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SUMMARY

Claudin-1 is highly overexpressed in human colonic ade-
nomas. By using a near-infrared labeled fluorescent peptide,
we show real-time in vivo images in a mouse model of
spontaneous adenomas to show feasibility for future clinical
translation to detect precancerous lesions.

BACKGROUND & AIMS: Conventional white-light colonoscopy
aims to reduce the incidence and mortality of colorectal
cancer (CRC). CRC has been found to arise from missed
polypoid and flat precancerous lesions. We aimed to establish
proof-of-concept for real-time endoscopic imaging of colonic
adenomas using a near-infrared peptide that is specific for
claudin-1.

METHODS: We used gene expression profiles to identify
claudin-1 as a promising early CRC target, and performed phage
display against the extracellular loop of claudin-1 (amino acids
53–80) to identify the peptide RTSPSSR. With a Cy5.5 label, we
characterized binding parameters and showed specific binding
to human CRC cells. We collected in vivo near-infrared fluo-
rescence images endoscopically in the CPC;Apc mouse, which
develops colonic adenomas spontaneously. With immunofluo-
rescence, we validated specific peptide binding to adenomas
from the proximal human colon.

RESULTS: We found a 2.5-fold increase in gene expression for
claudin-1 in human colonic adenomas compared with normal.
We showed specific binding of RTSPSSR to claudin-1 in
knockdown and competition studies, and measured an affinity
of 42 nmol/L and a time constant of 1.2 minutes to SW620
cells. In the mouse, we found a significantly higher target-to-
background ratio for both polypoid and flat adenomas
compared with normal by in vivo images. On immunofluores-
cence, we found significantly greater intensity for human ade-
nomas (mean ± SD, 25.5 ± 14.0) vs normal (mean ± SD, 9.1 ±
6.0) and hyperplastic polyps (mean ± SD, 3.1 ± 3.7; P ¼ 10-5

and 8 � 10-12, respectively), and for sessile serrated adenomas
(mean ± SD, 20.1 ± 13.3) vs normal and hyperplastic polyps
(P ¼ .02 and 3 � 10-7, respectively).

CONCLUSIONS: Claudin-1 is overexpressed in premalignant
colonic lesions, and can be detected endoscopically in vivo with
a near-infrared, labeled peptide. (Cell Mol Gastroenterol Hepatol
2016;2:222–237; http://dx.doi.org/10.1016/j.jcmgh.2015.12.001)
Keywords: Colon Cancer; Early Detection; Molecular Imaging.

olorectal cancer (CRC) is one of the most common
1
Ccauses of cancer-related mortality worldwide.

Adenomatous polyps are precursor lesions2 and may express
early molecular targets that can be developed for imaging to
improve methods of detection and cancer prevention.
Conventional white-light colonoscopy is the preferredmethod
for screening, and is one of the most frequently performed
procedures in the United States.3 However, the miss rate for
grossly visible polyps can be up to 25% or higher.4–6 Also,
clinical studies have shown that colonoscopy confers a
reduction inmortality from left-sided(distal) lesions, butmuch
less so for right-sided (proximal) disease.7–12 Right-sided le-
sions tend to be smaller in size, have more nonpolypoid (flat)
features, and aremoredifficult to visualize.13 Furthermore,flat
adenomas may represent more than 35% of all premalignant
lesions14 and may result in preventable cancers.15 Moreover,
adenomas, which are premalignant, cannot be distinguished
fromhyperplastic polyps,whichhavenomalignantpotential.16

Sessile serrated adenomas (SSAs) tend to beflat in appearance,
and can result inmore than17.5%ofproximal colon cancers.17

Claudin-1 is an integral membrane protein with 4
membrane-spanning regions and 2 extracellular loops that
form tight junctions between epithelial cells to maintain cell
polarity and regulate paracellular transport.18 This protein
is overexpressed in several human cancers, including
colorectal,19–22 pancreas,23 cervical,24 squamous cell,25

stomach,26 nasopharyngeal,27 and thyroid.28 From gene
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expression analysis, claudin-1 is increased by more than 40-
fold in adenocarcinoma compared with normal colon.29 This
cell surface target also has been found to be overexpressed
in SSAs.30 Claudin-1 overexpression in neoplasia is believed
to increase cell proliferation, motility, and invasiveness, and
may contribute to the loss of cell polarity, abnormal cellular
organization, and decreased differentiation.31,32 Claudin-1
also has been found to have increased expression in
neoplasia associated with inflammatory bowel disease.33–35

Peptides have shown promise for clinical use to detect
overexpressed cell surface targets during endoscopy.36,37

Peptides show high binding affinity, with rapid binding
onset, and are inexpensive to mass manufacture. In addition,
high peptide concentrations can be used with topical
administration to colonic mucosa to maximize the binding
interactions and achieve optimal image contrastwithminimal
risk for toxicity.38 Because of the large diversity of sequences
possible, the specificity of peptides can be very high, and
nanomolar binding affinities can be achieved.39 Peptides have
flexibility to be optically labeled with a broad range of fluo-
rophores for use inmultiplexed imaging strategies to address
tumor heterogeneity.40 Peptides with short amino acid se-
quences have minimal immunogenicity because of their
specific small size (<1 kilodalton), and can be arranged in a
multimer configuration to improve detection sensitivity and
increase specificity and avidity from a multivalency effect.41

Here, we aimed to show real-time endoscopic imaging of
overexpressed claudin-1 in both polypoid and flat adenomas
in vivo to establish proof-of-concept for future clinical
translation as an early molecular target for detection of CRC.

Methods
Identification of Claudin-1 Target

We evaluated the GSE41258 gene expression data set
to identify promising early targets for imaging that are over-
expressed in colonic adenomas compared with normal.29

We analyzed 22,283 probe-sets using the Affymetrix (Santa
Clara, CA) HG_U133Aarray platform. Data fromN¼ 52 normal
and N ¼ 45 adenomas were selected. Two-sample t tests and
average fold-changes were computed. Data were evaluated
based on the following criteria: P value less than 10-5, average
fold-change greater than 2, and location on plasma mem-
brane using Gene Ontology terms obtained from Affymetrix
(ver na32).

Materials
We used human colorectal adenocarcinoma cell lines

SW620, SW480, and HCT116 (American Type Culture
Collection, Manassas, VA). SW620 and SW480 cells were
cultured in Dulbecco’s modified Eagle medium and HCT116
cells were cultured in McCoy’s 5a medium using a 37�C
humidified incubator with 5% CO2. All cell culture media
(Gibco, Carlsbad, CA) were supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin.

