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Abstract: The rise of antibiotic resistance has become a major threat to human health and it is
spreading globally. It can cause common infectious diseases to be difficult to treat and leads to higher
medical costs and increased mortality. Hence, multifunctional polymeric nanofibers with distinctive
structures and unique physiochemical properties have emerged as a neo-tool to target biofilm and
overcome deadly bacterial infections. This review emphasizes electrospun nanofibers’ design criteria
and properties that can be utilized to enhance their therapeutic activity for antimicrobial therapy.
Also, we present recent progress in designing the surface functionalization of antimicrobial nanofibers
with non-antibiotic agents for effective antibacterial therapy. Lastly, we discuss the future trends and
remaining challenges for polymeric nanofibers.

Keywords: nanofibers; electrospinning; surface functionalization; antimicrobial resistance;
non-antibiotic treatments

1. Introduction

In recent decades, the inception of multidrug-resistant (MDR) bacteria or “superbugs”
has become a global threat due to the resistance of bacteria to antibiotics. The treatment
of MDR bacteria with ineffective antibiotics has formed new resistances that have spread
remarkably across continents through the environment, people, and animals. The 2019 An-
tibiotic Resistance Threats report from the Centers for Disease Control and Prevention
(CDC) classified a few multidrug-resistant bacteria and fungi based on their threat levels
to human health, and reported that in the US, more than 2.8 million antibiotic-resistant
infections occur yearly, resulting in the death of more than 35,000 people. In addition,
223,900 cases of Clostridioides difficile arose in 2017 and caused mortality in 12,800 peo-
ple [1]. US hospitals also repot around 40–60% of Staphylococcus aureus strains collected
are resistant to methicillin and even vancomycin and carbapenems [2]. The increase of the
morbidity and mortality statistics worldwide challenges healthcare institutions and the
community to overcome the issue of the misuse of antibiotics, and inadequate infection
prevention and treatment had increased the number of MDR bacteria to develop and
spread alarmingly [3–5]. Notably, bacterial infection cases are primarily responsible for the
excess health costs in the US.

Antibiotics act on bacteria by inhibiting their cell walls and interfering with DNA,
RNA, or essential proteins. However, bacteria innately have the ability to alter their
structural properties and characteristics to reduce the efficacy of antibiotics [6–10]. Bacterial
cells can also adapt to external stimuli by altering their gene and protein expressions [11].
Antibiotic resistance in bacteria will increase as the number of multidrug-resistance strains
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continues to grow. This phenomenon leads to an urgent need to discover non-antibiotic
routes as alternative antimicrobial therapies against these highly resistant bacteria. With the
evolution of nanotechnology, nanostructured materials are gaining interest and attention in
biomedical applications. Electrospun polymeric nanofibers exhibit unique physicochemical
properties such as size, shape, and surface chemistry that influence their therapeutic activity
and thus offer flexibility that makes them easily tailored for antimicrobial therapy [12–18].

There is increasing interest in utilizing polymeric nanofibers with a drug cargo of
antibiotics in killing bacteria. Most studies have only focused on intrinsic structure and
tunable structure, components, and properties of nanofibers which enable the generation
of drug-loaded nanofibers with a sustained release pattern for drug delivery applica-
tion [19–21]. Nanofibers can fight against bacteria with their beneficial topography features.
However, there is still a lack of understanding on how these nanofibers can kill bacteria. In
this review, we mainly discuss the influence of nanofiber properties and their bactericidal
interactions, as well as the properties of nanofibers, including their morphologies, surface
charge, wettability, and functionalization to be considered to ensure antimicrobial efficiency.
We also highlight topographical features using different surface functionalization-based
approaches with antimicrobial agents such as metals, metal oxides, metal nanoparticles,
graphene oxide, peptides, and natural extracts [12,22–26] to optimize their therapeutic
activity against the multidrug-resistance and biofilm of bacteria. We hope this review
will provide a guideline to design effective, functionalized antimicrobial nanofibers for a
wide range of biomedical applications. From the points mentioned above, nanofibers are a
promising toolkit for the non-antibiotic treatment for bacterial infection.

2. Polymeric Nanofibers and Electrospun Scaffolds

In recent years, electrospun nanofiber scaffolds have been demonstrated to be effec-
tive nano-scale therapeutic devices, as their physicochemical properties can be tailored
to several applications requiring necessary antimicrobial capabilities [27–29]. In particu-
lar, nanofibrous structures have several intrinsic properties which make them peculiarly
functional to design for antimicrobial applications [19,30–34]. Ideally, fiber diameters at
the nanometric scale make their structure suitable to bio-mimic the natural extracellular
matrix (ECM) of tissue, thus providing a friendly environment for the regeneration of
the target site and facilitating repair mechanisms [33–35]. In addition to topographical
fibers resembling native ECM architecture, they can also influence cell migration, adhesion,
differentiation, and regeneration [36–41].

Due to their small size, nanofibers possess a very large surface area-to-volume ratio
along with interconnectivity and microscale interstitial space, rendering them more effec-
tive than their bulk form. The high surface area of nanofibers can promote the hemostasis of
injured tissues and fluid absorption [42–44] and they are also effective at delivering a drug
cargo to the target site [45–49]. For example, Giram et al., (2018) fabricated Eudragit L-100
nanofibers to encapsulate moxifloxacin hydrochloride for a fast drug delivery system. The
cylindrically shaped nanofibers were reported able to encapsulate 95–98% of the drug at
1–5% w/w concentration. The antibiotic-loaded nanofibers also showed good antimicrobial
activity against both Escherichia coli and S. aureus [50].

