, 
the influence of prior information P(θ) is weak, and a similar re-
sult as that of the frequentist method is obtained. However, if the 
sample size is small and the amount of prior information P(θ) is 
large, the posterior distribution will produce a different result. There-
fore, the Bayesian method generally shows the sensitivity analysis 
according to the prior distribution.

Prior distributions are largely divided into subjective and objec-
tive. The subjective prior distribution can reflect the results of pre-
vious studies or empirical knowledge of the disease. In contrast, 
the objective prior distribution is an informationless prior distri-
bution, which must be objectively quantified and input to the pri-
or distribution.

The prior distribution that is the same as the posterior distribu-
tion is called a conjugate prior distribution. The posterior distri-
bution is inferred using the normal distribution if the parameter is 
average, beta distribution if it is a ratio, or inverse gamma distri-
bution if it is variance.

For non-conjugate prior distribution, it is not easy to integrate 
the probability of the derived posterior distribution, because it is 
not generally used in statistical models [5].

Markov chain Monte Carlo simulation
For distributions commonly used in statistics, the area under 

the distribution curve can be simply obtained with an integral for-
mula. However, with the Bayesian method, it is difficult to calcu-
late it if the posterior distribution does not follow a commonly used 
distribution. In this case, the Markov chain Monte Carlo (MCMC) 
simulation can be used to calculate it reversely. In this study, we 
will briefly review the concepts of MCMC as a tool for Bayesian 
inference.

Markov chain
In a Markov chain, the probability that a random variable will 

reach a certain state depends only on the previous state. 

Next state= current state * transition probability

Therefore, the next state is determined by the likelihood ratio of 
the current state and the transition probability, which is prior in-
formation. In the initial simulation, the value of the next state is 
significantly different from the current state, but when this calcu-

STATISTICAL APPROACH OF NETWORK 
META-ANALYSIS 

The NMA methods are largely divided into Bayesian methods 
and frequentist methods. These two statistical methods have dif-
ferent basic concepts for approaching the statistical model, but 
produce the same results if the sample size is large.

The Bayesian method calculates the posterior probability that 
the research hypothesis is true by adding the information given in 
the present data (likelihood) to previously known information 
(prior probability or external information). Therefore, it can be 
said that the Bayesian method is a probabilistic approach, where 
the probability that the research hypothesis is true can be changed 
depending on the prior information [1,2].

In contrast, the frequentist method calculates the probability of 
significance (in general, p-value is 0.05) or the 95% confidence in-
terval (CI) for rejecting or accepting the research hypothesis when 
the present data is repeated infinitely based on a general statistical 
theory. Therefore, the frequentist method is unrelated to external 
information, and the probability that the research hypothesis is 
true within the present data (likelihood) is already specified, and it 
only determines whether or not to accept or reject it based on the 
significance level [1,2].

Bayesian method
The frequentist method considers the parameters that represent 

the characteristics of the population as fixed constants and infers 
them using the likelihood of the given data. However, the Bayesi-
an method expresses the degree of uncertainty with a probability 
model by applying the probability concept to the parameters.

The most important characteristics of the Bayesian method are 
as follows.

First, it can use prior information. For example, if the prior in-
formation of the parameter of interest exists (from previous re-
search or empirical knowledge of the relevant disease), updated 
posterior information can be inferred by adding the prior infor-
mation to the present data. This is much more logical and persua-
sive than the frequentist assumption that the given data is repeat-
ed infinitely.

Second, it is free from the large sample assumption, because the 
parameters are considered as random variables. For example, the 
frequentist meta-analysis assumes that the overall effect size fol-
lows a normal distribution. In other words, the normality assump-
tion of the normal distribution is satisfactory for a large sample, 
but most meta-analysis studies have a small number of studies, 
and the overall effect size may be biased. However, the Bayesian 
method calculates the posterior information by adding prior in-
formation to the likelihood of the given data, and the parameters 
are probability concepts that can change continuously. Thus, it is 
free from the effect of a large sample [2,5].

