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Simple Summary: A frequent type of injuries in traffic collisions and falls from a moderate height is
associated with subdural hematomas caused by the mechanical failure of cerebral bridging veins,
which link the superior sagittal sinus to the brain. For this reason, both to design safe restraint systems
for motor vehicles and to study how these injuries occur, it is important to study the mechanical
properties of the bridging veins. Although the mechanical properties of bridging veins have been
studied for the last half century, some viscoelastic effects in these vessels that alter their mechanical
response have not been analyzed in detail until now. This is the first study that measures, quantifies,
and models these viscoelastic effects, thus improving our knowledge of the mechanical response of
cerebral bridging veins.

Abstract: The mechanical properties of the cerebral bridging veins (CBVs) were studied using
advanced microtensile equipment. Detailed high-quality curves were obtained at different strain
rates, showing a clearly nonlinear stress–strain response. In addition, the tissue of the CBVs exhibits
stress relaxation and a preconditioning effect under cyclic loading, unequivocal indications of viscoelastic
behavior. Interestingly, most previous literature that conducts uniaxial tensile tests had not found
significant viscoelastic effects in CBVs, but the use of more sensitive tests allowed to observe the
viscoelastic effects. For that reason, a careful mathematical analysis is presented, clarifying why in
uniaxial tests with moderate strain rates, it is difficult to observe any viscoelastic effect. The analysis
provides a theoretical explanation as to why many recent studies that investigated mechanical
properties did not find a significant viscoelastic effect, even though in other circumstances, the CBV
tissue would clearly exhibit viscoelastic behavior. Finally, this study provides reference values for the
usual mechanical properties, as well as calculations of constitutive parameters for nonlinear elastic
and viscoelastic models that would allow more accurate numerical simulation of CBVs in Finite
Element-based computational models in future works.

Keywords: biomechanics; collagenous tissue; tissue characterization; strain rate dependent materials;
viscoelasticity

1. Introduction

Worldwide, TBI contributes to more fatalities and disabilities than any other traumatic
event, with an average incidence of about 940 cases per 100,000 people; thus, between 64
and 74 million people suffer some form of TBI each year [1]. TBI is also the main traumatic

Biology 2021, 10, 831. https://doi.org/10.3390/biology10090831 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-0671-4106
https://orcid.org/0000-0002-8659-1985
https://orcid.org/0000-0002-4982-206X
https://orcid.org/0000-0002-5758-2668
https://orcid.org/0000-0001-6872-3609
https://orcid.org/0000-0003-0688-3599
https://doi.org/10.3390/biology10090831
https://doi.org/10.3390/biology10090831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10090831
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10090831?type=check_update&version=2


Biology 2021, 10, 831 2 of 18

cause of severe injuries and death in traffic collisions, and it can also occur in falls from a
moderate height. For this reason, a good understanding of the injury mechanisms involved
in TBI could be important to prevent them or to improve their medical treatment.

Among the injury mechanisms that can produce a serious TBI, damage to cerebral
brain vessels is especially frequent. The incidence in all non-missile head injuries ranges
from 26% to 63% [2,3], and the mortality rate ranges from 30% to 90% [3,4]. In addition,
this damage is extremely life threatening since the mechanical failure of these vessels
often produces subdural hemorrhages of some consideration and poses a serious risk to
the neural tissue. The consequences of such injuries are dysfunctions of the vasculature,
chronic neurodegenerative consequences [5], disabilities [6,7], and fatalities [8].

Regarding blood vessel damage, it is a well-known fact that an excessive tensile strain
in certain vessels, such as CBVs departing from the sagittal sinus towards the encephalic
mass, frequently results in a loss of structural integrity, leading to hemorrhage and SDH [9].
Such CBV damage can be produced by strong head decelerations or angular accelerations
during a traumatic event. Another important issue is the age effect on the mechanical
response in both the pediatric case [10,11] and in the elderly case [12], Due to this, obtaining
further knowledge about the biomechanics of these injuries is important in the field of
forensic pathology and neuropathology. More specifically, in cases of elderly or infant
cranio-encephalic trauma, where it is important to differentiate between accidental and
intentional trauma [13].

The mechanical properties of CBVs have been studied for more than half a century [14,15],
mainly through uniaxial tensile tests due to the small dimensions and geometrical charac-
teristics of CBVs. The results of most researchers are comparable and can be found in some
excellent recent review articles on the mechanical properties of CBVs [16]. Interestingly,
most recent works agree in suggesting that there is no significant viscoelastic effect in the
CBVs [3,17–21] since YM do not increase significantly with the strain rate. Nevertheless,
our study demonstrates that, although the viscoelastic effect is apparently negligible in
uniaxial tests, in relaxation or repeated load-unload tests as performed, the viscoelastic
characteristics are clearly measurable. In fact, the apparent absence of viscoelasticity in
uniaxial tensile tests observed in previous studies is theoretically explained in the present
research. Although it appears that viscoelastic behavior does not exert a major influence in
material response [16] and the mechanical behavior is fairly well represented by an elastic
model, an accurate characterization of the mechanical response of collagenous tissues
is critical for investigating soft tissue injury mechanisms [22]. Therefore, after verifying
the presence of viscoelastic effects, a viscoelastic model is used to quantify the weight
of viscoelasticity in the mechanical behavior of CBVs. The viscoelastic model describes
the mechanical behavior better than the known elastic models, and furthermore, it allows
quantifying the viscoelastic contribution in CBVs, which will show that, indeed, it is really
not negligible.

Thus, given the importance of the failure of CBV for SDH, the aim of this study is to
improve the current state of knowledge on the mechanical behavior of CBVs. In addition,
our work could help determine more accurate ranges of stress and force involved in the
occurrence of an SDH, which is an important matter in forensic reconstruction.