The performance of nanofibers is influenced highly by their porosity (60–90%) [51–53],
which allows high surface and wetting permeability, which in turn affect cell proliferation,
vascularization and mechanical stability [54–57]. In addition, the interconnected nanopores
on nanofibers’ fractal structure, along with their excellent surface energy, surface reactivity,
and high thermal and electric conductivities could prevent the infiltration of microbes and
discourage cell ingrowth [58]. All of the above reasons make electrospun nanofibers poten-
tially useful as antimicrobial materials [18,59]. The surface of nanofibers can be modified
and functionally used as a conformal surface coating to provide a controlled interaction
with microorganisms [60]. Coating the nanofiber surfaces with antibacterial substrates can
further enhance the nanofibers’ topography to encourage specific interactions between
bacteria and nanofibers [60,61]. Table 1 summarizes the basic fundamental properties of
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nanofiber scaffolds for antimicrobial applications.

Table 1. Key properties of nanofiber scaffolds for antimicrobial applications.

Properties Effects References

Nano size Nanofibers, ranging between 100–1000 nm, are similar to bacteria size, thus can
enhance bacterial attachment and inhibition. [62–66]

Surface area to volume Nanofibers with smaller diameters provide a higher surface area-to-volume ratio
for efficient encapsulation of antimicrobial therapeutic agents. [67–70]

High porosity
High porosity allows higher loading of drug or antimicrobial agents into the

nanofibers, enhances the surface area, and increases bacteria attachment on the
surface of nanofibers.

[71–73]

Interconnected pores Promote oxygen and nutrient exchange, provide structural stability, enhance cell
proliferation and ensure sustained release of antimicrobial agents. [72,74–76]

Natural and synthetic polymers are widely used to fabricate nanofiber matrices due
to their processability, biocompatibility, and biodegradability [77–80]. The promising
polymer used for the development of electrospun nanofibers for antimicrobial application
is summarized in Table 2. Natural polymers are derived from proteins and carbohydrates
such as cellulose, chitosan, gelatin, elastin, and polypeptides [81–84] Chitosan, a versatile
hydrophilic polysaccharide derived from chitin, is frequently used to develop nanofibers.
It exhibits good antimicrobial activity against several strains of microbes such as S. aureus,
E. coli, Listeria innocua and Salmonella typhymurium [85,86]. In contrast to natural polymers,
the simpler chemical structure of synthetic polymers brings ease of processability and
provides nanofibers with good mechanical properties [83,87]. The common synthetic
polymers used are poly(ε-caprolactone) (PCL), poly-lactide (PLA), poly-glycolide (PGA),
polyvinyl alcohol (PVA), and polydimethylsiloxane (PDMS) [88–91]. Natural and synthetic
polymers have their advantages and disadvantages [92–97], and researchers often combine
them using electrospinning techniques to achieve nanofibers with better physico-chemical
properties [69,98,99]. The combination of natural and synthetic polymers can be achieved
through multiple strategies. In our previous study, the blending of PVA and chitosan
provided better thermal stability for nanofibers to encapsulate gentamicin for controlled
release of up to 72 h [96]. Meanwhile, Guarino et al., (2017) fabricated PCL nanofibers and
functionalized them with chitosan as a reservoir for amoxicillin trihydrate to improve the
entrapment and release of antibiotics for targeted antimicrobial applications [66].

Table 2. Electrospun polymer nanofibers loaded antimicrobial agents for effective antimicrobial therapy.

Polymers Therapeutic Agent Findings References

PVA/Pea protein Cinnamaldehyde
Inhibition of E. coli and S. aureus increased as the

concentration of cinnamaldehyde was increased from
0.5 to 1.5 wt%.

[100]

PCL/
Cellulose acetate Alkanin and shikonin

Higher drug loaded into the scaffolds (1–5 wt%)
inhibited the growth of S. aureus and Staphylococcus

epidermidis and accelerated wound closure.
[28]

PCL/PVA/Pectin Chelidonium majus L.
The extract was sustained released (65.7%) for up to

30 days and inhibited the growth of S. aureus and
Pseudomonas aeruginosa.

[101]

Chitosan/PEO Antimicrobial peptides
(AMP)

The addition of AMP into the nanofibers enhanced
their antimicrobial activity against E. coli and S. aureus. [102]

PVA/Collagen Gentamicin The release of antibiotic gentamicin can be controlled
for up to 72 h. [103]

PCL/Gelatin Graphene oxide,
tetracycline hydroxide

Nanofibers demonstrated high antimicrobial activity
(99%) against S. aureus and E. coli [64]

Silk Fibroin Graphene oxide Incorporation of graphene oxide reduced the survival
rate of E. coli and S. aureus by 48%. [29]

PCL/Zein Protein Tetracycline hydrochloride
Tetracycline was sustained release up to 20 days and
the nanofibers inhibited the growth of S. aureus and
methicillin-resistant Staphylococcus aureus (MRSA)

[104]
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The electrospinning technique is a straightforward process to fabricate polymeric
nanostructures and thus offers the versatility of structure, morphology, and spatial distribu-
tion of electrospun nanofibers to achieve specific mechanical properties [23,105–107]. The
technique has been used to fit the purpose of various applications from small-scale basic re-
search applications to large scales of nanofibers relevant for industrial purposes [71,108,109].
Comprehensive reviews on the theory of the electrospinning process are already avail-
able [71,110–112] and thus, here we provide a brief overview on how the electrospinning
process works.