Prior and posterior distribution in Bayesian inference
When the parameter of interest is θ, the prior information fol-
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lation is repeated, the difference becomes very small at a certain 
time, and it reaches a stable steady-state distribution.

To summarize again, the Markov chain uses an algorithm that 
calculates the probability of the next state knowing the current 
state and transition probability, and there is no change in the prob-
ability after a certain number of repeated calculations. 

Monte Carlo simulation
In Figure 1, let us assume that we want to find the area of a 1/4 

circle with a radius of 1. This can be calculated easily by 1/4 * πr2 
= 1/4*3.142*12, which is 0.7855.

In Monte Carlo simulation, a square around the 1/4 circle is 
created, and many dots are printed randomly in the square. Then, 
the desired area can be determined by comparing the number of 
dots within a distance of 1 from the center of the circle with the 
total number of dots. For example, if a simulation is performed in 
which a total of 100 dots is printed, the number of dots within a 
distance of 1 from the center of the circle will be approximately 
78.55. Certainly, the difference between the simulated values and 
the measured values will decrease as the number of simulations 
increases.

Bayesian hierarchical model
In the fixed effect model, which only considers the within-study 

variations, the average and variance of the standard normal distri-
bution are input to the prior distribution as follows:

Ti ~ N(θ, vi), i= 1, …, k
θ ~ N(μ0, η0

2)

where Ti is the actual observation effect of the ith study, and vi 
is the variance of the ith study. Here, θ is the true value of the treat-
ment effect and a common effect size to be inferred by the fixed 
effect model.

In the random effect model, which considers both within-study 
and between-study variations, the total average treatment effect of 
the population (μ) and the between-study variance (τ2) are input 

to the prior distribution. In turn, μ follows a hyperprior distribu-
tion, which is a normal distribution with μ0 as mean and η0

2 as 
variance, and τ2 follows a hyperprior distribution with p as mean 
and q as variance. These parameters μ0, η0

2, p, and q of the prior 
distributions μ and τ2 are hyperparameters.

Ti ~ N(θ, vi), i= 1, …, k
θi ~ N(μ, τ2)
μ ~ N(μ0, η0

2), τ2 ~ IG(p, q)

In this way, in the random effect model, the treatments effect of 
each study are connected by the hyperprior distributions from θi 
to θk. Thus, it is no longer an independent model but a hierarchi-
cal model [5].

Figure 1. Monte Carlo simulation.

Figure 2. Overall concept of the Bayesian approach using a Markov 
chain Monte Carlo (MCMC) simulation.
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Summary of the Bayesian method
With Figure 2, the Bayesian method can be summarized as follows.
First, a prior distribution (prior probability) is selected. For a 

conjugate prior distribution, normal distribution, beta distribu-
tion, and inverse gamma distribution are generally used.

Second, the likelihood is calculated from the present data and a 
Bayesian hierarchical model is created – in NMA, the likelihood 
is mainly expressed as the treatment effect θ.

Third, the prior distribution and likelihood are input to the MC-
MC simulation, and a distribution that best converges the posteri-
or distribution is set. The probability of stable distribution and the 
area under the posterior distribution function can be determined 
through the MCMC simulation.

Lastly, statistical reasoning for the treatment effect is performed 
with the determined posterior distribution. Therefore, the Bayesi-
an NMA can analyze the posterior distribution even if it is not a 
standard distribution generally used in statistics.

Frequentist method
The frequentist method is not related to external information, 

and the probability that the research hypothesis is true within the 
present data (likelihood) is already specified (test for a p-value of 
0.05 or a 95% CI). Thus, it only determines whether to accept or 
reject the research hypothesis by the significance level.

The following shows the design by treatment interaction model 
for inconsistency:

where A denotes the reference treatment, J denotes the com-
parative treatment (J= B,C,…), d denotes the study design, and i 
denotes the ith study in the dth study design.

The design by treatment interaction model is a frequentist NMA 
model that considers both heterogeneity between studies and in-
consistency between study designs [4].