2. Materials and Methods
2.1. Material and Specimen Preparation

The material used in this study consisted of a sample of human CBV specimens,
harvested from forensic autopsies, conducted at the Forensic Pathology Service of the
Legal Medicine and Forensic Science Institute of Catalonia (FPS/IMLCFC). The study was
approved by the Research Committee of the IMLCFC.

For the tests, twelve sections of the meningeal-cortex space (including the meninges,
the subarachnoid space, and the upper part of the cerebral cortex) were obtained from
autopsies of N = 12 PMHSs. Cases were limited to those where no cerebral vessel
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pathology was previously diagnosed. Once received, the sections were kept refrigerated
for at most 96 h in airtight containers that maintained the natural degree of hydration.

From these n = 23 sections, CBVs were carefully dissected and tested in uniaxial
tensile tests (more than one CBV was dissected from some sections). Each CBV was
photographed using a camera coupled to a stereo microscope SMZ-168, both from Motic®

(see Figure 1). A scale was located under the CBV to measure the flattened CBV width. For
each CBV, five width measures were taken in the central region (see Figure 1), and from the
average of the five measures, the outer diameter (OD) was calculated. On the other hand,
the thickness (e) was determined using the expression e = 0.021 + 0.0061·OD as a function
of the diameter, given in the literature [17]. Thus, the average area of the cross-section of
each CBV could be determined from OD and thickness.

Figure 1. Nine images of different CBV specimens captured with the camera coupled to the micro-
scope (a–i). The diameter and width vary slightly along the CBV. Subfigures (g–i) show the five
measures of the apparent width in the central region. This was repeated for all CBVs, so the outer
diameter OD was computed from measures of the width.

2.2. Mechanical Tests, Measures of Strain and Stress

The tensile tests, the cyclic load and relaxation tests were performed with a UTM
Zwick-Roell® (model: Allround-Table-Top®), and the applied load was measured with
a 20 N load cell HBM®. Special fixtures were used, and the displacement was carefully
measured with a digital control unit attached to the UTM. The fixtures had a knurled
surface in order to prevent any slippage: accurate measures of the initial and final positions
made it possible to verify whether there was no slippage inside the special fixtures.

Uniaxial tensile tests. The strain rate of uniaxial tensile tests ranged from ε̇ = 0.001
to 1.20 s−1 (see Table 1). The final elongation was around 50% for many specimens and,
because of this, the infinitesimal strain theory was not suitable, and finite strain measures
were used instead.

As in all previous studies, each CBV is then considered a hollow cylinder of a con-
stant cross-section and made of a homogeneous and transverse isotropic material [3,9,20],
stretched along its longitudinal axis. Therefore, the longitudinal stretch for each instant λt
was computed as:

λt = 1 +
δt

L0
(1)

where δt is the digitally measured displacement and L0 the undeformed length of the
specimen. For the computation of strain and stress components, the origin of coordinates
was located on the static fixture, and the X axis was chosen parallel to the stretching di-
rection, while the Y and Z axes were parallel to the cross-section of the vein. Thus, the
deformation of the cylinder can be described by relating explicitly the spatial coordinates
xt = (xt, yt, zt) of the current deformed or stretched configuration to the material coordi-
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nates X t = (Xt, Yt, Zt) of the initial undeformed configuration, by means of the following
relations:

xt = Xλt, yt = Y
[
1− ν̄(λ2

t − 1)
]1/2

, zt = Z
[
1− ν̄(λ2

t − 1)
]1/2

(2)

where ν̄ considers the Poisson effect: for a nonlinear material, this coefficient is a function
of the stretch, and when the material is linear elastic, the function ν̄(λt) reduces to a
constant. For the chosen constitutive model, the specific form of the function ν̄ is obtained
in Section 2.3.1. On the one hand, the deformation gradient tensor F = ∂xt/∂X can be
determined from Equation (2):

F =

λt 0 0
0

[
1− ν̄(λ2

t − 1)
]1/2 0

0 0
[
1− ν̄(λ2

t − 1)
]1/2

 (3)

Table 1. Basic mechanical properties of the CBV specimens.

Specimen E0.10 E0.15 Fu σu εu Fy σy εy ε̇
Identifier (MPa) (MPa) (N) (MPa) (%) (N) (MPa) (%) (s−1)

2628A 4.56 6.60 1.036 3.73 42.0 0.650 2.34 26.7 0.950
2628B 2.10 2.37 0.612 3.38 64.6 0.405 2.24 45.6 1.196
2628C 3.18 4.29 0.643 3.95 52.2 0.383 2.35 31.9 0.922
2629A 5.03 6.51 0.791 4.44 46.9 0.426 2.39 27.7 0.723
2629B 4.88 7.02 0.746 4.06 39.0 0.479 2.60 27.4 0.708
2629C 5.11 6.36 0.680 3.89 37.9 0.533 3.05 31.7 0.799
2630A 3.66 5.60 0.513 2.17 32.8 0.349 1.47 23.6 0.566
2630B 4.74 8.57 1.814 5.00 52.7 0.902 2.49 24.3 0.686
2632A 5.63 6.80 0.378 2.32 31.8 0.378 2.32 31.8 0.721
2634A 6.10 — 0.278 0.65 16.3 0.204 0.47 13.3 0.389
2634B 2.59 2.83 1.060 3.17 55.0 1.036 3.10 51.2 1.145
2640A 5.94 6.95 0.876 5.17 52.8 0.581 3.43 32.9 0.897
2836B 2.05 3.18 0.175 1.08 32.5 0.108 0.66 21.7 0.001
2836C 4.02 6.65 0.091 0.79 18.3 0.091 0.79 18.3 0.004
2836D 3.80 6.09 0.493 3.03 41.0 0.241 1.48 22.9 0.171
3636A 4.48 4.86 0.470 1.34 24.3 0.313 0.89 17.4 0.137
3636B 4.92 5.43 0.357 1.60 32.6 0.238 1.07 19.1 0.020
3636C 6.61 — 0.293 0.93 18.7 0.213 0.68 11.3 0.020
647A — — 0.125 0.70 11.7 0.081 0.45 8.10 0.002
647B 3.10 6.36 0.262 1.01 24.3 0.164 0.63 17.2 0.019

