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Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth
muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role
of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is
thought to be a pivotal mechanism in aneurysm formation.The factors and signaling pathways involved in regulating wall resident
SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of
different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and
arterial aneurysms.

1. Introduction

The vascular wall is composed of a limited number of dif-
ferent mesodermic cells, endothelial cells (ECs), smooth
muscle cells (SMCs), and adventitial stromal fibroblasts.
Recent studies have indicated that the human arterial wall
also contains resident progenitor cell with angiogenetic
properties, known as vascular wall resident progenitor cells
(VW-PCs) [1, 2]. These cells arise during embryonic and
fetal age but still remain niched and functional in the
adult to guarantee the renewal and repair of vascular tis-
sue and trigger the processes of “postnatal angiogenesis”
[3].

Angiogenesis, characterized by the growth of new blood
vessels or capillaries from preexisting vessels, plays a pivotal
role in the postnatal tissue remodeling both in physiological
and in pathological conditions [4]. In this way, studies
have shown that matrix metalloproteinases (MMPs) are

involved in the degradation of the extracellularmatrix (ECM)
substrates regulating structural proteins and consequent
tissue remodeling and may be considered potential early
biomarkers of evolution of vascular and nonvascular disease.
But MMPs play a regulatory role and participate in key
stages of postnatal angiogenesis as follows: the endothelial
proliferation and migration, tub formation with an encased
lumen sealed by tight cell–cell junctions, synthesis of ECM
proteins, and the recruitment of mural cells stabilizing new
connections [5].

Evidences have shown the presence of multipotent stem
cells (SCs) at sites of arterial aneurysms; they can differentiate
into SMCs and are activated after residing in a quiescent state
in the vascular wall [6–8].The factors and signaling pathways
involved in regulating wall resident SC recruitment, survival,
proliferation, growth factor production, and differentiation
may be also related to selective expression of different MMPs
[9–11].
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The purpose of this review is to examine the role of vascu-
larwall resident stem cells and biomolecularmechanisms that
regulate the activity of MMPs in natural history of arterial
aneurysms.

2. Materials and Methods

PubMed and ScienceDirect databases were searched for
articles using the terms adult vascular wall resident stem cells,
angiogenesis,MMPs, arterial aneurysms, and chronic inflam-
mation.

Only publications in English were included. Titles and
abstracts were screened by 3 authors (Michele Ruggiero,
Agostino Naso, and Stefano de Franciscis) to identify poten-
tially relevant studies. All potentially eligible studies were
subsequently evaluated in detail by 1 reviewer and 3 authors
(Michele Ruggiero, AgostinoNaso, and Stefano de Franciscis)
through consideration of the full text. Reference lists of
retrieved articles were also searched for relevant publications.

Clinical trial, meta-analysis, multicenter study, review,
and systematic reviews published in the last 5 years were
included. Studies were excluded if they were not in English
language, if performed in vitro, if the cohort was defined
by the presence of arterial aneurysms and an additional
confounding disease process (e.g., chronic renal failure or
cerebrovascular diseases), or if arterial aneurysms specific
results could not be distinguished from those of a larger
population consisting of individuals without disease. Studies
were excluded when the primary focus was carotid artery
disease, inflammatory diseases, cancer, nonvascular diseases,
and treatment with chemotherapy.

3. Results

3.1. Study Selection. Initial database searches yielded 75627
studies from PubMed and 362 from Science Direct in the last
5 years. We evaluated 1875 eligible full text articles (Figure 1).

The biology and physiology of vascular wall resident stem
cells and their role in postnatal angiogenesis, the current
evidences on MMPs activity and their correlation with
various stages of angiogenesis, the relationship with MMPs
and arterial aneurismal disease, and the association between
MMPs, arterial aneurysms, and physiology of vascular wall
resident stem cells are given below.