Identification of a Peptide Specific for Claudin-1
We performed phage display with a PhD7 library (New

England Biolabs, Ipswich, MA) using the claudin-1 (CLDN1)
extracellular loop mimetic peptide CLDN-153–80 with a bio-
tinylated C-terminus (Biomatik, Cambridge, Ontario) as the
target. Biopanning was performed per the manufacturer’s
guidelines using 15-mm dishes coated with 0.1 mg/mL
streptavidin, washed with Tris-buffered saline with 0.1%
Tween-20, and blocked for 1 hour at 4�C with blocking
buffer consisting of 0.1 mol/L NaHCO3 with 0.5% bovine
serum albumin (BSA) and 0.1 mg/mL streptavidin. The
phage library (1 � 1011 pfu containing 1.28 � 109 unique 7
amino acid sequences with 100 copies) was first cleared of
nonspecific binders by biopanning against 2 streptavidin-
coated dishes and 1 uncoated dish for 30 minutes at room
temperature (RT) with agitation. Unbound phages were
collected after each clearing step and used in the following
rounds. After 3 rounds of clearing, the remaining phages
were amplified to 2 � 1011 for biopanning with the claudin-
1 target in a blocked streptavidin-coated dish for 30 mi-
nutes at RT. Biotin at a final concentration of 0.1 mmol/L
was added for 5 minutes to bind any free streptavidin. The
dishes were washed 10� with Tris-buffered saline with
0.1% Tween-20 and weak binders were removed by eluting
with 0.2 mol/L glycine, pH 2.2, with 1 mg/mL BSA for 2
minutes. A second elution was performed for 13 minutes to
remove strong binders and was incubated with neutraliza-
tion buffer (1 mol/L Tris-HCl, pH 9.1), amplified, and titered
for the next round of biopanning. Three rounds of bio-
panning were performed with decreasing concentrations of
biotinylated claudin-1 extracellular loop mimetic peptide
(75, 50, and 25 nmol/L) and were incubated with 2 � 1011

phages for decreasing periods of time (60, 40, and 20 mi-
nutes, respectively) to improve specificity. The concentra-
tion of Tween-20 was increased from 0.1% to 0.5% in the
washing buffer in rounds 2 and 3. The unamplified eluate
from the strong binders in round 3 was titered overnight
and 50 plaques were selected for DNA sequencing.

Peptide Synthesis
The RTSPSSR (RTS*) phage was found to be highly

enriched (43 of 50 clones) after 3 rounds. This sequence
was scrambled as SPTSSRR (SPT*) for use as control. The
peptides were synthesized using standard solid-phase
9-fluorenylmethyloxycarbonyl chemistry, and labeled at
the C-terminus with Cy5.5 using a 5–amino acid linker
GGGSK. All chemicals and reagents used were analytic grade
(Sigma-Aldrich, St. Louis, MO), unless otherwise noted. Re-
agents for peptide synthesis (Anaspec, Fremont, CA and
AAPPTEC, Louisville, KY) had more than 99% purity and
were used without further purification. Synthesis of both
peptides was performed with a PS3 automatic synthesizer
(Protein Technologies, Inc, Tucson, AZ) using t-butylox-
ycarbonyl and 9-fluorenylmethyloxycarbonyl protected L-
amino acids before manually labeling with the dye. Upon
completion of synthesis, the 1-(4,4-Dimethyl-2,6-dioxocy-
clohexylidene)-3-methylbutyl side chain was removed with
5% hydrazine in dimethylformamide with agitation for 20
minutes at RT 3�. The resin-linked peptide then was
washed 3� with dimethylformamide and dichloromethane.
The Cy5.5 fluorophore (Lumiprobe, Hallandale Beach, FL)
was added along with di-isopropylethylamine and incubated
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for 24–48 hours with agitation at RT. The peptide then was
cleaved from the resin with chilled trifluoroacetic acid
(TFA):triisopropylisilane:water (9.5:0.25:0.25, vol/vol/vol,
respectively) for 4 hours with agitation at RT. The peptides
were separated from the resin and cleavage cocktail was
evaporated with N2 gas before precipitating the peptide
with diethyl ether in an overnight incubation at -20�C. The
precipitate was collected by centrifugation at 1780�g for 5
minutes and suspended in acetonitrile:water (1:1, vol/vol,
respectively). Both peptides were purified to more than
95% via high-performance liquid chromatography (Waters,
Milford, MA) using a water (0.1% TFA)-acetonitrile (0.1%
TFA) gradient. The mass-to-charge ratio of the Cy5.5-labeled
peptides was measured using mass spectrometry.

Immunocytochemistry
SW620, SW480, and HCT116 cells were added to 12-well

plates at a density of 0.5 � 106 cells/mL. The following day,
theywerefixedwith ice-coldmethanol for 20minutes at -20�C,
blockedwith phosphate-buffered saline (PBS) plus 2%BSA for
1 hour at RT, then incubated firstwith the primary anti-CLDN1
antibody (clone Jay.8; Invitrogen, Carlsbad, CA) at 5 mg/mL at
4�C overnight, then with (1:500) goat anti-rabbit secondary
antibody labeled with Alexa Fluor 488 (AF488; Life Technol-
ogies, Grand Island, NY) for 1 hour at RT. Finally, cells
were counterstained with 40,6-diamidino-2-phenylindole
(DAPI) þ Prolong Gold (Thermo Fisher Scientific, Waltham,
MA) before being mounted on slides and imaged with a
Leica (Wetzlar, Germany) SP5x confocal microscope using a
63� (numeric aperture, 1.4) oil-immersion objective.