A typical electrospinning setup consists of a high-voltage power supply, a ground
collector, a syringe pump, and a syringe with a capillary needle. The polymer solution is
loaded into a syringe attached to the needle at a controlled flow rate. The repulsive electri-
cal force is applied to overcome the surface tension of the polymer solution, resulting in the
formation of a Taylor cone. The polymer solution will stretch and evaporate, and the fibers
will be deposited on the metal-conductive rotating ground collector [75,113–115]. Gener-
ally, electrospun nanofibers can be oriented as aligned or non-aligned (random) structures.
Aligned nanofibers can be prepared using a rotating collector [26,116–118] while non-
aligned nanofibers use only a simple conductive metal plate [119–121]. Aligned nanofibers
have been reported to closely mimic the native extracellular matrix structure, thus pro-
moting cell migration or proliferation [74,122]. While aligned nanofibers provide better
mechanical strength and allow better incorporation of therapeutic agents [118,123–125],
non-aligned nanofibers are easier to fabricate and have a higher entrapment capacity
to incorporate therapeutic agents or to enable sustained release in a specific site of ac-
tion [50,67,103,126]. In terms of bacterial attachment, the antimicrobial effect of the
nanofibers was found to be independent of their alignment, as there is no significant
difference between antimicrobial activity for both orientations [117].

The unique characteristics of electrospun nanofibers, such as high-surface-to-volume
ratio, controllable fibers orientation and diameters, high porosity, and modulated surface
roughness, are greatly influenced by the electrospinning process. Thus, the morphological
features of electrospun nanofibers can be altered by tuning parameters such as the polymer
solution properties (concentration, viscosity, conductivity, dielectric constant, and surface
tension) or processing parameters such as applied voltage, solution flow rate, tip-to-
collector distance, and collector speed [114,127,128]. In order to produce uniform and
bead-less nanofibers, the optimum polymer concentration and viscosity are required to
allow adequate chain entanglement and surface tension [92,99]. A low voltage applied
during electrospinning may result in beads and small-diameter nanofibers, while a high
applied voltage may result in thick and non-homogeneous nanofibers [59,99,129]. Apart
from that, the solution flow rate also affects the morphology of nanofibers [129]. A relatively
low flow rate produces nanofibers with beads and broken strands. At the same time, too
high a flow rate produces droplets due to the higher velocity of the polymer solution
being charged and ejected from the tip [99,129,130]. The nanofibers’ diameter can decrease
as the tip-to-collector distance increases, allowing complete solvent evaporation at an
optimal distance [129,131]. All of these parameters are interrelated, and thus it is essential
to optimize and tune each parameter to obtain nanofibers with specific morphological
characteristics for the desired antimicrobial applications.

Nanofibers have been used as a drug cargo delivery vehicle for therapeutic agents such
as antibiotics, metal nanoparticles, carbon materials, peptides, and natural extracts [100].
These therapeutic agents can be directly incorporated into the nanofibers’ matrices us-
ing several approaches such as blend electrospinning, emulsion electrospinning and co-
axial electrospinning [17,101,132,133]. Different methods of electrospinning will produce
nanofibers with different morphologies (Figure 1). In blend electrospinning, the thera-
peutic agent is dissolved in the polymer solution before electrospinning. Thus, it is well
distributed throughout the nanofibers [130]. Meanwhile, emulsion electrospinning in-
volves two immiscible phases of polymers and a therapeutic agent, whereby the agent
can be encapsulated throughout the nanofibers matrix or encapsulated in the core-shell
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nanofibers [131–133]. Co-axial electrospinning uses two nozzles containing the polymer
solution and the therapeutic agent separately, to produce a core-shell structure in the
nanofibers [134–137]. Usually, the polymer matrix will provide the outer core, while the
therapeutic agent is incorporated in the inner core of the nanofibers [27,138]. Recently,
researchers have shown an effort to develop 3D electrospun polymeric nanofiber scaffolds
using several combinations of techniques such as co-axial electrospinning with add-on tech-
niques such as electrospraying, 3D printing, gas foaming, freeze-drying, and centrifugal
electrospinning, to obtain multifunctional structures. A 3D scaffolds with a well-defined
spatial organization of the therapeutic agent in the membranes could offer spatiotemporal
release [139,140].

Figure 1. Schematic diagram of an electrospinning setup and variations of electrospinning techniques.
Therapeutic agents can be incorporated in nanofibers via blend, co-axial and emulsion electrospin-
ning. Blend solution electrospinning results in the therapeutic agents being well distributed in the
nanofibers. Co-axial electrospinning allows the therapeutic agents to be timely delivered from core-
shell nanofibers. Emulsion electrospinning may form two types of nanofibers—either the emulsion
(consisting of the therapeutic agents) coalesces to form a core similar to the fibers expected of the
co-axial electrospinning technique, or the emulsion will disperse varyingly in the nanofibers. Two
types of collectors are mainly used in electrospinning: (1) flat plate collectors fabricating non-aligned
nanofibers and (2) rotating drum collectors fabricating aligned nanofibers.