Furthermore, the Green–Lagrange strain tensor is given by E = (FTF− 1)/2 as:

E =
1
2

λ2
t − 1 0 0

0 −ν̄(λt)(λ2
t − 1) 0

0 0 −ν̄(λt)(λ2
t − 1)

 (4)

On the other hand, the second Piola–Kirchhoff stress tensor S is related to the Cauchy
stress tensor σ (defined on the deformed configuration) by the relation S = JF−1σF−T ,
where J = det(F) is the Jacobian determinant [23]. Explicitly, in components:

S =


Ft

λt A0
0 0

0 0 0
0 0 0

 (5)
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where Ft is the tensile force at time t, and A0 is the initial cross-section of the specimen.
This tensor takes into account the section variation due to stretching, which is given by:

At = A0

[
1− ν̄(λ2

t − 1)
]

(6)

Figure 2a shows a typical stress–strain curve of one of the CBVs tested and the main
features measured from the data. The elastic region (with reversible deformation) and
anelastic region (with non-reversible deformation) are separated by the yield point, defined
by its stress σy and strain εy, where the stress–strain curve changes its curvature from
convex to concave. The maximum stress σu defines the failure point, related to a failure
strain εu. All those parameters were computed, together with YM, which was determined
as the local slope of the curve at strain levels 10% and 15% to facilitate a comparison with
the literature [16].

Additional mechanical tests. Furthermore, to verify the existence of measurable vis-
coelastic effects, relaxation and cycling loading tests were performed in three additional
specimens. The testing process was divided into different stages, as illustrated in Figure 2b,
following a process as in [24]. In these additional tests, the maximum strain applied was
chosen as the 20% of the ultimate strain εu of the CBVs tensile tests, corresponding to
approximately a εu = 5% of elongation. The different stages of Figure 1b consisted of: (1)
loading-holding at εu, (2) a cyclic loading and unloading of 10 fast loading cycles, (3–5)
three successive loading-holding tests at 3/3, 2/3 and 1/3 of εu, respectively, (6–8) three
triangular loading-unloading stages at rates of 1, 0.1 and 0.01 s−1, respectively, and (9) load
to failure. All strain jumps, in stages (1–5), were made at 3000 mm/min. In all relaxation
tests and between loading stages, the CBV specimen was allowed to recover at no load for
the full relaxation.

(a) (b)

Figure 2. (a) Typical Stress–Strain curve obtained for CBVs showing the characteristics determined;
these parameters were proposed in [20] and subsequently used also in [3,9]. (b) The scheme of the
different stages of the testing procedure (relaxation, cyclic loading and loading-unloading tests).

As will be presented in later sections, the results of these additional tests show a stress
relaxation in the holding stages (1) and (3–5) and a progressive drop in the maximum
CBV force between consecutive load-unload cycles of stage (2), being both phenomena
characteristic of viscoelastic materials (the results are detailed and analyzed in Section 4).
These effects could be observed by means of a very accurate digital force measurement,
which allows observing the specimens that experienced a stress relaxation of the type
expected for viscoelastic materials, as it is reported in the results section, showing that
the viscoelastic effect, which was barely perceptible in the uniaxial tensile tests, was
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clearly observable in these complementary relaxation tests. This finding motivated the
use of a viscoelastic model for the description of the mechanical behavior of CBVs in
tensile tests, which have been previously considered in the literature as a material with
elastic behavior. A viscoelastic model, such as those proposed in the next section, besides
representing the behavior of CBVs better than an elastic model, allows to quantify the
viscoelastic contribution in tensile tests, which is expected to be small, thus explaining why
viscoelasticity is undetectable in this type of tests.

Furthermore, in the cyclic loading test stage, the final strain was always the same, and
a decreasing trend in the force reached at successive peaks was observed. This experimental
finding is attributed to the fact that the sample underwent preconditioning of its fibers in
each subsequent cycle [24] so that in each cycle, the specimen exhibited a slightly higher
stiffness than in the previous one; a result that fully coincides with what can be expected
from viscoelastic behavior as modeled by a QLVE model.

The positive result for viscoelastic effects in these two additional tests led us to re-
analyze the previous results of the uniaxial tensile tests by means of viscoelastic models.
Therefore, this study compares the constitutive parameters obtained under the assumption
of purely elastic behavior with that of viscoelastic behavior. As it is shown in Section 3, the
viscoelastic contribution in the uniaxial tensile test is small but measurable.