Small Interfering RNA Knockdown of
Claudin-1 Expression

CLDN1 expression was knocked down using Dharmacon
On-Target Plus SMARTpool Human CLDN1 small interfering
RNA (siRNA) (Thermo Fisher Scientific) per the manufac-
turer’s protocol. SW620 cells were plated overnight on
coverslips in a 12-well plate at 0.2 � 106 cells/mL. The
following day, the cells were transfected with 3 mL Dhar-
maFECT1 and either 25 nmol/L CLDN1 or control siRNA.
After 72 hours, the transfected cells were analyzed for
claudin-1 expression. The cytoplasmic and plasma mem-
brane fractions were extracted using a plasma membrane
protein extraction kit (BioVision, Milpitas, CA). The total
protein in the cytoplasmic and plasma membrane fractions
were quantified using a bicinchoninic acid protein assay kit
(Pierce, Thermo Fisher Scientific), and 3 mg total protein of
each fraction were run on a Novex (Thermo Fisher Scien-
tific) 4%–20% 1.5-mm protein gel before transferring to a
polyvinylidene difluoride membrane. The membrane was
blocked with PBS plus 0.1% Tween-20 (PBST) plus 5%
nonfat milk for 1 hour at 4�C, stained with either rabbit anti-
CLDN1 antibody or mouse antitubulin antibody (clone 2-28-
33; Invitrogen) at 4�C overnight, then with anti-rabbit
horseradish peroxidase (HRP) (1:500, for CLDN1) or anti-
mouse HRP (1:500, for tubulin) for 1 hour at RT before
developing. The transfected cells were lysed with radio-
immunoprecipitation assay buffer containing mini-complete
EDTA-free protease inhibitor (Roche) for 10 minutes on ice,
collected, and spun at 20,000�g for 10 minutes at 4�C. The
total protein concentration was quantified with the bicin-
choninic acid assay, and 10 mg protein from each sample was
run on a Novex 4%–20% 1.5-mm protein gel before trans-
ferring to a polyvinylidene difluoride membrane. The mem-
brane was blocked with PBSTþ 5% nonfat milk for 1 hour at
4�C overnight, then with anti-rabbit HRP (1:500, for CLDN1)
or anti-mouseHRP (1:500, for tubulin) for 1 hour at RTbefore
developing.

For immunocytochemistry, the transfected cells were
further passaged and grown on coverslips. Cells were fixed
with ice-cold methanol for 20 minutes at -20�C, blocked for
1 hour at RT with PBS þ 2% BSA, stained with anti-human
CLDN1 antibody at 5 mg/mL for 1 hour at RT, then with goat
anti-rabbit antibody labeled with AF488 (1:500) for 1 hour
at RT, and then counterstained with DAPI þ Prolong Gold.
siRNA-transfected cells also were stained with 5 mmol/L
RTS*-Cy5.5 or SPT*-Cy5.5 for 30 minutes at 4�C, and fixed
with 4% paraformaldehyde for 10 minutes at RT.

Competition for Peptide Binding
SW620 cells were plated at approximately 0.5 � 106

cells/mL on coverslips in 12-well plates. The following day,
the cells were treated first with unlabeled RTS* peptide at 0,
25, 50, 100, 200, or 400mmol/L for 30minutes at 4�C,washed
with PBS, and then treated with 5 mmol/L RTS*-Cy5.5 for 30
minutes at 4�C. The cells were fixed with 4% PFA for 5 mi-
nutes at RT,washed, and counterstainedwithDAPIþProlong
Gold. Fluorescence intensities were quantified with custom
software developed with Matlab (Mathworks, Natick, MA).

Cell Binding Assay
SW620, SW480, and HT29 cells were plated at approx-

imately 0.5 � 106 cells/mL on coverslips on 12-well plates.
The following day, the cells were treated with either
10 mmol/L RTS*-Cy5.5 or SPT*-Cy5.5 for 1 hour at 4�C, fixed
with 4% PFA for 10 minutes at RT, then counterstained with
DAPI þ Prolong Gold. Fluorescence intensities from
10 randomly chosen cells in 3 independent images were
quantified using custom software. Statistical analysis was
performed using a 1-way analysis of variance with Graph-
Pad Prism software (San Diego, CA).

Characterization of Peptide Binding
The apparent dissociation constant of RTS*-Cy5.5 to

SW620 cells was measured. SW620 cells were washed 2�
with PBS þ 0.5% BSA, then approximately 105 cells were
incubated with RTS*Cy5.5 at dilutions ranging from 0 to 200
nmol/L for 1 hour at 4�C. Cells then were washed of unbound
peptide 5�with PBSþ 0.5% BSA before analyzing with flow
cytometry (FACS Canto; BDBiosciences, San Jose, CA). Sample
means were used to calculate the equilibrium dissociation
constant kd using nonlinear regression analysis with Graph-
Pad Prism software.42

To measure the apparent association time constant of
RTS*-Cy5.5, SW620 cells were washed 2� with PBS þ 0.5%
BSA, then approximately 105 cells were incubated with



Figure 1. Claudin-1 is an early target for CRC. (A) From the GSE41258 gene expression data set, the mean (±SD) base-2 log
level for claudin-1 was 4.8 ± 0.8 and 3.5 ± 0.4 for human adenomas (n ¼ 45) and normal (n ¼ 52) colonic mucosa, resulting in
an average difference of 2.54-fold (P ¼ 9.4 � 10-18) by 2-sample t test. On immunohistochemistry, minimal staining was
observed from representative sections of (B) normal and (C) hyperplastic polyps. Intense cell surface staining (arrows) was
seen in representative sections of (D) SSAs and (E) adenomas from human proximal colon specimens. By using a standard IHC
scoring system, overexpression (2þ/3þ) of claudin-1 was found in 14% (4 of 28) of normal, 17% (2 of 12) of hyperplastic
polyps, 73% (8 of 11) of SSAs, and 87% (26 of 30) of adenomas.
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5 mmol/L RTS*-Cy5.5 at 4�C for time intervals ranging from
2 to 15 minutes. The cells were immediately washed of
unbound peptide 5� with PBS þ 0.5% BSA before analyzing
with flow cytometry. The mean fluorescence intensity of
SW620 cells at the various time points was set in a ratio
with untreated cells and used to calculate the rate constant
k by fitting the data to a first-order kinetics model, y(t) ¼
Imax [1 - exp(-kt)], using Origin 6.1 software (OriginLab Corp,
Northampton, MA).41
Transepithelial Electrical Resistance
Measurements