3. Nanofiber Action towards Bacteria

In the initial stage of the infectious process, gram-positive microbes such as S. aureus
and Streptococcus pyogenes are the dominant organisms involved, while gram-negative
organisms like E. coli and P. aeruginosa are only found in later stages of the process, i.e.,
when a chronic wound has developed [141–143]. In order to kill bacteria, it is imperative
to understand the bacteria structures as the cell wall of the bacteria is the primary barrier
for the penetration of antimicrobial agents. Gram-positive bacteria have a cell wall made
of a thick and rigid peptidoglycan layer (>10 layers) with polymeric teichoic acids and
a cytoplasmic membrane. The teichoic acid polymeric chains have a phosphate group
that provides a negative charge to bacterial surfaces and serves as a binding site for the
divalent cations in the solution [144–147]. On the other hand, gram-negative bacteria have
a thin cytoplasmic membrane, thin peptidoglycan layer, and lipopolysaccharides, which
can reduce the penetration ability of antimicrobial agents (Figure 2) [148–150]. This is one
reason why gram-negative bacteria are harder to penetrate compared to gram-positive
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bacteria. The bacterial cell wall is vital for osmotic regulation, heat tolerance, phage-binding,
and cell-shape determination [146,147,151]. Further adhesion of antimicrobial therapeutics
onto the bacteria can improve their penetration ability for efficient delivery [145,152–154].

Figure 2. Illustration of different mechanisms of action by antimicrobial agents incorporated in
nanofibers on bacteria cells via: (1) disruption of the cell membrane/cell wall. (2) Inhibition of
cellular metabolic pathways. (3) Inhibition of DNA and gene expression. (4) Instigation of cellular
oxidative stress. (5) Metal-based nanomaterial toxification. (6) Cellular hyperpolarization.

The inherent antimicrobial activity and mechanism of nanofibers alone have not been
widely explored. Nanofibers’ most well-documented antimicrobial activity revolves only
around electrospun chitosan nanofibers—chitosan being a natural polymer with antimicro-
bial properties [82,147,149]. The protonated amino groups of the chitosan nanofibers were
implied to be responsible for the antimicrobial activity against S. aureus, E. coli, L. innocua,
and S. typhymurium [82]. An antimicrobial test of chitosan nanofibers was conducted
against Clostridium difficile isolates with tetracycline and chloramphenicol resistance genes.
The successful bacterial inhibition activity suggested that protein synthesis disruption is
not the mechanism of the antibacterial action of chitosan nanofibers [149]. This implies
that nanofibers alone are not enough to inhibit bacteria. Therefore, functionalization with
antimicrobial agents is required to improve their bactericidal effect.

Functionalized nanofibers can express various bactericidal pathways depending on
the core material used, the morphology of the material, and the surface chemistry of
the scaffold [150,155]. The enhanced cell membrane penetration ability of functionalized
nanofibers and their potential to modulate cellular interaction make them a viable candidate
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for treating bacterial infections [151,156]. The exact mechanism of bactericidal pathways
involving functionalized nanofibers is unknown, and the assumptions from previous
research studies differ as a function of the additional components used [148,157].

The bactericidal effects of nanofibers depend on their size, diameter, shape, and
surface chemistry. Three-dimensional nanofiber scaffolds with hierarchical structures as
small as a few microns to a few hundred nanometers provide a high surface area and
thus enhanced therapeutic efficacy against bacterial infection [74,106]. A recent study by
Abrigo et al., (2015) showed that smaller size nanofibers ranging from 300–1000 nm, close to
the bacteria’s size, can induce conformational changes of rod shape bacteria, which would
lead to cell lysis. On the other hand, when the diameter is larger than the size of bacteria
(>5000 nm), they tend to adhere onto the surface and proliferate along the nanofibers [62].
Therefore, nanofibers with small diameters are preferable, as they can alter the bacteria’s
conformation and thus increase their susceptibility.

The bacterial adhesion and attachment surface interaction is essential for biofilm
control, and is influenced by the surface chemistry such as the surface charge, roughness,
topography, and wettability [158–160]. To further understand the influence of such ma-
terial properties, we further discuss the interaction between bacteria and different types
of nanofiber surfaces. Most bacteria cells surfaces are negatively charged, and due to the
electrostatic force, they are highly attracted to a positively charged surface for bacterial
adhesion and attachment [161–164]. In contrast, a negatively charged surface of material
is needed as a resistance mechanism to bacterial adhesion. Surfaces with certain cationic
groups such as quaternary ammonium and polyethyleneimine have antimicrobial activity
and thus can kill the bacteria cells. For instance, MRSA is highly attracted to the posi-
tively charged poly-(lactic-co-glycolic acid) (PLGA) functionalized with polyethyleneimine
(PLGA-PEI) surface, as compared to the negatively charged PLGA [161]. This implies
that biocidal active molecules incorporated into nanofibers with positively charged moi-
eties can effectively be released to bacterial cells upon contact with the bacterial cell wall.
Another study found that flat biofilms developed on the positively charged surface of
poly(2-(methacryloyloxy)-ethyl trimethyl ammonium chloride had higher binding affin-
ity compared to the negatively charged poly (3-sulphopropylmethacrylate) [165]. It was
suggested that the negatively charged polymer surface efficiently repelled bacterial adhe-
sion and prevented biofilm formation. It was also revealed that E. coli attachment was
higher on a polyethylene-glycidyl methacrylate sheet functionalized with diethylamine
(positively charged) compared to sodium sulfite (negatively charged) due to electrostatic
repulsion [166]. The viability of E. coli cells had also significantly decreased after attach-
ment onto the diethylamine surface, but remained high on sodium sulfite surface [166].
Despite that, it has been reported that highly charged cationic polymers exhibit cytotoxicity
to bacteria and human cells, where it can cause agglutination of red blood cells [9,167].
For example, 6-Deoxy-6-(2-aminoethyl) amino chitosan (CS-AEA), a chitosan derivative,
demonstrated higher agglutination performance due to the higher amount of protonated
amine groups and degree of ionization compared to chitosan [168]. Hence, it is essential to
consider tuning the surface charge in balance for a potent antimicrobial application.