2.3. Fung Models for Elastic and Viscoelastic Behavior
2.3.1. Elastic Fung Model

Many collagenous soft tissues present a convex strain–strain curve, as shown in
Figure 1a, in which the slope of the curve increases with the level of strain. In the literature,
this feature is frequently modeled by means of “exponential-type” models. For the uniaxial
case, this leads to an exponential relation of the form:

σ(ε) ∝ eaε2

where σ is the uniaxial stress measure, ε the strain measure, and a > 0 a constant. Some
models with these characteristics are the Fung–Deng model [25,26], the Holzapfel–Kroon
model [27,28] or the Natali–Gregersen model [29], among others [30,31]. These models
vary in complexity; all of them are a generalization of the classical hyper-elastic model of
Fung [32], whose SEDF is a function of a function of the Green–Lagrange Strain Tensor E
and is given by:

Ψ(E) =
c
2

(
eQ(E) − 1

)
, Q(E) = b1E2

x + b2E2
θ + b3ExEθ (7)

where the auxiliary function Q(E) is a quadratic form of the components of the strain
tensor. The strain components of the latter formula are expressed in the coordinate system
of Figure 3. Equation (7) above shows that the model includes four constitutive parameters
c, b1, b2 y b3, leading to a transverse isotropy of the vessel wall material. The transverse
isotropy of blood vessels is discussed in detail in previous studies [27,28,33].

For the case of uniaxial stretching, it follows from Equation (4) that the nonzero
components of the strain tensor are Ex = (λ2

t − 1)/2 and Eθ = Er = −ν̄(λ2
t − 1)/2. The

elastic constitutive equations are obtained by calculating the following derivatives:

S(e)
x =

∂Ψ
∂Ex

= c

(
b1Ex +

b3

2
Eθ

)
eQ = cEx

(
b1 − ν̄

b3

2

)
eQ

S(e)
θ =

∂Ψ
∂Eθ

= c

(
b2Eθ +

b3

2
Ex

)
eQ = cEx

(
−ν̄b2 +

b3

2

)
eQ

S(e)
r =

∂Ψ
∂Er

= 0

(8)
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Figure 3. Adapted cylindrical coordinates used for the application of the Fung Model to a tubular
section of the CBV.

Since in the case of uniaxial stress S(e)
θ = 0, it follows from the second of these

equations that ν̄ = b3/2b2, so the Poisson effect, referred to in Equation (4), is given by
a constant, expressible in terms of the original model constitutive parameters. Defining
b0 := b1 − ν̄b3/2 = b1 − b2

3/(4b2), the first equation can be simplified to:

S(e)
x = cb0Exeb0E2

x (9)

This last equation is known as the simplified exponential model, which is equally hyper-
elastic and can be derived from the following SEDF:

Ψ(E, a) =
c
2

(
eb0a·E2·a − 1

)
=

c
2

(
eb0E2

x − 1
)

(10)

The above equation constitutes a transverse isotropic hyper-elastic model in which
a indicates the direction tangential to longitudinal direction of the CBV (which in the
test coincides with the X direction). Since only uniaxial loading situations have been
considered, in the following, we use the simplified exponential model (Equation (9)) to
derive the rest of the relevant mathematical relations.

2.3.2. Viscoelastic Fung Model

The most widely used viscoelastic model for soft collagenous tissues is the QLVE
model, which was also proposed by Y.-C. Fung [32]. In this work, it is assumed as a first
approximation that the viscoelastic effect can be adequately represented by a QLVE model,
whose relaxation function R(Ex, t) is separable and factorizes as R(Ex, t) = G(t)Se

x(Ex) [34].
In addition, given the short duration of the test, it is considered that G(t) can be approx-
imated by a two-term Prony series G(t) = (1 + g1e−t/τ0), being (g1, τ0) two additional
constants of the QLVE model, called the first viscoelastic coefficient (g1) and the relaxation time
(τ0). The inclusion of additional terms in the Prony series does not fundamentally change
the numerical results.

With these considerations, the second Piola–Kirchhoff stress is given by:

Sx(t) =
∫ t

0
G(t− τ)

∂S(e)
x

∂Ex
Ėx(τ) dτ

= S(e)
x (Ex(t)) + g1b0c

∫ t

0
e−(t−τ)/τ0 [1 + 2b0E2

x(τ)]e
b0E2

x(τ)Ėx(τ) dτ

(11)
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Thus, the stress response Sx of the material is the sum of the elastic S(e)
x and the

viscoelastic S(v)
x responses, where the term containing the integral is the viscoelastic contri-

bution to stress and is designated as S(v)
x (t) = S̃(v)

x (Ex(t), g1, τ0, b0, c). In Appendix A, the
explicit integration of Equation (11) for the constant strain rate is presented, and a detailed
analysis of how the stress–strain curve varies in terms of the strain rate is also given.

Both the elastic model of Equation (9) and the viscoelastic model of Equation (11) were
fitted to the tensile test results for CBVs to show the improvement of the viscoelastic model
and compute the viscoelastic contribution and is exposed in the following sections.

3. Results

The force-strain curves obtained for the tensile tests are shown in Figure 4. The curves
are clearly convex so that the effective YM at each strain level, measured as the local
slope of the stress–strain curve, increases progressively. In this section, the strain ε is the
longitudinal component of the material Green–Lagrange Strain Tensor and σ refers to the
main stress of the second Piola–Kirchhoff Stress Tensor.

(a) (b)

Figure 4. Force-strain curves of all specimens: (a) low and medium strain rate (ε̇ < 0.60 s−1) and (b)
high strain rate (ε̇ > 0.60 s−1).

Table 1 contains all the values obtained for the yield stress (σy), the ultimate stress (σu),
the yield strain (εy), the maximum strain (εu), the effective YM at strain levels ε = 10% (E0.10)
and ε = 15% (E0.15), and the strain rate ε̇ of each tensile test. Additional clarification of these
parameters can be found in Figure 1. The specimen names in Tables 1 and 2 consist of a
number identifying the PMHS and the letter A, B, and so on, which is used when different
specimens were obtained from the same PMHS. All the computed values for mechanical
properties of CBV are close to the values found in similar studies [3,9,16–20], as discussed
in Section 4.