Here, 
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you must set the variable names in accordance with the relevant 
function. The process is as follows: network setup ->  select a net-
work model (fixed or random) ->  select the MCMC convergence 
optimal model ->  statistical reasoning in the final model (Figure 3).

There are two R packages for NMA: “gemtc” for Bayesian NMA 
and “netmeta” for frequentist NMA. Before starting the analysis, 
you must install the packages with the following commands. For 
a more detailed explanation, you can refer to the detailed code, 
data, and references for each package [7].

· install.packages(“netmeta”)
· install.packages(“gemtc”)

When running Bayesian NMA, the MCMC simulation is used, 
and the application required for this is Just Another Gibbs Sam-
pler; Gibbs Sampler is a representative method of MCMC (JAGS). 
You can download the latest version 4.0 or higher from Google 
and install it. In addition, you must install the “rjags” package to 
use JAGS in R as follows:

· install.packages(“rjags”)

We mark R commands with a dot (‘ · ’) in front of them, to dis-
tinguish them from the main text. When long commands are ex-
tended to the next line, there is no dot at the beginning of the next 
line. Thus, when you enter the command in the R software, you 
must type them without the dot (‘ · ’) in front of them.

Data coding and loading
First, load the “gemtc” package to perform Bayesian NMA.
· library(gemtc)

Next, load the binary example file from the working directory 
into the memory of R with the following command. Thus, you 
should save Supplementary Material 1 as “bin_dn.csv” in the 
specified working folder.

· data_b_bin= read.csv(“bin_dn.csv”, header= TRUE)

This loaded file is saved as “data_b_bin” in the R memory. 
The “gemtc” package has many sub-functions. Among them, 

the “mtc.network” function can be run only if the data function 
name is a specific name. In the binary data, it must be “study,” “re-
sponders,” “sampleSize,” or “treatment.” In this example, the varia-
ble name is different; thus, you must change the variable name 
with the “colnames” command as follows:

·  colnames(data_b_bin) < - c(“study”, “responders”, “sampleSize”, 
“treatment”)

“colnames” specifies the variable name (column), and you must 
sequentially enter the variable names of data_b_bin data. 

Network setup
For a network analysis of the prepared “data_b_bin” data, you 

must set up the network using the “mtc.network” function as fol-
lows:

·  network_b_bin < - mtc.network(data.ab= data_b_bin, 

description= “Bayesian NMA binary data”)

The “mtc.network” function performs network setup with the 
previously set “data_b_bin” and declares it as “network_b_bin”.

· plot(network_b_bin) 

The plot function graphically shows the direct comparison be-
tween the treatment groups comprising the network (Figure 4). 
The thickness of the edge for connecting nodes means the 
amount of data. 

· summary(network_b_bin) 

You can see the overall status of network setup. You can also see 
the number of 2-arm or 3-arm studies and number of responses 
to individual treatment. Thus, it numerically describes the above 
network plot.

Network model
Once the network setup is completed, you must set a network 

model of fixed effect model or random effect model. Although it 
is generally recommended to select a random effect model con-
sidering the between-study variation, this study will explain with 
a fixed effect model for convenience.

·  model_b_bin_fe < - mtc.model(network_b_bin, linearModel=  
‘fixed’, n.chain= 4)

With the “mtc.model” function, you can load the network set-
up data “network_b_bin” and set the fixed effect model and ran-
dom effect model as “model_b_bin_fe”. “n.chain” indicates the 
number of chains to be performed in the following MCMC simu-
lation.

Figure 4. Network plot using the “gemtc” package. A: placebo; B: IV 
(single); C: IV (double); D: topical; E: combination. IV, intravenous 
injection.
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Markov chain Monte Carlo (MCMC) simulation and  
convergence diagnosis
Running MCMC simulation

Once the network model is set up, you can perform a MCMC 
simulation. The overall process is to set and run an appropriate 
number of simulations, and then check whether the results con-
verge.