Meanwhile, rough surface nanofibers with large surface areas promote bacterial
contact and attachment due to higher bacterial contact are [107,163]. However, surface
roughness alone is not enough to attract the bacteria. Ludecke et al., (2016) showed that
the number of bacteria attached was found to decrease even though the nanofibers have
a rough surface. Their study indicates that the nanofibers also need to have a maximum
contact area for the bacteria to adhere to its surface [169]. Increased surface roughness can
promote bacterial adhesion and induce mechanical disintegration of the bacteria structure,
leading to increase bacterial susceptibility [152,159]. Hence, for an efficient antimicrobial
effect, the nanofibers should be designed to have a rough surface with a higher peak or
contact area to encourage bacterial attachment and interaction with the nanofibers.

Surface wettability plays a crucial role in the attachment or detachment of the biofilm
from the surface. The surface wettability can be influenced by the degree of hydrophobicity
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of the nanofibers [170]. Hydrophobic bacteria such as S. aureus has been shown to adhere
firmly to hydrophobic surfaces due to their similar chemical characteristic [171,172]. In
contrast, a hydrophilic surface can effectively inhibit the adhesion of the bacteria, as
the surface bonding between the bacteria and nanofibers is weak [107]. The fabrication
of cationic nanofibers using polystyrene and poly(ethylene terephthalate) increased the
antimicrobial potency as they are positively charged and highly hydrophobic [173–175].

The porosity, which is three-dimensional (3D) holes formed on the nanofibers, can
influence bacterial attachment by affecting surface wettability [106]. Porous nanofibers with
a large pore diameter ranging from 50-100 nm are more favorable for bacterial attachment
than non-porous or porous nanofibers with pore diameter less than 25 nm [73,163].

To sum up, functionalized nanofibers should be designed to have: (1) small diameters
(300–1000 nm), (2) positively charged surfaces, (3) rough surfaces with high surface area,
(4) hydrophobic surfaces, and also (5) large pore diameters to ensure better adhesion
(Figure 3) to improve bactericidal effects. Despite the lack of a specified mechanism of
actions for the nanofibers bactericidal pathway, the evidence of unquestionable bactericidal
activity from functionalized nanofibers makes it essential to address the proper design
criteria of scaffolds for the fabrication of antimicrobial nanofibers.

Figure 3. Illustration of bacterial adhesion on nanofibers. Various properties of nanofibers can induce
and enhance bacterial attachment. (1) Fiber porosity (nano-sized) allows early biofilm formation,
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causing bacteria cells to attach easily onto highly porous nanofibers. (2) Nanofibers with a positive
surface charge will also attract the negatively charged surface of bacterial cells. (3) Rough surfaces
of nanofibers also provide more area of contact for bacteria cells to attach. (4) Thin fiber diameters
(smaller than bacteria size) also allow changes in bacterial cells’ conformation. The surface wettability
of nanofibers plays a significant role in bacterial adhesion. (5) Hydrophobic bacterial cells will adhere
to the surface of hydrophobic nanofibers due to hydrophobic interactions.

4. Entrapment of Antimicrobial Agents into Nanofibers: Classification

Various nanomaterials such as metal nanoparticles, nanodots (i.e., carbon nanotubes),
nano blades (i.e., graphene sheet) and nano spikes (i.e., cicada wings) showed the effec-
tiveness of the mechano-bactericidal mechanism in penetrating and rupturing bacterial
cell walls, eventually causing cell death [152–154]. These types of nanomaterials can be
incorporated on the surface of nanofibers (which acts as a stable base) to impart biocidal
ability, thus developing antimicrobial nanofibers.

4.1. Metal, Metal Oxides and Metal Nanoparticles

Metal and metal oxide nanoparticles are known for their ability to penetrate bacterial
cells and disrupt cellular activity by generating reactive oxygen species (ROS) such as
hydrogen peroxide or superoxide anions. Excessive ROS production will cause severe
oxidative stress that will damage the bacterial cellular components, disrupt protein synthe-
sis, inhibit enzymatic action, and cause cell membrane disruption and site-specific DNA
damage, ultimately leading to cell lysis [176–178]. In recent years, metal nanoparticles
such as silver and gold, as well as metal oxide nanoparticles such as zinc oxide, iron
oxide, titanium dioxide, and copper oxide have been extensively studied for antimicrobial
applications [31,157,176,179–181]. Although the bactericidal ability of these metal and
metal oxide nanoparticles is well documented, the precise mechanism of action is still
unknown. Composite materials involving various metal nanoparticles in nanofibers have
been executed extensively in the past, with ample evidence of successful antimicrobial
activity [182–187].