3.1.1. Adult Vascular Wall Resident Stem Cells and Angiogene-
sis. Many evidences have shown that fetal and adult arterial
and venous vessel walls may be niches for various stem and
progenitor cells, such as endothelial progenitor cells (EPCs),
smooth muscle cell (SMC) progenitors, hematopoietic stem
cells (HSCs), mesenchymal stem cells (MSCs), and the so-
called mesangial cells, coexpressing both endothelial and
myogenic markers [12–15]. Zengin et al. identified VW-PC
in human arteries and veins, characterised by expression
of CD34+, vascular endothelial growth factor receptor-2
(VEGFR2), and tyrosine kinase with immunoglobulin-like
and EGF-like domains 2 (TIE2) and were found in the region
between the media and adventitia. These cells have been
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Figure 1: Flow of papers identified from search strategy.

found in different layers (intima, media, and adventitia) and
they can differentiate into ECs and contribute to new vessel
formation in both physiological and pathologic condition
[9, 15–18]. The wall of adult human blood vessels harbours
contains not only EPCs but also CD44(+) CD34(−) CD45(−)
multipotent MSC-like stem cells, which are capable of dif-
ferentiating into pericytes/SMC and covering endothelial
cell layers of newly formed blood vessels in vitro and in
vivo [19]. This zone was identified in human adult vessels
as a niche for CD34+ CD31− EPCs and for progenitors
of macrophages earlier. Later, it was shown that CD34(+)
Sca1(+) cells cluster in a domain of Sonic hedgehog signaling
which was restricted to the inner part of mouse arterial
adventitia similar to the vasculogenic zone [20]. Vasculogenic
zone in the wall of vessels acts as a source of progenitor cells
and is in relation to those of EPCs circulating in peripheral
blood or derived from the bone marrow [21] but it also
serves as a reservoir for inflammatory cells important for
local immune response. VW-PCs reside in this zone from
the developmental embryonic to adult phase and have the
capacity to differentiate into SMC and pericytes and are able
to form capillary sprouts and migrate towards angiogenic
lineage [18].
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Vasculogenesis is defined as de novo vessel formation
induced by differentiation of angioblasts and it is the major
mechanism of formation of blood island vessels, dorsal aorta,
endocardium, and vitelline vessels in the embryo. Angiogen-
esis is defined as outgrowth of new vessels from preexisting
blood vessels and vascular growth and remodeling are key
events in the adaptation of arteries to physiological and
pathological environmental stimuli [22]. Several steps of this
process are endothelial cell migration, proliferation, and tube
formation [23–25].

VW-PCs normally involved in physiological vascular
homeostasis might also act as reservoir of undifferentiated
cells ready to supply the cellular demands and acquiring local
phenotypic characteristics [26]. The active cellular compo-
nent in these processes is granted by endothelial lineage cells,
but neovascularization does not only depend on endothelial
cell migration and proliferation with subsequent formation
of endothelial tubes; it also requires pericyte coverage of
vascular sprouts for vessel stabilization and survival; these
cells were capable of differentiating into vascular SMCs and
pericytes under in vitro and in vivo conditions [27]. MSCs
may represent an important source of pericytes and SMCs
during angiogenesis under physiological and pathological
conditions. Evidences show that these cells migrate to the
vascular injury sites in postnatal life to replace dead or
dysfunctional cells [28–31].

3.1.2. Vascular Wall Resident Cells and Aneurysms. Aneurys-
mal disease is one of the most common clinical diseases
in Western countries [32] and is related to the presence
of multiple risk factors such as alterations of glucose and
lipidmetabolism, hypertension, trauma, anastomotic disrup-
tion, infections, and connective or inflammatory diseases.
As described previously [32], arterial aneurysms can be
divided into central aneurysms, such as abdominal aortic
aneurysms, and peripheral aneurysms, such as aneurysms of
the popliteal, femoral, and carotid arteries [32].

Arterial aneurysms are caused by two combined mech-
anisms that lead to progressive medial degeneration and
vessel dilation: increased degradation by MMPs [33] and
decreased synthesis of elastin caused by apoptosis of vascular
SMCs [34]. Moreover, chronic inflammation and consequent
oxidative stress promote progressive vascular wall impair-
ment [35]. As described above, recent studies have shown
that the wall of adult blood vessels itself can be considered
as reservoir for resident stem cells [18, 36, 37]. These VW-
PCs largely reside in the “vasculogenic” area giving birth
to generation of pericytes/SMCs which are involved in the
formation of new vessels and can be activated by endothelial
injuries or other vascular insults undergoing changes that
include proliferation, differentiation, and migration [38, 39].
VW-PCs could aggregate at sites of injury and differentiate
into ECs or move across vascular wall towards the intima and
differentiate into SMCs [40]. Moreover, differentiation and
behaviour of VW-PCs are regulated by adventitia through
releasing factors involved in the regulation of wall functions
[40]. In many conditions, such as presence of atheroscle-
rotic plaques or injury, resident stem cells are activated