The analysis of these data by means of MANOVA showed no significant correlation
of the effective YM with the strain rate ε̇, E0.10 (p-value > 0.90) y E0.15 (p-value > 0.60), as
expected from the computations of Appendix A.

On the other hand, both the ultimate strain σu (p-value < 0.003) and the associate
strain εu (p-value < 0.001) show a significant increase with the strain rate. Similarly, σy
(p-value < 0.0001) and εy (p-value < 0.0001) are affected by the strain rate. Consequently,
the maximum failure and elastic failure initiation forces are lower for specimens tested at a
lower strain rate.
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Table 2. Fitted constitutive parameters for elastic and viscoelastic models.

Elastic Model Viscoelastic Model
Specimen ε̇ be Ce ce r2 bv Cv cv g r2 VC
Identifier (s−1) (–) (N) (MPa) (–) (N) (NPa) (–) (%)

2836B 0.001 14.92 0.015 0.091 0.991 14.92 0.015 0.091 0.000 0.991 0.04
2836C 0.004 17.70 0.016 0.140 0.997 17.70 0.016 0.141 0.000 0.997 0.00
647B 0.019 28.66 0.013 0.051 0.991 23.61 0.012 0.045 0.144 0.995 7.36

3636C 0.020 13.11 0.110 0.350 0.999 13.11 0.110 0.350 0.005 0.999 1.29
3636B 0.020 2.770 0.365 1.637 0.992 1.847 0.466 2.091 0.047 0.994 7.40

3636A 0.137 2.301 0.636 1.817 0.992 1.727 0.827 2.363 0.018 0.995 6.66
2836D 0.171 16.33 0.024 0.149 0.993 14.69 0.023 0.143 0.044 0.994 8.75
2634A 0.389 23.33 0.061 0.141 0.995 13.72 0.078 0.180 0.194 0.999 38.6
2630A 0.566 14.32 0.041 0.172 0.997 11.63 0.040 0.169 0.090 0.999 17.7

2630B 0.686 21.76 0.044 0.122 0.981 14.81 0.012 0.032 0.514 0.993 54.6
2629B 0.708 11.93 0.054 0.293 0.977 5.896 0.049 0.265 0.217 0.995 42.3
2632A 0.721 5.616 0.139 0.852 0.992 3.728 0.150 0.923 0.065 0.995 23.5
2629A 0.723 7.926 0.090 0.506 0.992 4.706 0.098 0.551 0.111 0.999 30.5
2629C 0.799 6.579 0.112 0.643 0.990 4.614 0.095 0.544 0.120 0.997 33.2
2640A 0.897 4.567 0.193 1.139 0.996 4.995 0.215 1.270 0.008 0.996 33.0
2628C 0.922 9.487 0.042 0.256 0.985 5.531 0.043 0.261 0.148 0.997 25.8
2628A 0.950 12.12 0.074 0.268 0.993 10.61 0.053 0.189 0.121 0.995 27.8
2634B 1.145 2.554 0.314 0.940 0.984 1.225 0.146 0.435 0.366 0.998 44.3
2628B 1.196 3.425 0.100 0.554 0.987 1.742 0.121 0.670 0.143 0.998 20.7

For the stress–strain curves, both the elastic model of Equation (9) and the viscoelastic
model of Equation (11) were fitted. Table 2 provides the parameter values of the fitted
parameters for both models and additional information about the quality of the fitting
(r2 > 0.97 in all cases). The specimens in this table are arranged in order of increasing
strain rate (SR) and classified in low SR, medium SR and high SR. A comparison of typical
experimental stress–strain curves and fitted curves for both models is provided in Figure 5.
From the elastic fitting the parameters, be = b0 and Ce = c · A0 were computed, where A0 is
the gross area, and ce = Ce/A0 is the corresponding parameter for the stress–strain curve.

Figure 5. Two typical examples of force-strain curves, compared with the fitting of the elastic model
and the fitting to the viscoelastic model (specimens 2628B (gray) and 2634C (black)).
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As it can be seen in Table 2 and in Figure 5, a purely elastic fitting based on Equation (9)
is in all cases very good (r̄2 = 0.99, on average). The fact that the elastic model provides
such a good fitting could be the reason why many authors do not provide additional
viscoelastic refinements since descriptively the elastic model already provides a reasonably
good approximation of the stress–strain curves. However, as it is shown below, the
graphical fit could be further improved with a more complex viscoelastic model.

In addition, due to the interest placed in this work in quantifying the viscoelastic
contribution, a more complex model given by Equation (11) was considered. This allowed
to quantify the weight of the viscoelastic effects. The viscoelastic model uses four parame-
ters: b0, c, τ0, and g1. Nevertheless, it was found that due to the mentioned short duration
of most tests, the fitted value of the characteristic time τ0 exhibits high uncertainty, so the
fitting procedure was repeated, keeping the parameter τ0 as 1, 5, 10 and 50 s. Within this
value range of τ0, the value of the coefficient g1 showed very little variation, so its value
was robust despite the imprecision found in τ0. For that reason, the table shows only the
fitted viscoelastic parameters bv = b0, cv = c, gv = g1 for each stress–strain curve. With
the viscoelastic model, a graphical fitting improvement is seen with respect to the elastic
model (Figure 5).

The additional cyclic loading and relaxation tests are summarized in Section 2.2 and
Figure 1. Figure 6 shows the strain applied and the corresponding reaction force measured
by the UTM. In the constant strain stages (1) and (3–5), it can be seen a stress relaxation
of the force required to keep the strain constant. The stages (3–5) repeat the relaxation
with different strain levels: 3/3, 2/3, and 1/3 of the strain used in stage (1). Moreover, in
stage (2), fast cyclic loading is imposed to obtain a cyclic strain (period T = 0.50 s), and the
result is that the successive force peaks are decreasing due to a viscoelastic preconditioning
effect [24]. The observation of preconditioning and stress relaxation is incontrovertible
evidence of viscoelastic behavior.