T84 human colon carcinoma cells were grown in a 1:1
mixture of Dulbecco’s modified Eagle medium and Ham’s F-
12 culture medium supplemented with 5% fetal bovine
serum. To establish a polarized monolayer, the cells were
plated on Transwell permeable polyester supports (Corning
Life Sciences, Tewksbury, MA) (1.12 cm2; pore size, 3 mm;
Costar) until they reached confluence after approximately
3–4 days, as determined by an increase in transepithelial
electrical resistance (TEER).43 The cells were continually
grown on Transwell supports until the TEER reached
approximately 2000 U-cm2. Then, 5 mmol/L of either
RTS-Cy5.5 or control peptides were added. TEER then was
measured at 6, 12, and 24 hours. The cells were fixed with
4% PFA for 12 minutes. After brief washing, 1% sodium
dodecyl sulfate in PBS was used to permeabilize the cells.
These procedures were followed by 3% goat serum in PBS
blocking for 30 minutes. Mouse anti–zonula occludens-1
(anti–ZO-1) (1:250; Life Technologies) and rabbit anti–
claudin-1 (1:200; Life Technologies) antibodies were diluted
in block buffer and incubated in a humidity box overnight at
4�C and fluorescent secondary antibodies were diluted to
1:1000 and incubated for 1 hour at RT.44 All images were
obtained using a Nikon (Melville, NY) A1 confocal micro-
scope (Microscopy & Image Analysis Laboratory, University
of Michigan).
In Vivo Imaging in Mouse Colon
We used a CPC;Apc mouse model of CRC in which the

adenomatous polyposis coli (APC) allele sporadically is
deleted by Cre recombinase in colonic epithelium,45 result-
ing in spontaneous formation of flat and polypoid colonic
adenomas. This model is representative of human disease
because APC mutations are found in more than 80% of
sporadic colorectal cancers.46 We used a rigid small animal



Figure 2. Peptide specific for claudin-1. (A) The extracellular loop of CLDN1, consisting of amino acids 53–80 (red), was used to
select the (B) peptide with sequence RTSPSSR. The chemical structure of the peptide (black) with a GGGSK linker (blue) and
Cy5.5 label (red) is shown. (C) Scrambled peptide with sequence SPTSSRR labeled with Cy5.5 is used as control. (D) Fluo-
rescence spectra with lex ¼ 671-nm excitation shows peak emission in near-infrared at 710 nm for both peptides. (E) For RTS*-
Cy5.5, the mass-to-charge (m/z) ratio of 1740.9 was measured on mass spectrometry, which agrees with the expected value.
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endoscope (Karl Storz Veterinary Endoscopy-America,
Goleta, CA) to image the distal 2 cm of colon.47 The mouse
studies were performed with approval of the University of
Michigan Committee on the Use and Care of Animals. The
mice were housed in pathogen-free conditions and supplied
water ad libitum under controlled conditions of humidity
(50% ± 10%), light (12-/12-hour light/dark cycle), and
temperature (25�C). Anesthesia was induced and main-
tained via a nose cone with inhaled isoflurane mixed with
oxygen at a concentration of 2%–4% at a flow rate of
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approximately 0.5 L/min. Mucus was removed by vigor-
ously rinsing the colon with water. We used white-light
illumination first to identify adenomas. A 100-mmol/L so-
lution of RTS*-Cy5.5 was administered intrarectally, and
allowed to incubate for 5 minutes before rinsing away the
unbound peptides with water. The colon then was imaged
with fluorescence. We recorded the following: (1) distance
between the endoscope tip and the anus, and (2) clockwise
location of each region of high intensity. Several days later,
endoscopy was repeated to confirm that all residual signal
from RTS*-Cy5.5 had disappeared, and then the mice were
imaged with the SPT*-Cy5.5 control peptide. On the endo-
scopic images, we determined the average fluorescence in-
tensity from 3 regions of interest with dimensions of 20 �
20 mm2 picked at random from the regions of high fluo-
rescence intensity (target) and adjacent areas of normal
colonic mucosa (background) to measure the target-to-
background (T/B) ratio.

After imaging completion, the mice were euthanized, and
the colon was resected and divided longitudinally to expose
the mucosal surface. We first collected white-light images
using the Xenogen IVIS Spectrum (Caliper Life Sciences,
Hopkinton, MA). Near-infrared fluorescence images then
were collected using 675-nm excitation and 720-nm emis-
sion with 1-second exposure time. A ruler was placed next
to the specimen to determine the distance from the anus for
registration with the endoscopy and histology images. The
specimen then was processed for histology by cutting sec-
tions in the plane parallel to the mucosal surface. Digital
images were collected with a Zeiss (Jena, Germany) Axio-
vision microscope (Thornwood, NY) using 5�magnification,
and stitched together using Image Composite Editor
(Microsoft, Redmond, WA). A pathologist (S.R.O.) who was
blinded to the imaging results reviewed the composite his-
tology, and identified regions of dysplasia and normal colon.
Fluorescence intensities from these sites were measured
from 2 concentric ellipses of equal area using Living Image
4.0 software (Caliper Life Sciences). The inner and outer
regions were used to define the target and background
values, respectively.
Figure 3. (See previous page). Validation of specific peptide
microscopy, RTS*-Cy5.5 showed different levels of binding to
HCT116 cells. (D–F) Minimal signal is observed for SPT*-Cy5
rescence intensities than SPT*-Cy5.5 on binding to SW480
(P ¼ 2 � 10-5 and 4 � 10-4) respectively. A small nonsignifi
average fold-change (P ¼ .19). The differences between RTS*
and SW620 than the same difference for HCT116 with 12.3 an
We fit a 1-way analysis of variance model to log-transformed
RTS*-Cy5.5 vs SPT*-Cy5.5 and the difference of those differen
10 randomly chosen cells from each of 3 slides for each con
cytoplasmic fraction (C) and on the plasma membrane (M) for e
of (I) RTS*-Cy5.5 peptide (red) and (J) AF488-labeled anti-CLD
cells (transfected with nontargeting siRNA, siCL). (K) Binding b
fluorescence intensities were reduced significantly in knockd
siCLDN1. (O) We fit a 2-way analysis of variance model with t
moieties (RTS*-Cy5.5, anti-CLDN1, and SPT*-Cy5.5) and their
per slide with 2 slides per condition). The signal for RTS*-Cy5
CLDN1 (P ¼ 2 � 10-7), which was a significantly larger decreas
The antibody signal also decreased significantly (P ¼ 5 � 10-7

(siCLDN1) SW620 cells.
Validation of Claudin-1 Expression in Mouse
and Human Proximal Colon Specimens

Formalin-fixed specimens from mouse colon were
deparaffinized. Antigen retrieval was performed using stan-
dard methods. Briefly, the sections were incubated 3� in
xylene for 3 minutes, washed 2� with 100% ethanol for 2
minutes, and washed 2� with 95% ethanol for 2 minutes.
Rehydration was performed by washing with distilled H2O
(dH2O) for 5 minutes. Antigen unmasking was performed by
boiling the slides in 10 mmol/L sodium citrate buffer with
0.05% Tween at pH 6.0, and then maintaining at a sub-boiling
temperature for 15 minutes. The slides were cooled for
30 minutes. The sections were washed 3� with dH2O for
3 minutes, and then incubated in 3% H2O2 in methanol for 10
minutes. The sections were washed 3� in dH2O for 2 minutes
and in PBST for 5 minutes.