First, an example of the fixed effect model will be explained.
·  mcmc_b_bin_fe < - mtc.run(model_b_bin_fe, n.adapt= 5000, 
n.iter= 10000, thin= 20)

In the “mtc.run” function, enter the name of the fixed effect mod-
el that has been set. “n.adapt= 5000” means to discard no.1-5,000 
of the iterations. This is called burn-in, which is to remove a cer-
tain part of the beginning of the created random numbers to ex-
clude the effect of the initial values of the algorithm. “n.iter= 10000” 
means to perform 10,000 simulations and “thin= 20” means to 
extract every 20th value.

To summarize the above explanation, the first to 5,000th data 
are discarded (to reduce the effect of initial values in simulation), 
simulations are performed 10,000 times with 5,001st to 15,000th 
values, and every 20th value is extracted (e.g., 5,020, 5,040….).

In the Bayesian analysis, prior distribution considering multi-
chain is input to determine the posterior distribution. The multi-
chain simulation is performed by setting multiple initial values for 
the prior parameter of prior distribution, that is, the hyperparam-
eter d (e.g., 4 values of -1, 0, 1, and 2). Therefore, because every 
20th data are extracted among 10,000 simulations, 500 data points 
are extracted in each chain.

You can see a more detailed explanation by using the summary 
command:

· summary(mcmc_b_bin_fe)

MCMC simulation and convergence status
To verify if the MCMC simulation converged well, you can 

check the following items in combination.

MCMC error
A smaller MCMC error indicates a higher accuracy, which means 

a good convergence. Therefore, a sufficient sample size should be 
achieved by performing many simulations and the burn-in pro-
cess to remove the effect of initial values, and the data extraction 
interval “thin” should be adjusted appropriately.

Deviance information criterion 
The deviance information criterion (DIC) is expressed as DIC=   

D-  
  
+pD, where D-  

   
is the sum of residual deviances and pD is an esti-

mated value of the parameter. Thus, the DIC considers both the 
fitness and complexity of the model, and the smaller the DIC is, 
the better the model.

Trace plot and density plot
If the trace plot (a graph visually showing the simulation result) 

has no specific pattern and the chains are entangled, it is consid-
ered that the convergence is good. The density plot is a posterior 
distribution (posterior density function) and if the shapes are sig-
nificantly different for the same number of simulations, it means 
the data did not converge well.

Figure 5A is the case when 100 and 500 were input as the total 
number of iterations with no burn-in. In the first 100 iterations 
(Figure 5A left), the four chains have severe variations and are not 
even, but at approximately 500th iteration (Figure 5A right), the 

Figure 5. Trace and density plots: (A) iterations=100 (left) vs. 500 (right); (B) iterations=10,000 & thin=20; (C) iterations=10,000 & thin=10. 
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graph becomes even, with no specific pattern. Therefore, it is de-
sirable to perform at least 500 simulations for each channel. For 
burn-in to exclude the effect of initial values, 1-100th data points 
must be discarded without question because they are too uneven, 
and the number of discarded values must be at least 500. In this 
example, the values were discarded for up to 5,000 times to mini-
mize the effect of the algorithm.

In Figure 5B, when the simulations are performed 10,000 times 
with an extraction interval “thin” of 20, 500 data points are ex-
tracted from each channel. If 10 is input to thin (Figure 5C), 1,000 
values are extracted per channel, which increases the sample size 
and results in a more even distribution of the trace plot. Further-
more, 1,000 samples of post density function were selected be-
cause it looks more similar to the normal distribution.

The finally selected model performed burn-in for 5,000 values 
and 10,000 simulations, and extracted every 10th data point for 
1,000 samples per channel.

·  mcmc_b_bin_fe < - mtc.run(model_b_bin_fe, n.adapt= 5000, 
n.iter= 10000, thin= 10)

Compared to the extraction interval thin of 20, the total sample 
size increased and the MCMC standard error of the treatment 
group AB decreased from 0.004 to 0.003, thus increasing the ac-
curacy. However, the DIC decreased from 56.24 to 56.63, which is 
practically insignificant.