Figure 6. Mechanical tests showing viscoelastic effects: (1) initial relaxation test, (2) cyclic loading
showing preconditioning, (3–5) repeated relaxation tests, (6–8) triangular wave loading, and (9)
stretch to failure.

Therefore, the above results of the cyclic load and relaxation tests point to the existence
of viscoelastic effects, supporting the use of a viscoelastic model, such as those proposed in
(11), which makes it possible to explicitly quantify the viscoelastic contribution computing



Biology 2021, 10, 831 11 of 18

the weight of the viscoelastic effect. Moreover, this model could further improve the
graphical fit given by the elastic model.

The viscoelastic model uses four parameters; b0, c, the characteristic time τ0, and g1,
which were obtained for all the tensile tests. Nevertheless, it was found that, due to
the short duration of most tests, the obtained value of τ0 shows high uncertainty, being
random and large; however, repeating different fittings for each test with different fixed
values for τ0 = 1, 5, 10 and 50 s, the rest of parameters showed very little variation,
being thus quasi-independent of τ0. Therefore, Table 2 shows the viscoelastic parameters
bv = b0, cv = c, gv = g1 for each stress–strain curve, obtained for a range of τ0 between 1
and 50 s.

As it can be seen in Figure 5, the viscoelastic model improves the graphical fitting with
respect to the elastic fitting, even the r2 value increases slightly due to the good correlation
already obtained with the elastic model.

The constitutive parameters of the elastic model do not show significant variations
with the strain rate, as expected. On the other hand, in the viscoelastic model, the pa-
rameters bv and gv are not independent; in fact, they are negatively correlated, and bv
decreases significantly with ε̇ (p-value < 0.011). The constitutive parameters in Table 2
seem to be distributed according to log-normal probability distributions; for this reason, the
provided reference values are given in exponential form: be = e2.19±0.79 and bv = e1.87±0.91

(or bv = e2.29−1.02ε̇±0.85). For modeling purposes, it is possible to use the formulation in
terms of force F(ε) or stress σ(ε) since the cross-section of the FEHM is always known.
In fact, many computational FEHM for CBV use 1D calculation schemes in such a way
that the force parameters Ci are directly used instead of the stress parameters ci = Ci/Am,
where Am is the area of the cross-section of a specific vein of a FEHM. The reference values
are Ce = e−2.61±1.09 and Cv = e−2.69±1.19. When the viscoelastic extension is used, the other
reference value is gv = e−2.51±1.26.

To determine how important the viscoelastic effect is in the mechanical behavior
of CBVs subjected to a tensile test, the weight of the viscoelastic contribution (VC) was
computed for each specimen, as:

VC =
S(v)

x (εy)

S(e)
x (εy) + S(v)

x (εy)
=

Sx(εy)− S(e)
x (εy)

Sx(εy)
(12)

where the elastic S(e)
x and viscoelastic S(v)

x = Sx − S(e)
x stresses are computed by means of

Equation (11) and the values bv, Cv and gv in the table. The VC exhibits a very significant
increase with strain rate (p < 0.003), which confirms the presence of viscoelastic effects,
even in short-duration tensile tests.

4. Discussion

In this study, tensile tests of CBVs performed at different strain rates have been carried
out to analyze the occurrence of viscoelastic effects in the mechanical response of CBVs.
Additional cyclic load and relaxation tests were also carried on some CBVs to show how
the viscoelastic contribution can be clearly seen in other tests different to tensile tests.

From the tensile tests, the mechanical properties of CBVs were obtained; the yield
stress σy = 1.75 ± 0.98 MPa, the ultimate stress σu = 2.62 ± 1.54 MPa, the yield strain
εy = 24.5± 10.9%, the maximum strain εu = 35.3± 15.2%, and the effective YM at strain
levels ε = 10% and 15% E0.10 = 4.34± 1.32 MPa and E0.15 = 5.67± 1.67 MPa (see Table 1 for
each specimen and Figure 1 for additional clarification of these parameters). All the above
computed values are close to the values found in the literature on the mechanical properties
of CBV [3,9,16–20]. In addition, the average values of geometrical dimensions of the sample
in our study are OD = 2.14± 0.56 mm, e = 0.034± 0.003 mm, and A0 = 0.231± 0.086 mm2.
A comparison of the values of our study with the values are of other authors: Monson (2005)
1.84± 0.35 mm [19], Delye (2006) 2.7± 0.85 mm [20], Han et al. (2007) 2.5± 1.1 mm [35],
and Monea (2014) 3.42± 1.18 mm [3], showing that all these data are comparable.
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In our study, the strain rate ranged from 0.001 to 1.196 s−1. Additionally, a MANOVA
analysis showed that the effective YM did not vary significantly with strain rate, in line
with the findings of other research studies [3]. On the other hand, both the ultimate strain
σu and the associate strain εu increase significantly with the strain rate, as other authors
found [3,9].

The mechanical behavior of CBVs has been extensively studied in the literature [3,9,16–21],
although many studies neglect to explicitly quantify the weight of viscoelastic effects in the
stress/force-strain curves. However, the relaxation and cycling tests performed in this study
clearly show a viscoelastic effect on the CBV response, especially in stress relaxation stages
under a constant strain where the force on the CBVs is progressively reduced.