Blocking was performed with protein blocking agent
(X0909; Dako, Carpinteria, CA) for 15 minutes at RT. The
blocking solution was washed 3� with PBS. For mouse spec-
imens, we used primary rabbit polyclonal anti–claudin-1
antibody (ab 15098; Abcam, Cambridge, MA), and for human
specimens, we used primary rabbit polyclonal anti–claudin-1
antibody (clone Jay.8, Invitrogen). The sectionswere incubated
overnight at 4ºC in a humidified chamber and thenwashed 3�
in PBST for 5 minutes. A 1:200 dilution of biotinylated sec-
ondary antibody (goat anti-rabbit IgG) was added to each
section and incubated for 30minutes at RT, and then removed
by washing 3� with PBST for 5 minutes. Pre-mixed Elite
Vectastain ABC reagent (Vector Labs, Burlingame, CA) was
added to each section and incubated for 30minutes at RT. The
sections were washed 3� in PBS for 5minutes, and developed
with 3,3’-diaminobenzidine tetrahydrochloride substrate. The
reaction was monitored for up to 5 minutes, and then
quenched by immersing the slides in deuteriumH2O. Hema-
toxylin was added as a counterstain for approximately 20
seconds, and the sections were dehydrated in increasing con-
centrations of ethyl alcohol (2� each at 70%, 80%, 95%, and
100%). Coverslips were mounted using permount mounting
medium (#SP15-100; Fisher, Hampton, NH) in xylene. Serial
sections were processed for routine histology (H&E).
binding to claudin-1 with human CRC cells. On confocal
the cell surface (arrow) of (A) SW480, (B) SW620, and (C)

.5 to each of the cells. (G) RTS*-Cy5.5 showed higher fluo-
and SW620 cells with a 7.8 and 4.3 average fold-change
cant increase was observed for HCT116 cells with a 0.64
-Cy5.5 and SPT*-Cy5.5 were significantly larger for SW480
d 6.8 average fold-change (P ¼ 10-4 and 10-3), respectively.
data with terms for the means of 6 conditions, testing for
ces between the cell lines. Measurements are an average of
dition. (H) Western blot shows claudin-1 expression in the
ach cell. Confocal fluorescence images show strong binding
N1 antibody (green) to the surface (arrow) of control SW620
y the SPT*-Cy5.5 (red) control peptide is minimal. (L–N) The
own SW620 cells transfected with CLDN1-targeted siRNA,
erms for siRNA type (knockdown and control) and targeting
interactions to the average intensities on each slide (10 cells
.5 decreased more than 10-fold with siRNA knockdown of
e than the same difference for the control peptide (P ¼ 10-6).
). (P) Western blot shown for control (siCL) and knockdown
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Immunofluorescence of Proximal Human Colon
With Claudin-1 Peptide and Antibody

Formalin-fixed, paraffin-embedded specimens of ade-
nomas, sessile serrated adenomas, hyperplastic polyps, and
normal colonic mucosa from human proximal colon were
obtained from the archived tissue bank in the Department of
Pathology. Sections (5-mm thick) were cut and mounted
onto glass slides (Superfrost Plus; Fischer Scientific). The
tissues were deparaffinized, and antigen retrieval was per-
formed as described earlier. The sections were blocked with
protein serum for 15 minutes at RT followed by rinsing with
PBS. The sections then were stained with RTS*-Cy5.5 at a
5-mmol/L concentration for 10 minutes at RT. The sections
then were washed 3� with PBS (3 minutes each) and
incubated overnight with (1:200) anti–claudin-1 antibody
(clone Jay.8; Invitrogen). The sections were washed 3� with
PBST, and incubated with (1:500) goat anti-rabbit antibody
labeled with AF488 (Invitrogen) for 1 hour at RT. The sec-
tions were washed again 3� with PBST and mounted with
Prolong Gold reagent containing DAPI (Invitrogen) using #1
cover glass (1.5-mm thickness). The images were collected
with the same exposure time for all specimens. We placed 3
boxes with dimensions of 20 � 20 mm2 completely within
colonic epithelium in each image, and measured the mean
fluorescence intensities for RTS*-Cy5.5 using custom Matlab
software. Regions of saturated intensities were avoided. The
results were transformed in base-2 log to improve
normality and stabilize variance, and then fit with a 1-way
analysis of variance model. Adjacent sections were pro-
cessed for routine histology (H&E), and reviewed by 2
gastrointestinal pathologists (S.R.O. and H.D.A.).

All authors had access to the study data, and reviewed
and approved the final manuscript.

Results
Identification of Claudin-1 Target

In the GSE41258 data set,29 we found a 2.5-fold increase
in gene expression for claudin-1 in human colonic adenomas
(n ¼ 45) compared with normal mucosa (n ¼ 52)
(Figure 1A). On immunohistochemistry (IHC), we evaluated
expression of this protein target in archived human speci-
mens from the proximal colon. Figure 1B and C show min-
imal staining for the representative sections of normal and
hyperplastic polyps. Figure 1D and E show intense cell
surface staining for representative sections of SSAs and
adenomas. Consensus between 2 gastrointestinal patholo-
gists (S.R.O. and H.D.A.) using a standard IHC scoring system
showed overexpression, defined by either 2þ or 3þ stain-
ing, in 14% (4 of 28) of normal, 17% (2 of 12) of hyper-
plastic polyps, 73% (8 of 11) of SSAs, and 87% (26 of 30) of
adenomas. These results support claudin-1 as a promising
early target for the detection of proximal colon cancers.