Gelman-Rubin statistics and plot
· gelman.diag(mcmc_b_bin_fe)
· gelman.plot(mcmc_b_bin_fe)
The “gelman.diag” command displays the Gelman-Rubin sta-

tistics on the console, and the “gelman.plot” command draws the 
Gelman-Rubin plot. As the number of simulations increases, it 
approaches 1, and the variations must be stabilized so that it can 
be said to have converged well.

Selecting the final model for MCMC simulation
For MCMC simulation, a model that converges best should be 

selected by adjusting the number of chains appropriate for multi-
chain, the number of data for removal of initial effect (burn-in), 
the number of iterations, and the extraction interval (thin).

For the fixed effect model of this example, 4 chains, 5,000 burn-
ins, 10,000 iterations, and an interval of 10 were selected, to suffi-
ciently remove the effect of initial values, increase the iterations 
and extraction interval, and minimize the MCMC error and DIC 
variation with almost no variations and stability of various plots.

However, you should adjust the iterations appropriately because 
it can take significant time depending on the computer specifica-
tions.

Burn-in 5,000, iteration 10,000, thin 10
·  mcmc_b_bin_fe < - mtc.run(model_b_bin_fe, n.adapt= 5000, 
n.iter= 10000, thin= 10)

· plot(mcmc_b_bin_fe)

· summary(mcmc_b_bin_fe)
· gelman.diag(mcmc_b_bin_fe)
· gelman.plot(mcmc_b_bin_fe)

Consistency test
Consistency test in the assumptions of NMA is a critical tool 

that determines the applicability of NMA results.
·  nodesplit_b_bin_fe < - mtc.nodesplit(network_b_bin, linear-
Model= ‘fixed’, n.adapt= 5000, n.iter= 10000, thin= 10)

· plot(nodesplit_b_bin_fe)
· plot(summary(nodesplit_b_bin_fe))

The fixed effect model “nodesplit_b_bin_fe” is created for con-
sistency test by entering the network set-up data in the “mtc.node-
split” function. The MCMC simulation is also performed.

The variations between treatments and the consistency test re-
sults of all individual treatments can be easily seen. As a result of 
the consistency test, the p-value of treatments E versus D was 0.043, 
indicating inconsistency. However, no statistical significance was 
observed in all the other treatments. Therefore, it is desirable to 
set up a random effect model for a more robust analysis.

Forest plot
Forest plot allows graphical comparison of the effect sizes by 

treatment group through NMA.
· forest(relative.effect(mcmc_b_bin_fe, t1= “A”), digits= 3)

When you enter the final model through MCMC simulation in 
the forest function, a forest plot with A reference treatment is cre-
ated (Figure 6).

The effect size (OR, blood transfusion rate) of every treatment 
was lower than the placebo, and the 95% credible intervals did 
not overlap.

In particular, the blood transfusion rate of the combination 
treatment method (E) was statistically significantly lower com-
pared to those of all the other treatments including single intrave-
nous injection (IV) injection [B, IV(single)], double IV injection 
[C, IV(double)], and topical application method [D, topical].

Treatment ranking
One of the most important functions of NMA is that the com-

Figure 6. Forest plot_reference A. A: placebo; B: IV (single); C: IV 
(double); D: topical; E: combination. IV, intravenous; OR, odds ratio; 
CrI, credible interval.  

OR (95% CrI) 
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parative advantages of treatments can be determined. In other 
words, the cumulative probability that the top priority to the low-
est priority treatments are selected can be calculated.

·  ranks_b_bin_fe < - rank.probability(mcmc_b_bin_fe, pre-
ferredDirection= -1)

· print(ranks_b_bin_fe)

Enter the final MCMC model in the “rank.probability” func-
tion. Set the “preferredDirection” to ‘-1’ or ‘1’, depending on wheth-
er a smaller effect size indicates a better treatment, or vice versa. 
In this example, it is set to ‘-1’ because an effect size smaller than 
that of the reference treatment means a better treatment.

As can be seen in the probability table, the best treatment is E 
(combination) at 99.8%, followed by C (IV double) at 68.2%, B (IV 
single), D (topical), and A (placebo).