Metals like silver (Ag), gold (Au), copper (Cu), zinc (Zn) and their corresponding
oxides are commonly used to design potent antimicrobial nanomaterials [188]. Among
the metals, silver (Ag)-based nanofibers have been studied extensively since Ag ions
(Ag+) are known to be toxic to bacteria and microorganisms even at low concentra-
tions [188]. Ag nanoparticles showed good antimicrobial activity against E. coli, S. aureus
and P. aeruginosa [189]. Chitosan/polyvinyl alcohol (PVA) nanofibers loaded with sil-
ver ion-incorporated hydroxyapatite (HAP) nanoparticles were reported to inhibit the
growth of E. coli even at low Ag concentrations (0.5% w/v). The bacteria inhibition zones
observed were increased as the concentration of Ag increased due to the increase of
metal toxicity [190]. Moon et al., (2021) fabricated 3D cellulose nanofibers decorated with
Ag-nanoparticles using the gas foaming technique. The composite design enhanced the
nanofibers’ structural and mechanical stability and showed excellent antimicrobial activity
against S. aureus and E. coli [191]. In a study by Li et al., (2013), PVA/chitosan oligosaccha-
ride (PVA/COS)-loaded Ag-nanoparticle nanofibers (PVA/COS/Ag-NP) were shown to
inhibit the growth of S. aureus and E. coli [192]. It is worth noting that even though Ag is
toxic to bacteria, it is non-toxic to humans in nanoparticle form [189]. The viability of hu-
man fibroblast cells decreased significantly when in contact with PVA/COS loaded AgNO3
nanofibers. At the same time, there was no significant cytotoxicity observed, indicating
that Ag in nanoparticles form is non-toxic, biocompatible, and thus, safe for humans.

Unlike Ag, metal ions like zinc ions, Zn+ are essential for bacteria to regulate several
metabolic pathways such as sugar, lipid, and protein degradation [193]. However, an
excess amount of Zn can result in protein denaturation and malfunction, as well as enzy-
matic inactivation, thus increasing bacterial susceptibility [188]. This is illustrated by the
incorporation of zinc oxide (ZnO) into chitosan/polyvinyl alcohol (chitosan/PVA/ZnO)
nanofibers, which showed higher antibacterial activity against E. coli, P. aeruginosa, Bacillus
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subtilis and S. aureus compared to chitosan/PVA nanofibers. In vivo wound healing analy-
sis also revealed that the chitosan/PVA/ZnO nanofibers accelerated the wound healing of
subcutaneous wounds in induced diabetic rabbits [194].

Similar to Zn, copper ions, Cu2+ are also essential for biological processes such
as the enzymatic reactions and protein interactions of bacteria. However, excess Cu2+
concentrations may lead to cell membrane and DNA disruptions [195]. The Cu2+ ions
released from poly(lactic-co-glycolide)/copper oxide (PLGA/CuO) nanofibers were shown
to inhibit the growth of both gram-negative E. coli and gram-positive S. aureus [126].
The ions are believed to adhere to the protein-containing sulfur in the bacteria cell wall,
penetrating the cell membrane and then killing the bacteria through protein disruption and
direct membrane damage [126,196].

4.2. Carbon Materials

Carbon materials such as carbon dots, fullerene, graphite, graphite oxide, graphene
oxide and reduced graphene oxide can cause bactericidal effects towards bacteria via
several mechanisms: (1) membrane stress induced by the sharp edges of carbon material
nanosheets, which can lead to membrane damage and results in the leakage of RNA and
other intracellular electrolytes [197–199], (2) cellular oxidative stress which can disrupt
bacterial lipid, protein and DNA process, resulting in cell death [200], (3) mechanical de-
struction of the bacteria cell through cell entrapment, which restricts the nutrients entering
the cell and later results in cell lysis [156], and (4) bacterial toxicity [201]. Graphene oxide
shows the highest antimicrobial activities, followed by reduced graphene oxide, graphite
and graphite oxide [156,201]. However, the antimicrobial activity of these carbon materials
is highly dependent on the material concentration, density of functional groups, size, and
conductivity [202,203]. Therefore, these criteria can be tailored to increase the antimicrobial
effects of carbon-incorporated nanofibers for a practical therapeutic application.

The effect of graphene oxide (GO) size evaluated from GO in bacterial suspension
showed that the antimicrobial effect of GO increases as its sheet area increases from 0.01 to
0.65 µm2 [202]. This is because a larger GO sheet area has a higher capacity to cover the
bacteria cells completely, thus altering the cell morphology and integrity [155]. In contrast,
the antimicrobial activity of GO-coated surface membranes increases when the GO sheet
area decreases from 0.65 to 0.01 µm2. Smaller GO sheets have a higher capacity to induce
oxidative stress in bacterial cells, leading to membrane damage and cell death [202]. These
findings provide a guideline for researchers to modify the GO size accordingly to suit the
intended application. In another study, the incorporation of GO in PCL/gelatin nanofibers
reduced the diameter of the nanofibers and was found to inhibit 99% of the growth of
E. coli and S. aureus [64]. The inhibition rate also increased significantly as the concentration
of GO was increased [30]. Despite its remarkable antimicrobial activity, there is a rising
concern regarding GO cytotoxicity for human cells. A cytotoxicity test of GO on human
embryonic kidneys (HEK 293) revealed that GO reduces cell viability and proliferation,
and increases oxidative stress, leading to DNA damage even at low concentrations (5 and
10 wt%) [201,204]. However, GO loaded in PCL/gelatin nanofibers showed no cytotoxicity
effects towards PC 12 neural cells at 1.5 wt% GO concentrations [63]. In addition, it was also
found that 0.3 wt% GO loaded in PVA/collagen nanofibers did not show any cytotoxicity
towards keratinocyte cells (HaCaT) and further encouraged rapid healing on a group
of wounded mice [63]. These results indicate that the toxicity of GO is dose-dependent.
Therefore it is vital to control its concentration within the therapeutic range for human use.