Identification of a Peptide Specific for Claudin-1
Figure 2A shows the structure of claudin-1 on the cell

surface. We used the 53-80 amino acid loop of the extracel-
lular domain as the biopanning substrate for peptide selec-
tion with phage display. After 3 rounds, we found the peptide
sequence RTSPSSR to be highly enriched with expression in
43 of 50 of clones. Figure 2B shows the synthesized peptide
(black) labeled with Cy5.5 (red) via a GGGSK linker (blue) on
the C-terminus to prevent steric hindrance. Cy5.5 was chosen
for use as the label because of its high quantum yield and
photostability.48 Figure 2C shows the scrambled sequence
SPTSSRR used for control. Figure 2D shows the fluorescence
spectra of RTS*-Cy5.5 and SPT*-Cy5.5 with a peak emission
in the near-infrared spectrum at lem ¼ 710 nm using exci-
tation at lex ¼ 671 nm. We purified the Cy5.5-labeled pep-
tides to more than 95% on high-performance liquid
chromatography, and measured an experimental mass-to-
charge ratio of 1740.9 for RTS*-Cy5.5 on mass spectrom-
etry, which agrees with the expected value (Figure 2E).

Immunocytochemistry
On confocal microscopy, we examined cells with either

high (SW620, SW480) or low (HCT116) claudin-1 expres-
sion to validate specific binding of the RTS*-Cy5.5 peptide to
the plasma membrane. We found greater amounts of RTS*-
Cy5.5 bound to the surface (arrows) of SW480 and SW620
cells compared with HCT116 cells (Figure 3A–C), whereas
the SPT*-Cy5.5 control showed minimal binding to all cells
(Figure 3D–F). Figure 3G shows quantified fluorescence in-
tensities for RTS*-Cy5.5 to be significantly greater than that
for SPT*-Cy5.5 to SW480 and SW620, but not to HCT116
cells. In addition, the RTS*-Cy5.5 vs SPT*-Cy5.5 differences
were significantly greater for SW480 and SW620 than for
HCT116. Western blot confirmed higher claudin-1 expres-
sion for SW480 and SW620 than for HCT116 cells on the
plasma membrane (Figure 3H). Claudin-1 expression in the
cytoplasmic fraction of each cell line was relatively low
compared with the cell surface.

siRNA Knockdown of Claudin-1 Expression
We performed siRNA knockdown experiments with

SW620 cells to support specific binding of the RTS*-Cy5.5
peptide to claudin-1. We found that RTS*-Cy5.5 and
AF488-labeled anti-CLDN1 antibody show strong binding to
the surface of SW620 cells transfected with a control siRNA
(siCL) (Figure 3I and J), and reduced binding to cells
transfected with siCLDN1-targeted siRNA (Figure 3L andM).
SPT*-Cy5.5 produced minimal binding with either siRNA
(Figure 3K and N). Figure 3O shows quantified fluorescence
intensities for RTS*-Cy5.5 to a decrease more than 10-fold
with CLND1 siRNA knockdown compared with the control
knockdown, which was significantly greater than the
decrease in signal for SPT*-Cy5.5 (control). Signal from anti-
CLDN1 also decreased significantly, showing an effective
knockdown. Western blot confirmed the high expression of
claudin-1 in SW620 cells as well as for the cells transfected
with control siRNA, whereas expression was reduced by
approximately 44% for cells transfected with siCLDN1
(Figure 3P).

Competition for Peptide Binding
We evaluated binding of RTS*-Cy5.5 to SW620 cells with

competition from unlabeled RTS* and SPT* peptides to



Figure 4. Characterization of claudin-1 peptide binding. (A) On competition, RTS*-Cy5.5 showed less binding to SW620
cells with addition of unlabeled RTS* at concentrations of 25 mmol/L and higher compared with a concentration of 0 mmol/L.
With unlabeled RTS* at concentrations of 200 and 400 umol/L, the signal from RTS*-Cy5.5 was significantly lower than that
measured when competing with unlabeled SPT* at the same concentrations (P < 2 � 10-5). Analysis was performed using an
analysis of variance model with terms for 8 means fit to log-transformed data. Measurements are an average of 10 randomly
chosen cells on each of 3 slides at each condition for RTS* and 2 slides for each condition for SPT*. (B) We measured an
apparent dissociation constant (binding affinity) of kd ¼ 42 nmol/L and R2 ¼ 0.95 for RTS*-Cy5.5 to SW620 cells. (C) We
measured an apparent association time constant of k ¼ 0.83 min-1, which corresponds to less than 1.2 minutes. Results for
each measurement are representative of 2 independent experiments.
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support specific binding by the RTS* peptide rather than
the Cy5.5 label. Figure 4A shows that the addition of 25, 50,
100, 200, and 400 mmol/L of unlabeled RTS* produces a
Figure 5. Tight junction function and ZO-1 distribution are no
were incubated with either 5 mmol RTS* or SPT* (control), peptid
shows localization of (B and E) anti–ZO-1 and (C and F) anti-
junctions at 24 hours after peptide incubation. (D) RTS* peptide
dose-dependent reduction in fluorescence intensity of RTS*-
Cy5.5 using confocal microscopy. By comparison, addition of
unlabeled SPT* at the higher concentrations of 200 and 400
t altered by claudin-1 peptide. (A) Confluent T84 monolayers
es show high TEER for up to 24 hours. Immunofluorescence
CLDN1 antibodies on the apical plasma membrane of tight
partially localizes to cellular junctions.
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mmol/L showed a significantly higher RTS*-Cy5.5 fluores-
cence intensity than with equivalent concentrations of
unlabeled RTS*.

Characterization of Peptide Binding
We performed flow cytometry experiments with

SW620 cells to characterize peptide binding parameters.
Figure 4B shows an apparent dissociation constant for the
RTS*-Cy5.5 peptide of kd ¼ 42 nmol/L and R2 ¼ 0.95. This
result provides a measure of binding affinity. Figure 4C
shows an apparent association time constant of k ¼ 0.83
min-1 for RTS*-Cy5.5. This result provides a time scale of
approximately 1.2 minutes for binding with topical
administration.