FREQUENTIST NMA USING R “netmeta” 
PACKAGE

Figure 7 shows the flowchart for using the R package “netmeta” 
for NMA using the frequentist method. First, you must change 
the data format to the effect size data format, and set the variable 
names in accordance with the relevant function. The process is as 

follows: effect size data format ->  select a network model (fixed 
or random) ->  statistical reasoning in the final model.

Data coding and loading
Load the “netmeta” package to perform frequentist NMA.
· library(netmeta)
Next, load the binary example file from the working directory 

into the memory of R with the following command (Supplemen-
tary Material 1).

· data_f_bin= read.csv(“bin_dn.csv”, header= TRUE)

The “netmeta” package can be run only if the variable name of 
the effect size data type is “studlab,” “TE,” “seTE,” “treat1,” or “treat2.” 
Because the data in this example is raw data, it must be converted 
to effect size data type, and the variable names must be matched 
as well.

·  data_f_bin < - pairwise(trt, event= d, n= n, studlab= study, 
data= data_f_bin, sm = “OR” )

Enter the first treatment variable “trt” in the pairwise function, 
and the other variables are matched: frequency (event= d), sample 
size (n= n), and study name (studlab= study). Lastly, select wheth-
er to use OR or relative risk (RR) data.

Figure 7. Flow chart of network meta-analysis using the “netmeta” R package.

Effect size format
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Treatment rankingForest plot League table Network plot
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Network model
If the conversion to the effect size data type has been complet-

ed, select the fixed effect model or random effect model for the 
network model. 

·  network_f_bin_fe < - netmeta(TE, seTE, treat1, treat2, stud-
lab, data= data_f_bin, sm= “OR”, reference= “A”, comb.fixed=  
TRUE, comb.random= FALSE)

Set the fixed effect model to network_f_bin_fe by loading effect 
size (TE), standard error (seTE), treatment 1 (treat1), treatment 2 
(treat2), study name (studlab), and data_f_bin in the netmeta 
function. 

Network plot
·  tname_f_bin < - c(“Placebo”, “IV(single)”, “IV(double)”, “Top-
ical”, “Combination”)

· netgraph(network_f_bin_fe, labels= tname_f_bin)

To enter the treatment name in the network plot, set “tname_f_
bin” as the treatment name.

You can enter “network_f_bin_fe” in the “netgraph” function to 
graphically show a direct comparison between the treatment 
groups comprising the network. The thickness of the edge for 
connecting nodes means the amount of data. 

Network model summary estimates
Once the network model is set up, you can use “summary” to 

see the overall summary of the model. 
· summary(network_f_bin_fe)

The total number of studies is 21, the number of treatments is 5, 
the number of paired direct comparisons is 25, and the number 
of study designs is 6 (AB, AC, AD, AE, BDE, and ABE).

Furthermore, the reference variable is A and the effect size is OR.
In this example, the fixed and random effect models have the 

same effect size because the between-study variance (tau) is zero.

Consistency test
Consistency test in the assumptions of NMA is a critical tool 

that determines the applicability of NMA results.

Global approach
This approach calculates the regression coefficient of the incon-

sistency model for each study design and then tests the linearity 
of the regression coefficients for all models by using the Wald test. 
The consistency test was performed for all models in the same way 
as for the STATA NMA model [4]. 

· decomp.design(network_f_bin_re)
As a result of the consistency test for every model, the p-value 

was 0.9942. As this supports consistency, which is the null hypo-
thesis, this network model is acceptable. 

Local approach
· print(netsplit(network_f_bin_re), digits= 3)

Enter the network model in the “netsplit” function and perform 
a consistency test for each treatment.

In all comparisons of treatments, the p-value was statistically 
insignificant, showing no inconsistency. Therefore, the consisten-
cy model is supported once again.

Forest plot
A forest plot allows a graphical comparison of the effect sizes 

by treatment group through NMA.
·  forest(network_f_bin_fe, ref=“A”, digits=3, xlab=“Odds Ratio”)

Enter the set network model and “A” for reference treatment in 
the forest function. 