Apart from graphene-based materials, carbon quantum dots or carbon dots (CQDs)
have been extensively studied for their antimicrobial activity. Nie et al., (2020) found that
synthesized CQDs had generated ROS, leading to cell membrane damage, thus inhibiting
E. coli, S. aureus, Klebsiella pneumoniae, and multidrug-resistant Acinetobacter baumannii [205].
In another study, multifunctional CQD-embedded electrospun polyacrylonitrile (PAN)
nanofibers were found to inhibit the growth of E. coli. The small size of the CQDs allowed
it to penetrate bacteria cells and disrupt the cell wall [206].
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Soccer ball-shaped fullerenes (C60) have shown antimicrobial activity against S. aureus,
E. coli, and Shewanella oneidensis. Fullerene can inhibit the energy metabolism of the bacteria,
impair respiratory action, and induce disruption of the cell membrane [207]. Virovska et al.,
(2016) fabricated electrospun poly(L-lactide) (PLA) nanofibers and simultaneously elec-
trosprayed them with a zinc oxide/fullerene (ZnO/C60) hybrid. The fiber mats exhibited
excellent antimicrobial activity against S. aureus at a low fullerene concentration (0.5 and
1.0% w/w) [208]. The outstanding antimicrobial activity manifested by carbon materials
can be considered as a potent non-antibiotic approach for antimicrobial applications.

4.3. Antimicrobial Peptides (AMPs)

Other than metal and carbon materials, nanofiber-loaded antimicrobial peptides have
also shown a bactericidal effect. Antimicrobial peptides (AMPs) are positively charged
peptides with broad-spectrum antimicrobial activity found in various life forms including
humans and microorganism [209]. Since most bacteria are attracted to positively charged
particles, AMPs can penetrate the bacteria cell membrane [210], and impair the bacterial
cell’s osmotic regulation, inhibiting respiration, causing cell membrane rupture, and in-
ducing rapid cell lysis [209]. This mechanism of action reduces the risk of antimicrobial
resistance. Hence, it can be a promising alternative to traditional antibiotics. In addition,
AMPs also act as an immunological agent which can stimulate and suppress the immune
system in response to bacterial threats [211].

As a part of the innate immune response, antimicrobial peptides have a broad-spectrum
activity against bacterial infection and demonstrate a potent therapeutic agent [212,213]. The
cationic charge of AMPs can cause electrostatic attraction towards bacteria cells and further
exhibit bactericidal mechanisms [214]. Song et al., (2016) prepared surface functionalized
silk fibroin (SF) nanofibers to immobilize AMP (CYs-KR12) from human cathelicidin pep-
tide (LL37). They found that the Cys-KR12 immobilized onto SF nanofibers inhibited the
growth of S. aureus, Staphylococcus epidermidis, E. coli and P. aeruginosa. Interestingly, the
antimicrobial activity of CYs-KR12 was maintained after three weeks [215]. The nanofibers
also promoted the cell proliferation of keratinocytes and fibroblast cells. Investigation of the
immunomodulatory effect of the nanofibers towards TNF-α expression of monocytes (Raw
264.7 cells), which can cause chronic inflammation and prolong wound healing, revealed
that the Cys-KR12-immobilized SF nanofibers suppressed TNF-α expression, and thus pro-
motes rapid wound healing. In another study, functionalized poly-(acrylic acid)/polyvinyl
alcohol (PAA/PVA) nanofibers with nisin (N) from Lactococcus lactis showed remarkable
antimicrobial activity against S. aureus, and interestingly, the antimicrobial effect lasted for
14 days [216]. Taken together, these studies demonstrate that AMPs can be controlled to
sustain release directly to the target site for effective therapeutic applications.

4.4. Natural Extracts

Natural plant or herbal extracts like aloe vera, chamomile, curcumin, propolis, Biden
Pilosa, Hibiscus sabdariffa, Rosmarinus officinalis, and Thymus vulgaris extracts have been used
widely as antimicrobial agents. Due to alkaline stress, these extracts exhibit bactericidal
effects through cell membrane hyperpolarisation [217] and cytoplasmic pH change [218].
Bacteria behaviors such as pH homeostasis, membrane transport, motility, resistance,
cell division, and electrical communication and signaling depend on the regulation of its
membrane potential [219]. The disruption in ion-exchange concentration inside the bacteria
membrane can induce its hyperpolarization and cause bacterial structure instability and
membrane damage [217,220]. On the other hand, pH and alkaline stress increase metabolic
acid production, ATP synthase and change the cell surface properties, leading to bacteria
damage and cell death [218].

Recently, PLGA nanofibers fabricated with aloe vera extract having an average diam-
eter of 356 nm with 87.92% porosity were shown to inhibit the growth of S. aureus and
S. epidermidis. No inhibition was observed for pure PLGA nanofibers [221]. A similar find-
ing was reported in which the PCL nanofibers functionalized with chitosan/aloe vera/PEO
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were found to exhibit antimicrobial activity against S. aureus and E. coli, as well as promot-
ing rapid proliferation rate for fibroblast cells [222]. An in vivo animal study demonstrated
that aloe vera-incorporated nanofibers had accelerated the wound healing and closure of
diabetic mice. Overall, nanofibers incorporated with aloe vera extract showed positive
effects on antimicrobial activity and rapid wound healing.

Moringa (MR) extract incorporated into polyacrylonitrile (PAN) nanofibers showed a
concentration-dependent antimicrobial activity whereby increased inhibition of S. aureus
and E. coli was observed, as the concentration of extract loaded was increased from 0.1 up to
0.5 g [223]. In another study, MR-chitosan nanoparticles incorporated in gelatin nanofibers
were found to inhibit the growth of Listeria monocytogenes and S. aureus [69].