TEER Measurements
We evaluated the effect of peptide binding on tight

junction function using a polarized monolayer of T84 cells
plated on Transwell supports. We found high TEER with
Figure 6. Increased claudin-1 expression in CPC;Apc mouse
is seen with (A) IHC and (B) IF using AF488 label. (C) Represe
claudin-1 was observed in normal colonic mucosa on (D) imm
sentative histology (H&E) for normal.
either RTS* or SPT* for up to 24 hours (Figure 5A). On
immunofluorescence, we observed antibodies for ZO-1
(Figure 5B and E), and claudin-1 (Figure 5C and F), to
localize to the cell junctions. These results show that neither
peptide alters tight junction function or ZO-1 distribution.
The RTS* peptide localizes partially to cellular junctions by
comparison with SPT* (Figure 5D and G).
Validation of Claudin-1 Expression in
Mouse Colon

We performed IHC and immunofluorescence (IF) to
show overexpression of claudin-1 in dysplasia compared
with normal in resected specimens of colon from the
CPC;Apcmouse. Figure 6A and B show intense staining using
the anti–claudin-1 antibody for dysplasia on IHC and IF,
respectively, whereas Figure 6D and E show minimal signal
for normal colonic mucosa on IHC and IF. Figure 6C and
F show corresponding histology (H&E) for dysplasia and
normal, respectively.
colonic adenomas. Strong staining of claudin-1 in dysplasia
ntative histology (H&E) for dysplasia. Minimal expression of
unohistochemistry and (E) immunofluorescence. (F) Repre-
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In Vivo Imaging in Mouse Colon
We used a small-animal endoscope to compare binding

between the claudin-1 and control peptides in 5 CPC;Apc
mice. After collecting white-light images, either RTS*-Cy5.5
or SPT*-Cy5.5 was administered intrarectally, and was
Figure 7. In vivo imaging in CPC;Apc mouse colon. White-ligh
normal-appearing mucosa. Near-infrared fluorescence images a
intensity from the polyp (arrow) in panel A, (E) presence of a fl

apparent on the white-light image in panel C. Representative i
frames per second, which showed minimum motion artifact and
polyp in panel A and (H) the flat lesion in panel B shows feature
higher mean (±SD) T/B ratio than SPT*-Cy5.5 for 8 polyps (2.3 ±
and 9 flat lesions (1.9 ± 0.5 and 1.1 ± 0.2, respectively; P ¼ 8
allowed to incubate for 5 minutes. The unbound peptides
then were rinsed away. On in vivo white-light images,
Figure 7A and B (Video 1) show a sporadic polyp (arrow),
and Figure 7C shows apparent normal colonic mucosa
with no grossly visible adenomas. On the corresponding
t images show (A and B) a spontaneous polyp (arrow) and (C)
fter topical administration of RTS*-Cy5.5 shows (D) increased
at lesion above the polyp in panel B, and (F) flat lesions not
ndividual images were extracted from videos recorded at 15
absence of debris (stool, mucus). Histology (H&E) of (G) the
s of low-grade dysplasia. (I) From 5 mice, RTS*-Cy5.5 had a
0.3 and 1.2 ± 0.2, respectively; P ¼ 3�10-4 by paired t test)

� 10-3 by paired t test).
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fluorescence images after administration of RTS*-Cy5.5,
Figure 7D shows increased intensity from the polyp in a
heterogeneous pattern, whereas normal colonic mucosa
shows minimal background. Figure 7E shows the presence
of a flat lesion above the polyp that is not apparent on the
white-light image in Figure 7B that was found later on pa-
thology to be dysplasia (Video 2). Figure 7F shows 2 flat
regions of increased fluorescence intensity that were
confirmed to be dysplasia on pathology. The staining
pattern appears to outline dysplastic crypts.

After completion of imaging, the mice were euthanized.
The colon was excised and the mucosal surface was exposed
to identify polyps. White-light and fluorescence images were
collected from each specimen using Xenogen IVIS Spectrum
(Perkin Elmer, Waltham, MA). Regions of increased intensity
were registered with the endoscopic images using land-
marks defined by distance from the anus and clockwise
location, and submitted for histology. The pathologist
identified 8 polyps and 9 flat lesions. Figure 7G shows the
histology of a polyp with features of low-grade dysplasia,
including collections of irregular crypts lined by epithelium
with crowded, elongated, and hyperchromatic nuclei.
Figure 7H shows the histology of a flat lesion with similar
histologic features of dysplasia. We found a significantly
greater mean T/B ratio for RTS*-Cy5.5 than for SPT*-Cy5.5
for both polyps and flat lesions (Figure 7I).

We then compared binding of the claudin-1 peptide be-
tween dysplasia and normal colonic mucosa in 3 mice at 10
weeks of age when they first begin to form polyps. We
Figure 8. Ex vivo validation of peptide binding to colonic dysp
cm of mouse colonic mucosa accessed by endoscopy after RT
image shows regions of increased fluorescence intensity. (C)
evaluated for the presence of dysplasia by an expert gastrointest
dysplasia (original magnification: 20�). (F) From 3 mice, the m
dysplasia compared with 7 normal (2.4 ± 0.6 vs 1.1 ± 0.1, resp
administered RTS*-Cy5.5 in vivo. After euthanizing the mice,
we collected white-light (Figure 8A) and near-infrared
fluorescence images (Figure 8B) from the excised colon
specimens. The tissues were sectioned along planes parallel
to the surface, and the pathologist (S.R.O.) identified regions
of dysplasia (red) and normal (blue) on histology
(Figure 8C) while blinded to the imaging results. Magnified
regions of normal and dysplasia are shown in Figure 8D and
E, respectively. The pathologist identified a total of 9 regions
of dysplasia and 7 sites of normal. The intensities from these
regions were measured from the fluorescence images. We
found a significantly greater T/B ratio for dysplasia
compared with normal (Figure 8F).
Binding of Claudin-1 Peptide to Human Proximal
Colonic Lesions

We show the potential for clinical translation of this
peptide by examining specific binding on formalin-fixed,
paraffin-embedded specimens of human proximal colon.
On confocal microscopy, we observed minimal fluorescence
intensity for both RTS*-Cy5.5 (red) and AF488-labeled anti-
CLDN1 antibody (green) on representative specimens of
human normal and hyperplastic polyps, respectively
(Figure 9A and B). By comparison, we observed bright
fluorescence from representative specimens of SSAs and
adenomas (Figure 9C and D, respectively). These results
show strong binding of the RTS*-Cy5.5 peptide to claudin-1
lasia. (A) Representative white-light image of excised distal 2
S*-Cy5.5 was administered topically in vivo. (B) Near-infrared
Histology (H&E) sectioned parallel to mucosal surface was
inal pathologist (S.R.O.). Expanded views of (D) normal and (E)
ean (±SD) T/B ratio was significantly higher for 9 regions of
ectively; P ¼ 2 � 10-4 by unpaired t test).
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at the cell surface (arrows) of SSAs and adenomas. We
measured the fluorescence intensities from binding of the
RTS*-Cy5.5 peptide in a set of 3 boxes with dimensions of
20 � 20 mm2 located at random on cells in the epithelium.
We found greater mean intensities for adenomas vs normal
and hyperplastic polyps and for SSAs vs normal and hy-
perplastic polyps. Figure 8E shows a mean fold-difference
of 2.8 and 2.2 for adenomas and SSAs vs normal,
respectively.
Discussion
On gene expression profiles, we found claudin-1 to be