and stimulated to acquire specific structural and functional
behaviour [41, 42], so the vasculogenic area is thought to
be also a niche of undifferentiated cells acquiring specific
phenotypic characteristics and during the development of
pathologic conditions affecting the vessel walls [41]. In
order to fulfill their duties, these cells have to be mobilized
and released from their niches. Some studies suggest that
specific inflammation of adventitia leads to the production
of cytokines or enzymes such as tumor necrosis factor
alpha (TNF-𝛼), transforming growth factor beta (TGF-𝛽),
granulocyte colony stimulating factor (G-CSF), granulocyte
macrophage colony stimulating factor (GM-CSF), monocyte
chemoattractant protein-1 (MCP-1), and stromal cell derived
factor 1-alpha (SDF1-𝛼), all factors able to promote SCs
mobilization towards sites of injury via vasa vasorum [41–
46]. The relation between arterial aneurysms and VW-PC is
hypothesized. Ryer et al. described a possible proinflamma-
tory role of stem cells in abdominal aortic aneurysms and it
was observed in infrarenal aortic wall specimens collected
from patients with abdominal arterial aneurysms (AAA)
undergoing surgical repair; a significantly great number of c-
kit+ and CD34+ cells also express macrophage marker CD68
but not the SMCs marker SM22 or the fibroblast marker
FSP1. Moreover CD68+ cells colocalized with the cellular
marker of proliferation Ki67 [36]. These findings suggest an
inflammatory/immune role of resident stem cells in AAA
pathogenesis and were also confirmed by other authors [47,
48].

Studies showed that altered hemodynamical forces prob-
ably affect resident stem cells differentiation. In particular,
shear stress can stimulate these resident stem cells to differ-
entiate into endothelial lineage whereas cyclic strain leads
to smooth muscle differentiation. So disturbed blood flow
and distorted biomechanical stress can lead to abnormal
differentiation of vascular stem cells whose altered behaviour
may lead to the development of vascular wall diseases, such
as arterial aneurysms [39].

3.2. Biology of MMPs. MMPs, a group of zinc dependent
proteinases consisting of 28 family members, play important
roles in ECM degradation as well as in the cleavage of other
proteins such as growth factor and cytokines [49] and it is
critical for all aspects of vascular biology [50]. Serra et al. have
shown that MMPs are implicated in main vascular diseases
[5, 51–64]; MMPs have been implicated in physiological
and pathological angiogenesis because of their fundamental
nature in ECMmetabolismand remodeling.During the onset
of angiogenesis, this basement membrane matrix is degraded
by proteinases to allow endothelial cell tomigrate and various
angiogenesis promoters and inhibitors such as growth factors,
chemokines, growth factor receptors, adhesion molecules,
and apoptosis mediators to be released from ECM [65–67].

3.2.1.MMPs as RegulatoryMolecules of VascularWall Resident
Stem Cells. VW-PCs are capable of differentiating into peri-
cytes and smoothmuscle cells (SMCs) [68, 69]. Pericytes syn-
thesize basement membrane matrix proteins, proteoglycans,
such as decorin, biglycan, versican, aggrecan, and fibronectin
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and various collagens [70]. Tightly wrapped around the ves-
sels, pericyticMSCs interact with another critical regulator of
the vascular environment, the vascular basement membrane
(VBM) [71, 72]. The VBM is a specialized extracellular
matrix that surrounds the blood vessels of the body and
is regulated through a control system involving proteases,
which alter and degrade the matrix, and protease inhibitors,
which maintain and protect the VBM from disruption. This
interplay between proteases and protease inhibitors as well as
its effects on the VBM profoundly influences vessel stability
and, hence, many physiological and pathological processes,
such as aneurysmal disease [73–77]. The pericyte–EC inter-
face is rich in fibronectin deposition and contains tight and
gap junctions as well as N-cadherin and b-catenin-based
adherens junctions [78]. Fibronectin is concentrated at the
pericyte–EC interstitium and its degradation by proteolytic
enzymes such as MMPs gives rise to biologically active
fragments [78]. Among these, a 45 kDa fibronectin fragment
inhibits EPCs proliferation and stimulates pericyte and SMC
proliferation, suggesting a role for this fragment in vessel
maturation [79].