The effect size (OR, blood transfusion rate) of every treatment 
was lower than that of the placebo, and the 95% CIs did not overlap.

In particular, the transfusion rate (OR, 0.033; 95% CI, 0.006 to 
0.175) of the combination treatment (E) was statistically signifi-
cantly lower than those of all the other treatments including sin-
gle IV injection [B, IV (single)] (OR, 0.273; 95% CI, 0.186, to 0.399), 
double IV injection [C, IV (double)] (OR, 0.229; 95% CI, 0.146, 
0.360), and the topical application method [D, topical] (OR, 0.329; 
95% CI, 0.197 to 0.550).

Treatment ranking
One of the most important functions of NMA is that the com-

parative advantages of treatments can be determined. In other 
words, the cumulative probability that the top priority to the low-
est priority treatments are selected can be calculated.

·  ranks_f_bin_fe < - netrank(network_f_bin_fe, small.values=  
”good”)

· print(ranks_f_bin_fe, sort= FALSE)

Enter the network model in the “netrank” function. Enter “good” 
in “small.values” if a smaller effect size indicates a better treatment, 
or “bad” otherwise. 

As can be seen in the probability table, the best treatment is E 
(combination) at 99.38%, followed by C (IV double) at 65.43%, B 
(IV single), D (topical), and A (placebo).

COMPARISON OF NMA RESULTS: BAYESIAN VS. 
FREQUENTIST METHOD AND R VS. STATA 
SOFTWARE 

Table 1 outlines the Bayesian and frequentist NMA. The NMA 
used in STATA is a design by treatment interaction model based 
on regression analysis, which considers both heterogeneity be-
tween studies and inconsistence between study designs [4]. How-
ever, the R “netmeta” package uses an electrical network model, 
which changed it slightly [8,9].

The Bayesian method also shows similar values between the 
fixed and random effect models, which is an almost identical re-
sult to that of the frequentist method.
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CONCLUSION

This paper presented as little statistical theory as possible and 
focused instead on the actual performance of meta-analysis meth-
ods, so that researchers who have not majored in statistics could 
easily understand it. In other words, this study aimed to provide 
researchers from different fields an overview of how to adequately 
use already developed statistical methods in their field of study 
and interpret the results.

This study compared the Bayesian network meta-analysis using 
the “gemtc” package and the frequentist network meta-analysis 
using the “netmeta” package. We found that these two methods 
produced the same results. Refer to the references for detailed de-
scriptions for continuous data, besides the binary data presented 
in the examples in this study [2].

We hope that this study will help researchers to perform meta-
analysis and conduct related research more easily.
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Table 1. Comparison effect sizes between frequentist and Bayesian method in network meta-analysis

Data type Treatment

Frequentist approach Bayesian approach1

STATA2
R "nemeta" package R "gemtc" package

Fixed Random Fixed Random

Binary Placebo 1.000 (reference) 1.000 (reference) 1.000 (reference) 1.000 (reference) 1.000 (reference)
  IV (single) 0.273 (0.186, 0.399) 0.273 (0.186, 0.399) 0.273 (0.186, 0.399) 0.263 (0.181, 0.379) 0.264 (0.173, 0.399)

IV (double) 0.229 (0.146, 0.360) 0.229 (0.146, 0.360) 0.229 (0.146, 0.360) 0.220 (0.138, 0.346) 0.220 (0.138, 0.357)
Topical 0.329 (0.197, 0.550) 0.329 (0.197, 0.550) 0.329 (0.197, 0.550) 0.324 (0.193, 0.534) 0.322 (0.180, 0.551)
Combination 0.033 (0.006, 0.175) 0.033 (0.006, 0.175) 0.033 (0.006, 0.175) 0.015 (0.001, 0.089) 0.014 (0.000, 0.083)

Values are presented as odds ratio (95% confidence interval).
IV, intravenous injection.
1Effect size (95% credible interval). 
2Design-by-treatment interaction model.