overexpressed in human colonic adenomas by 2.54-fold
compared with normal mucosa. This result was confirmed
by expression of the protein target in 73% (8 of 11) of SSAs
Figure 9. Binding of claudin-1 peptide to human proximal co
binding of RTS*-Cy5.5 peptide (red) and AF488-labeled anti–cla
and (B) hyperplastic polyps. DAPI (blue) identifies nuclei. Stron
representative specimens of (C) SSAs and (D) adenomas from th
antibody binding is characterized by the Pearson correlation
normal, 12 hyperplastic polyps, 11 SSAs, and 30 adenomas.
adenomas (25.5 ± 14.0) vs normal (9.1 ± 6.0) and hyperplastic p
as for SSAs (20.1 ± 13.3) vs normal and hyperplastic polyps (P
(ANOVA) were used with means for 4 groups, fit to log-transform
mm2) located randomly on cells within each specimen were me
curve shows an area under the curve (AUC) of 0.87.
and in 87% (26 of 30) of adenomas from the proximal
human colon on immunohistochemistry. Significantly
reduced staining of this cell surface target was observed in
hyperplastic polyps and normal mucosa. Because claudin-1
is expressed early in the development of CRC, it may be
useful for detecting either polypoid or flat precancerous
lesions that are difficult to visualize.13 We identified the
peptide RTSPSSR, and showed that it binds specifically to
claudin-1 in knockdown and competition experiments. We
found this peptide to have adequate binding affinity of
kd ¼ 42 nmol/L and rapid binding within less than
1.2 minutes (k ¼ 0.83 min-1) with topical administration
in vivo. We showed specific peptide binding to spontaneous
colonic adenomas in mice that were either polypoid or flat
in morphology. Finally, we found significantly greater
fluorescence intensity from peptide binding to SSAs and
lonic neoplasia. On confocal microscopy, there was minimal
udin-1 antibody (green) to human (A) normal colonic mucosa
g staining with both peptide and antibody was observed for
e proximal colon. The extent of co-localization of peptide and
coefficient r. Representative images were selected from 28
(E) We found a significantly greater mean (±SD) intensity for
olyps (3.1 ± 3.7) (P ¼ 10-5 and 8 � 10-12, respectively), as well
¼ .02 and 3 � 10-7, respectively). Analysis of variance models
ed data. The fluorescence intensities from 3 boxes (20 � 20

asured and averaged. (F) The receiver operator characteristic
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adenomas from human proximal colon compared with
normal and hyperplastic polyps.

Although widespread use of colonoscopy has resulted in
a reduced incidence and mortality from CRC, this procedure
has been shown to be much less effective than expected.4–12

Cases of CRC diagnosed after colonoscopy are common, and
as many as 1 in 10 CRCs are found in patients who have
completed this procedure.49–51 Although interval cancers
may occur for a variety of reasons, most tumors are thought
to arise from prevalent lesions that were missed by colo-
noscopy. Efforts to improve quality have focused on
increasing instrument withdrawal time, adenoma detection
rate, and bowel preparation quality.52 However, reports of
interval cancers in subjects undergoing careful endoscopic
examination in clinical studies have shown that conven-
tional white-light colonoscopy can be ineffective even
under optimal conditions.53,54 Advanced endoscopic
techniques such as narrow-band imaging55–57 and
chromoendoscopy58–60 are being investigated to improve
polyp visualization, but these technologies are limited by
nonspecific detection mechanisms and have not shown
improvement in the adenoma detection rate or in patient
outcomes.61,62 Thus, a targeted approach, such as with use
of peptides, may be more effective.

Use of fluorescently labeled imaging agents that are
specific for early targets may improve cancer surveillance in
high-risk populations, such as those with multiple polyps, a
family history of CRC, Lynch syndrome, or inflammatory
bowel disease.63,64 In particular, premalignant lesions found
sporadically in the proximal colon may be more difficult to
detect because of a flat appearance. Multimodal endoscopes
that are sensitive to either white light or fluorescence have
been developed for clinical use.65 A peptide specific for
c-Met and labeled with Cy5 recently was used in human
beings with intravenous administration.66 An increase in
fluorescence was found for adenomas with either polypoid
or flat morphology on back-to-back examinations using
white light alone followed by white light with peptide. With
topical administration, peptides can be delivered in high
concentrations directly to mucosa at risk of harboring dis-
ease to maximize binding interactions and achieve high
image contrast with little risk for toxicity. This approach
results in rapid and predictable binding with minimal
background, and avoids undesired biodistribution of the
exogenous agent to other tissues, such as what occurs with
intravenous administration. Because of their small size,
peptides have reduced immunogenicity and lower costs
than antibodies for mass manufacture. This method of
contrast application is similar to that used in chromoendo-
scopy, which is now recommended by an international panel
of experts for cancer surveillance in patients with ulcerative
colitis,67 but with the added benefit of molecular specificity.

Future development of this peptide will require in vivo
clinical validation in human studies. Although we found
promising results with this peptide alone, disease hetero-
geneity in a broad patient population may require use of
additional targets using multiplexed imaging methods.40 We
previously showed a peptide VRPMPLQ that was identified
from human colonic polyps obtained via biopsy using phage
display.36 This peptide was labeled with fluorescein iso-
thiocyanate, and specific binding was validated in vivo on
dysplastic polyps with confocal endomicroscopy.36 Because
this peptide was selected empirically, the target is unknown
and its clinical use may not be widely generalizable. Our
claudin-1 peptide, on the other hand, was selected based on
a known target identified from a human gene expression
data set. Furthermore, this peptide can be used in a multi-
mer configuration to detect multiple targets concurrently
and potentially detect disease at lower levels of molecular
expression.41 Claudin-1 is overexpressed in human colonic
adenomas, and represents a promising early target for
detection of CRC using a near-infrared, labeled fluorescence
peptide.
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