MMPs are probably the most important family in ECM
remodeling and it is known that the cleavage of ECM liberates
angiogenic factors [80–83]. SMCs can constitutively express
and secrete MMP-2, and expression and secretion of MMP-
9 are inducible in SMCs under the control of NF-kB; they
express MMP-7 and MMP-3. Moreover, MMPs released by
leucocytes and convected circulating plasmaMMPs represent
other important sources of MMPs in the arterial wall.
SMCs are, in parallel, the main source of tissue protease
inhibitors and also the possible target of blood-borne pro-
tease zymogens convected through the wall, retained or
not, and directly or indirectly activated on contact with the
SMCs [84, 85]. They also constitutively express and secrete
several serine proteases, such as tissue-type plasminogen
activator (t-PA), for which expression can be enhanced by
numerous stimuli [86, 87]. Thus, in the vascular wall, SMCs
are the main source of TIMPs and of several serpins, such as
plasminogen activator inhibitor-1 and protease nexin-1 (PN-
1) and probably cysteine inhibitors (cystatin) [88]. MMP-
9 can convert normal nonangiogenic islets into angiogenic
islets. More recently, it was reported that ectopic expression
of Homeobox C11 (HOXC11), which is normally restricted to
the SMCs of lower limbs vessels, in carotid arteries, aortic
arch, and descending aorta, results in drastic vessel wall
remodeling including elastic laminae fragmentation, SMC
loss, and intimal lesion formation [89, 90]. These results
suggest direct transcriptional control of two members of the
matrix MMPs family, including MMP-2 and MMP-9 that are
known as key players in the inception and progression of
vascular remodeling events.

Many evidences have shown that the influence of a
particular MMP may depend on the vascular bed analyzed
or on a particular type of EPCs and its related receptor, and
biophysical parameters (substrate elasticity, cell stiffness or
cell shape, and vascular ischaemic injuries) can also promote
the release of the serine proteases cathepsin G (catG) and
neutrophil elastase (NE) and the secretion of the collagenase.
MMP-8 and MMP-9 initiate a cascade of events including

inactivation of retention factors, release and activation of
mobilizing factors and cytokines, ECM degradation and
remodeling with breakdown of cell-matrix interactions, and
also breakdown of cell-cell contacts, ultimately resulting in
stem cell egress; moreover, the reduction of endogenous pro-
tease inhibitors may also contribute to the highly proteolytic
activity [91–93].

MMPs are also related to mitogenesis and migration of
SMCs [92]. In in vivo studies,MMP-3 knockoutmice reduced
neointima formation after carotid ligation and also attenuated
SMCmigration intowound [94]. SMCs are important both to
promote arterial remodeling and to modify vessel diameter
and/or wall thickness to ensure adequate tissue perfusion
[95].

In presence of VEGF, arterial wall resident cells became
round-shaped, resembling ECs, and part of the cells acquired
CD-31, VE-cadherin, and von Willebrand factor expression,
whereas when they are cultured with TGF𝛽-1 or platelet-
derived growth factor-BB (PDGF-BB) adopted a rather
elongated phenotype, similar to that of SMCs, and part of
the cells acquired anti-𝛼-smooth muscle actin (ASMA) and
calponin [96]. VEGF also induces the expression of Notch1
through PI3K/AKT pathway in cultured ECs [97]. The roles
of Notch include the differentiation in both EPCs and SMC
via activation of transcriptional CBF-1/RBP-J𝜅-dependent
and independent pathways and transduction of downstream
Notch target gene expression [98, 99]. These angiogenic
factors can induce differentiation from progenitor in media
to EPCs and SMCs [9].

Recently it has been shown that pericytes are able to
detach from the vascular wall and contribute to fibrosis
by becoming scar-forming myofibroblasts in many organs
including the kidney. At the same time, the loss of pericytes
within the perivascular compartment results in vulnera-
ble capillaries which are prone to instability, pathological
angiogenesis, and, ultimately, rarefaction such as aneurysmal
disease [100, 101].