The fact that relaxation and cyclic loading tests showed clear viscoelastic effects,
motivated that, in addition to the nonlinear elastic model (Section 2.3.1), an additional
nonlinear viscoelastic model was considered (Section 2.3.2). The use of the two models
allowed quantifying the weight of the viscoelastic effects reflected in the measure VC (see
Table 2). In fact, the elastic model already produced good fits (r2 > 0.97 for elastic model
and r2 > 0.99 for viscoelastic model), but graphically, the viscoelastic model improved
the fittings graphically, as shown in Figure 5. The use of a viscoelastic model is not only
confirmed by the results obtained from cyclic and relaxing tests, which clearly showed
the presence of viscoelasticity, but also corroborated by the VC, which increased with the
strain rate. In fact, VC was 4.20 ± 3.83% for low SR (ε̇ ≤ 0.02), 17.9 ± 14.6% for medium
SR, and 35.3 ± 10.8% for high SR (ε̇ > 0.6), being not negligible values and thus confirming
the existence of a viscoelastic contribution to the mechanical behavior of CBVs, even in
short tensile tests. This finding is important because most authors have so far described the
mechanical behavior of CBVs as purely elastic given the good fit of this type of model in
tensile tests, ignoring the fact that CBVs are viscoelastic, as this study seems to demonstrate.

It is important to note that the most frequently used quasi-linear viscoelastic models [36,37],
such as the standard Maxwell–Wiechert viscoelastic solid model (which is a generalization of
the Maxwell model) and the Kelvin–Voigt model or the Burgers model (which generalizes it)
predict that for a small strain, the YM should not vary significantly. For QLVE models
containing a nonlinear part, such as the viscoelastic Fung model presented in Section 2.3,
the computations are more complicated and are presented in Appendix A, but essentially
the same conclusion is achieved, as is shown in Figure 7. The key observation is that the
initial tangent Young’s modulus should not show a significant incidence of the strain rate,
see Figure 8, when only viscoelastic effects are involved, just as several studies find [22,38].
However, at moderately high strain rates, the viscoelastic effect is measurable but small,
and when the strain rate is low, the time for failure is longer, but the strain rate is low, and
it is difficult to observe the viscoelastic effect. On the other hand, if a situation such as
a relaxation test is presented or cyclic loading occurs, then the viscoelastic effect is more
easily noticeable, see Figure 6.

With respect to nonlinear stress–strain response, it is interesting to note that some
widely used computational models, such as early versions of SIMon, created by NHTSA,
modeled CBVs as linear elastic cables rather than as cables with a nonlinear elastic
response [39,40]. This would have a direct bearing on the estimation made in the injury
metric called relative motion damage measure (RMDM) [41] used to predict the probabil-
ity of SDH due to mechanical failure of some CBV [42,43]. Similarly, other human head
computational models, among which are the UDS FEHM (Université de Strasbourg) [44],
the KTH FEHM (S. Kleiven) [45], the UCDBTM (University College Dublin) [46,47], the
WSUBIM (Wayne State University) [48], or the G/LHM [49], also model CBVs as elastic
beams with a linear stress–strain response [16].
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Figure 7. The influence of the strain rate on the stress–strain curve for ε̇ = 0.1/τ0, 0.2/τ0 y 0.5/τ0

(the upper curve occurs for the highest strain rate and the lower one for the lowest strain rate); the
following values have been considered in the graph: b0 = 8, c = 0.10, g1 = 0.40.

Figure 8. The influence of the strain rate on stiffness for ε̇ = 0.1/τ0, 0, 2/τ0 y 0, 5/τ0 (the upper curve
is given for the highest and the lower curve for the lowest strain rate); the values used are b0 = 8,
c = 0.10, g1 = 0.40.

However, a new generation of FEHM consider the nonlinear behavior and viscoelas-
ticity of brain structures, as it has been explicitly pointed out by the developers of YEAHM
(University of Aveiro) [50]. Interestingly, some FEHM model CBVs as nonlinear elastic
materials [51–53], and some of these models use curves and fittings based on [19,31]. These
new models include geometric details of the vasculature and even consider the internal
pressure inside the CBVs. With this level of detail, the viscoelastic contribution could play
some role in the accuracy of the results because the reference values of our study incor-
porate, in addition to nonlinearity, the viscoelastic effects. Therefore, the work presented
here has a potential application to some of the most recent FEHM, including a detailed
geometry of the CBVs.
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Another remarkable fact is that the peak force Fu and failure onset force Fy, as well
as the respective stresses σu and σy, are lower for specimens with a lower strain rate or
test velocities. This has also been found in other biological tissues [3,9,20,54] and could
be related to an uneven distribution of the strain between fibers in collagenous tissue,
although more work is needed to clarify the origin of this significant effect and found by
several other authors.

Further work is needed in order to characterize full viscoelastic behavior in general
situations. In such cases, a Prony series with more terms should be used for processes
that extend over a longer period of time. On the other hand, due to the short duration
of the tests and the fact that the desired strain level cannot be controlled, a simple QLVE
model has been considered in which the relaxation function has been assumed separable,
as explained in Section 2.3.2. However, a separable model of this type is not the most
general model possible, although suitable for the type of restricted data analyzed here. The
possible need to use more general non-separable viscoelastic models should be considered
in future work.

5. Conclusions

The current study is the first published systematically comparing a nonlinear elastic
model and a viscoelastic model of CBVs. This comparison allowed a quantification of the
contribution of viscoelastic behavior, which critically depends on the strain rate. Moreover,
the difficulty in observing viscoelastic effects at low strain levels has been explained
theoretically. Accurate stress–strain curves have been obtained for this collagenous tissue,
which can be used to assess TBI and SDH, improving the predicted material’s response.
In addition, the reference values for the constitutive parameters of nonlinear constitutive
models have been obtained, which could be used directly to make accurate computational
FEHMs to assess TBI. In particular, the results of this study could be relevant to assess
acute SDH due to the mechanical failure of CBV.