On the other hand, Kegere et al., (2019) analyzed the effect of PVA/chitosan nanofibers
blended with Biden Pilosa (BP) crude extract. BP crude extract alone can inhibit 64% of
E. coli and 51.7% of S. aureus growth. In comparison, the fabricated nanofibers showed
higher antimicrobial activity with 75.4% E. coli and 91% S. aureus inhibition [224]. The
antimicrobial activity of chitosan is already established [225] and the incorporation of the
BP extract into PVA/chitosan nanofibers further enhanced its antimicrobial efficiency.

5. Surface Chemical Functionalization via Monomer Grafting

The surface of nanofibers can be functionalized using different molecular moieties,
during or after the treatment electrospinning process [226–228]. The three most common
methods used to functionalize the surface are the wet chemical method, plasma treatment
and graft polymerization [229–231]. Post-treatment surface functionalization can also be
optimized by adding specific functional groups, mainly electron-withdrawing groups
such as carboxylic acids, amines, aldehydes, and acid chlorides (Figure 4) to improve the
nanofibers’ surface chemistry such as its wettability, surface charge and surface roughness
to further enhance antimicrobial property of the nanofibers [230,232–235].

Abrigo et al., (2015) studied the influence of the fiber wettability, surface charge
and surface chemistry of polystyrene (PS) nanofibers functionalized with acrylic acid
(ppAAc), allylamine (ppAAm), 1,7-octadiene (ppOct), and 1,8-octadiene (ppCo), using the
plasma treatment method, on E. coli attachment. The highest amount of E. coli attached
was observed on the PS surface with ppAAm. Although allylamine is a hydrophilic
monomer, its positive charge surface attracts the bacteria and encourages their attachment
and proliferation on the surface of nanofibers. Similar to allylamine, acrylic acid is also a
hydrophilic monomer. However, only a small proportion of bacteria cells are attached to
the ppAAc due to its negatively charged surface. The electrostatic repulsion between the
ppAAc nanofibers and E. coli resulted in low attachment of bacteria cells.

In contrast, a significant amount of the bacteria was found on the ppOct, attributed
to the hydrophobicity of the surface. Although the functionalized nanofibers attracted
the bacteria to stick onto the surface, ppAAm and ppOct did not induce bacteria inhi-
bition. Instead, the bacteria proliferated around the nanofibers [158]. The observation
indicates that the monomers alone are not enough to kill the bacteria as they do not have
antimicrobial properties.

In another study, upon exposure of PLGA/chitosan nanofibers functionalized with
GO-Ag to the attached E. coli, P. aeruginosa and S. aureus, the cells became flattened and
wrinkled, causing conformational changes and leading to cell death [198]. The bacte-
rial attachments were also significantly lower when the surface was functionalized with
monomers containing cyclic compounds, tertiary butyl, dimethyl hydrocarbon, and a high
density of ester groups, due to their rigid structure [236]. In contrast, the attachment can
be promoted by functionalizing the surface with monomers containing ethylene glycol and
hydroxyl constituents [237].
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Figure 4. Electron withdrawing group and functional moieties can be functionalized on nanofiber
surfaces to improve bacterial adhesion and attachment. The stronger EWGs exhibit higher bacte-
rial attachments.

The functionalization of electrospun nanofibers with antimicrobial agents is a promis-
ing strategy to combat bacterial infection and resistance. Different functionalization meth-
ods and materials used will provide different interactions and mechanism of actions in
killing the bacteria. Therefore, the nanofiber criteria and designs discussed above can
provide a basic guideline to further understand the relationship between functionalized
nanofibers and bacteria cells.

6. Conclusions and Future Trends

At present, smart antimicrobial nanofibers have been developed in different fields,
including wound dressing, tissue repair and regeneration, nanomedicine, air, and water
filtering. Nanomaterial-based antimicrobials can be used as an alternative to antibiotics to
achieve an effective therapeutic effect, especially in wound dressing applications.

The design of fabricated nanofibers plays an important role to ensure antimicrobial
effectiveness. Therefore, we have discussed the properties that can influence nanofibers’
bactericidal effects, such as its (1) morphology including size, diameter and porosity,
(2) the surface charge of the nanofibers, and (3) surface wettability. However, it has been
proven that nanomaterials or nanofibers are not able to fight bacteria alone. The addition of
antimicrobial agents is strongly required to enhance the antimicrobial activity of nanofibers.

Additional studies will be required to enable a deeper understanding on the interac-
tions of these nanomaterials with the target bacteria as bacteria are complex microorganisms
that can easily adapt to their surroundings for survival. Additionally, interdisciplinary
research involving the chemical, biological, and pharmacological fields is necessary to
translate these nanofiber designs clinically.
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However, electrospinning is still not ready for the large-scale industrialization of
antibacterial fiber production as required from the market. The optimization of nanofibers
with highly complex morphologies (i.e., multicomponent, multiaxial fibers) still present
some difficulties in terms of large-scale feasibility, and further studies to improve entrap-
ment mechanisms and fabrication processes are needed.

For this purpose, different manufacturing methods—i.e., the simultaneous or sequen-
tial deposition of fibers and/or nanoparticles [238,239] have been optimized to introduce
organic or inorganic carriers that provide more appropriate drug release profiles in vitro.
In this context, over fiber morphology, drug loading strongly affects the release curve [239].
However, sustained release is strictly conditioned by the polarity of polymer and the drugs
(i.e., they have to be similar), and the solubility of the drugs in the polymer solution. In
the future, a multidisciplinary approach aimed to design processes and material chemistry
could represent a unique route to design innovative carriers with a high degree of morpho-
logical and functional complexity, able to control molecular release in a reasonable time to
fight bacteria efficiently.
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