Based on these evidences, we could affirm that MMPs
may play a central role to regulate the activity of the VW-
PCs by increasing the biodisponibility of main proangiogenic
factors. Another role of MMPs is to promote the differenti-
ation and migration of fibroblast and resident vasculogenic
progenitors critically involved in vascular repair by remod-
eling of ECM [102]. MMPs contribute to VW-PCs during
the progression of arterial aneurysms and participate in all
crucial stages of this degenerative disease.

3.2.2. Vascular Wall Resident Stem Cells in Natural History of
Arterial Aneurysms: A Debate Still Open. As widely known,
the pathogenesis of aneurysm involves inflammation, pro-
tease activation, ECM remodeling, and SMC dysfunction
and apoptosis leading to the weakness of the vessel wall and
arterial expansion under the influence of blood pressure [34].
Aneurysm complications, as rupture, dissection, and distal
embolization, are frequent andwith a highmorbidity rate and
an increase with the diameter of the vessel [103, 104].

Clinically, guidelines recommend surgical treatment for
large aneurysms andmonitoring for smaller aneurysms [103].
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However, a significant number of small aneurysms, falling
outside the criteria for surgical treatment, undergo com-
plication development [104]. The identification of small
aneurysms at increased risk of complications may improve
the morbility and morbidity associated with this disease.

3.3. MMPs and Arterial Aneursysms. An association between
arterial aneurysms and MMPs has been described in both
central [58, 105, 106] and peripheral arterial diseases [107–
118]. MMPs regulate extracellular structural proteins and tis-
sue remodeling and are involved in several vascular diseases
[4, 51, 119]. We have documented a significant correlation
between age, median size of aneurysms, and plasma levels of
both MMP-9 and neutrophil gelatinase-associated lipocalin
(NGAL) in both central and peripheral aneurysms [32].
Degradation of ECM by MMPs allows the migration of vas-
cular smoothmuscular cells from themedial vascular layer to
the intimal layer [51, 120–124]. These proteinases, degrading
elastin, can induce a compensatory fibrosis and inflammation
with destruction of all major matrix components, excessive
distension, and rupture [125, 126]. Several cytokines and
growth factors including IL-1a and b, IL-2, IL-17, insulin
like growth factor-1, transforming growth factor alpha (TGF-
𝛼), and tumor necrosis factor alpha-a (TNF-𝛼) can induce
MMPs and NGAL, a marker of neutrophil activation that can
modulate MMP-9 activity [58].

3.3.1. Vascular Wall Resident Stem Cells and Aneurysms: Posi-
tive and Negative Effects. The role of VW-PCs in aneurismal
formation is relatively unknown and remains controversial.
Witte et al. showed that VW-PCs present intracytoplasmatic
vacuoles as a sign of their inherent capacity to form a capillary
lumen. It depends on local environment whether these cells
undergo a differentiation or necrosis; maybe these cells
undergo necrosis when red blood cells penetrate into their
intracytoplasmatic vacuoles [127]. VW-PCs express STRO-
1, c-Kit, and CD34 and, in response to tissue injury, can
differentiate into SMCs and fibroblasts suggesting an active
role in a repair and remodeling process [128]. C-kit cells can
induce the secretion of angiogenic cytokines such as VEGF
stimulating their proliferation and differentiation into ECs
and MSCs [128].

The basic phenomena in the pathogenesis of arte-
rial aneurysms are degradation of ECM components with
increasedMMPs and loss of structural integrity of the arterial
wall [129, 130]. These pathologic changes are associated
with chronic inflammation of aortic walls, where resident
vascular SMCs and infiltrating macrophages release MMPs,
particularly MMP-2 and MMP-9 [131, 132]. MSCs have
also been reported to upregulate elastin and downregulate
collagen gene expressions in fibroblasts and are known to
participate in remodeling associated with vascular injury in
a variety of settings [133, 134]. In arterial aneurysms, the
medial fiber network is impaired, SMC number diminishes,
and inflammatory cells invade the expanding vascular wall.
The ECM alteration in the aortic wall depends on the balance
between ECM synthesis from vascular SMCs and protease
production by SMCs and inflammatory cells. As previously