In addition, a significant positive correlation of the strain rate effect on the main ulti-
mate stress (p-value < 0.003) has been identified, while previous studies found inconsistent
non-significant correlations. Other mechanical properties, such as the maximum strain,
the yield stress, and the yield strain, also present a significant correlation with the strain
rate (p-value < 0.001, in all cases). Moreover, the effect of viscoelastic behavior has been
quantified, being small in most situations, which explains why many applications could be
modeled with a purely elastic model.

Finally, the results could be relevant for both of these approaches: the FEHM accuracy
and the forensic reconstruction of injury mechanisms. In particular, the nonlinear stress–
strain response of the CBVs has been described accurately using nonlinear elastic and
viscoelastic models.
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Abbreviations
The following abbreviations have been used in the text:

CBV(s) Cerebral Bridging Vein(s)
FEHM Finite Element Head Model
PMHS(s) Post Mortem Human Subject(s)
QLVE Quasi-Linear Viscoelastic
SDH Subdural Hematoma
SEDF Strain Energy Density Function
TBI Traumatic Brain Injury
UTM Universal Test Machine
VC Viscoelastic Contribution
YM Young’s modulus

Appendix A. Viscoelastic Computations

Some analytical properties of Fung’s QLVE model are examined in this section. Explicit
formulas are presented for different load cases, including the important case of constant
strain-rate.

Constant strain-rate case. When the strain rate is constant, i.e., Ex(t) = β0t (β0 > 0), the
integral of the Equation (11) can be calculated analytically by a change of variables for the
integration. Consider a new variable ε := Ex(τ), now, since the strain rate is constant, we
have that ε = Ex(τ) = β0τ, so the change of variables is given by:

Ex(τ) = ε, τ = ε/β0, Ėxxdτ = β0dτ = dε

Introducing this change into the Equation (11), we obtain an explicit form for the integral
which gives the viscoelastic contribution:

Ik = e
− Ex

β0τk

∫ Ex/β0

0
e

ε
β0τk (1 + 2b0ε2)eb0ε2

dε

By defining θk := β0τk, we can express it as:

Ik = Exeb0E2
x +

e
− Ex

θk − eb0E2
x

2θkb0
+

e
−
(

Ex
θk

+ 1
4θ2

k b0

)
4θ2

k b3/2
0

Fv(Ex, b0, θk)

where the function Fv(Ex, b0, θk) has been defined to abbreviate the notation and is given by:

Fv(Ex, b0, θk) :=
√

πi

[
erf

(
i

2θkb1/2
0

)
− erf

(
+

i
2θkb1/2

0

+ iExb1/2
0

)]

This function Fv is a real function of real variable, despite the explicit appearance of
i =
√
−1, since here, erf(·) represents the error function, which is given by:

erf(x) :=
2√
π

∫ x

0
e−z2

dz ⇒ i · erf(ix) = − 2√
π

∞

∑
k=0

x2k+1

(2k + 1)k!
∈ R, ∀x ∈ R

The axial stress is given by:
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Sx = b0c

Exeb0E2
x +

N

∑
k=1

gk

Exeb0E2
x +

e
− Ex

θk − eb0E2
x

2θkb0
+

e
−
(

Ex
θk

+ 1
4θ2

k b0

)
4θ2

k b3/2
0

Fv(Ex, b0, θk)


 (A1)

The effect of strain rate on the above equation was shown in Figure 7 from which it
follows that for small strains, Equation (A1) produces only small changes; in particular,
the stiffness or tangent Young’s modulus dSx/dEx → b0c(1 + g1 + dots + gN) tends to the
same value for Ex → 0 regardless of the strain rate, as was shown in Figure 8, which was
obtained by deriving Equation (A1).

General case. In the case of very high-speed testing, a conventional UTM will generally
not be able to bring the specimen to the desired strain rate instantaneously but will require
an acceleration time. Since constitutive parameter settings generally require knowledge
of the analytical form, it is important to have the means to obtain such a formula or a
reasonable approximation of it.

For this purpose, it is sufficient to note that since any continuous curve in sections
can be approximated to any desired degree of accuracy by a polynomial, it is useful in
viscoelastic calculations to evaluate integrals of the form:∫ t

0
e−

t−τ
τ0 Pn(τ) dτ (A2)

where Pn(t) = αntn + · · ·+ α1t + α0 is a polynomial of degree n. The above integral can be
evaluated using the formula:∫ t

0
e

τ
τ0 τm dτ = τ0e

t
τ0

[
tm −mtm−1τ0 +

m(m− 1)
2

tm−2τ2
0 − . . . (−1)mm!τm

0

]
where m ∈ N. The standard integral (Equation (A2)) can be expressed in the form:

∫ t

0
e−

t−τ
τ0 (αnτn + · · ·+ α0)dτ =

n

∑
s=0

αs

[
s

∑
r=0

r!
(

s
r

)
(−1)rts−rτr+1

0

]
+ e−

t
τ0

n

∑
s=0

αs(−1)s+1s!τs+1
0

Using the confluent hypergeometric function 2F0([a, b], [ ]; x) [55,56], the first sum-
mand can be shortened:∫ t

0
e−

t−τ
τ0 (αnτn + · · ·+ α0)dτ = τ0

n

∑
s=0

[
αsts

2F0

(
[−s, 1], [ ],

t
τ0

)]
+ e−

t
τ0

n

∑
s=0

αss!(−τ0)
s+1

The calculation for complex load curves can lead to long and cumbersome expressions,
but the above formulas potentially allow a numerical approximation as accurate as desired
for any load case.
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