described, VW-PCs can be mobilized from adventitia to
the media and differentiate to SMC in cases of injury or
damage of the arterial wall cells in order to replace them.
Moreover, the chronic exposition to inflammatory conditions
such as natural history of aneurysmal disease [135–137]
can determine failure of SMC recruitment and migration
along developing vessels can lead to vascular instability and
regression, an event that is likely due in part to the ability
of these cells to secrete and organize extracellular matrix-
containing basementmembranes and elastin [18, 138–140]. In
this view, human autopsies have demonstrated the presence
of CD34+Sca1+CD133− cells within neointimal lesions and
the adventitia of atherosclerotic plaques, which may be a
source of endothelial and vascular smooth muscle cells that
form atherosclerotic lesions [141–144]. Recently, Tigges et
al. and other groups reported that adventitial multipotent
pericytes participate in the restenotic response in mice with
femoral arterial injuries [40, 145]: pericytes are increased in
adventitia in response to vascular injury and contribute to
restenosis in injured arteries. Pericytes have mesenchymal
stem cell like features and are potentially an important cellu-
lar source that contributes to intimal hyperplasia in rat aortic
allograftmodelswith transplantation-derived arteriosclerosis
[146, 147]. Many factors including cytokines such as TNF-
𝛼, IL-1, IFN-𝛾, and toxins of infectious agents and hypoxia
can stimulate the release of many growth factors by MSCs,
includingEGF, FGF, PDGF,TGF-b,VEGF, hepatocyte growth
factor (HGF), insulin growth factor-1 (IGF-1), angiopoietin-
1 (Ang-1), keratinocyte growth factor (KGF), and stromal
cell derived factor-1 (SDF-1) [148, 149]. These growth factors,
in turn, promote the development of fibroblasts, endothelial
cells, and tissue progenitor cells, which carry out tissue
regeneration and repair.

Thus, VSMCs, the predominant cell type of the media,
are capable of robust proinflammatory responses to diverse
stressors. The multiple cytokines and chemokines produced
within the media can profoundly affect macrophage and T
cell function; on the other hand, VSMCs and the ECM are
able to have significant anti-inflammatory properties. The
balance between the pro- and anti-inflammatory effects of
VSMCs and their extracellular matrix versus the strength
of the inciting immunologic events determines the pattern
of medial pathology. Limitations on the extent of medial
infiltration and injury defined as “medial immune privi-
lege” are typically seen in arteriosclerotic diseases, such as
atherosclerosis which is the first step of aneurysmal disease.
Conversely, the breakdown of medial immune privilege
that manifests as more intense leukocytic infiltrates, loss of
VSMCs, and destruction of the extracellular matrix archi-
tecture is a general feature of certain aneurysmal diseases
and vasculitides [150, 151]. Tissue injury is always associated
with the activation of immune/inflammatory cells, not only
macrophages and neutrophils but also adaptive immune cells,
including CD4+ T cells, CD8+ T cells, and B cells, which
are recruited by factors from apoptotic cells, necrotic cells,
damagedmicrovasculature, and stroma [152, 153]. Insufficient
inflammatory cytokines during chronic inflammatory sites,
however, could stimulate MSCs to produce chemokines and
tropic factors in absence of sufficient immune inhibitory
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factors. As such, chronic inflammation may lead MSCs to
protract the disease recovery or even worsen the disease
course such us in aneurysmal disease [154, 155].

Specifically, progenitor cells can contribute to calcifica-
tion as bone marrow (BM) contains both osteoblast and
osteoclast precursors termed as osteoprogenitors (OPs) asso-
ciated with bone remodeling [156]. This novel mechanism
was named “circulating cell theory.”Thebonemarrowderived
cell populationmay seed the arteries and contribute to disease
or repair [156, 157]. Another common mechanism that can
explain the recruitment of circulating OPs in arteries is
homing; in response to stress signal, injury, inflammation,
repair, or abnormal cytokine signaling, circulating cells cross
the endothelium and invade the target tissue [157, 158]. The
endothelial phenotype selectively modulates bone marrow
derived stem cells homing: indeed different endothelial phe-
notypes hold functional differences. As an example, coronary
artery endothelium enables the fastest bone marrow stromal
cells integration. Transmigration requires the interaction of
vascular cell adhesion molecule-1, very late antigen-4, 𝛽1
integrins, MMPs secretion, and cytokines [159, 160]. More-
over pericytic myofibroblasts expressed BMP-2, a powerful
bone morphogen. Recently it was hypothesized that MSC
might play a role in the pathogenesis of atherosclerosis, and it
was demonstrated that, under particular conditions, MSC in
culture acquires an osteoblastic phenotype via the activation
of the Wnt pathway [161, 162]. In hyperlipidemic rats treated
with angioplasty to have a vascular damage, MSC started the
vessel wall remodeling and triggered calcification, mediated
by paracrine BMP-2 [163, 164], which is considered one of the
main mediators in the differentiation of MSC (and others)
along the osteoblastic lineage. The putative role of pericytes
as a “reservoir” of progenitor cells, as well as their potential
to differentiate into several cell types, including osteoblasts, is
well known [165, 166] andmany evidences have been adduced
that pericytes can undergo chondro and osteogenic differ-
entiation [167–169]. This represents an interesting example
of indirect stimulus towards calcification mediated by the
synergic cross-talk between different cells of the vessel wall.

Moreover, as described previously, VW-PCs may reduce
aneurysmal degeneration through the suppression of MMP
expression [36]. Furthermore, VW-PC may facilitate tissue
damage by differentiating into inflammatory cells. VW-PC
may represent a reservoir for the localized replenishment of
aneurysm wall macrophages [33, 36]. Thus, depending on
the local environment and paracrine manner via cytokines
and growth factors, the VW-PC could contribute to ongoing
inflammation and aneurysmal degeneration or accelerate
vascular repair [170].

3.3.2. MSCs Application in Cardiovascular Regenerative Ther-
apy: The State of the Art. VW-PCs, circulating EPCs, and
umbilical cord blood cells present multiple important clin-
ical interests. EPCs could be used to treat diverse vas-
cular disorders because of their high migratory poten-
tial through blood and their capacity to differentiate into
new endothelial cells that can contribute to promoting
neoangiogenesis and endothelium repair at distant damaged

tissues/organs [171, 172]. In vivo induction of mobilization
of bone marrow-derived EPCs into peripheral circulation
or activation of EPCs resident in vascular wall of damaged
peripheral tissues could represent promising strategies to
promote vascular repair of injured areas. It has been observed
that EPCs were able to give rise to the endothelial cells that
incorporated into the endothelial layer and this led to a
reduction of the lesion size [173].

Studies have shown that the effects of MSCs upon dam-
aged regions have been proven, causing the inhibition of local
immune response, preventing excessive fibrosis, apoptosis,
and inducing mitosis in intrinsic cellular progenitors [174].
These immunomodulating effects are caused by reducing the
functions of B and T lymphocytes and natural killer cells,
affecting the function of dendritic cells [175, 176]. Moreover,
MSCs cause a low immunogenic effect, even upon models
or patients with different human leukocyte antigen (HLA),
due to low expression levels of HLA-I and null expression
levels of HLA-II [177–179]. Porcine models of myocardial
infarction have further demonstrated the reparative potential
of MSCs when administered acutely after injury [180–184].
The local injection ofMSCs in a porcinemodel of myocardial
infarction demonstrated not only the successful engraftment
of locally injected MSCs but also their multiphenotypic
differentiation. These are able to evolve into cells that have
biologic characteristics of cardiac myocytes and endothelial
cells. These findings were described along with improvement
of cardiac function compared with untreated controls [185–
187]. The ability of postnatal skeletal muscle to repair and
regenerate itself on daily physical activity or injury is well
documented. However, severe pathological conditions, such
as compartment syndrome and muscular dystrophy, impede
structural and functional recovery mediated by myogenic
progenitors and require exogenous interventions to amelio-
rate the progression [188–191]. Transplanted pericytes, puri-
fied from human skeletal muscle, fat, pancreas, and placenta,
regenerate human myofibers in cardiotoxin-treated and dys-
trophic mouse muscles more efficiently than do myoblasts or
endothelial cells. In addition to structural regeneration, func-
tional recovery was demonstrated in dystrophic mice treated
with pericytes isolated from muscle biopsy specimens from
not only healthy adults but also, surprisingly, patients with
Duchenne muscular dystrophy [192–194]. There is a linear
relationship between the outcome of treatment and the type
of cells applied. Osteogenic, odontoblastic, and adipogenic
progenitors have also recently been shown to originate from
perivascular niches in vivo, in agreement with the robust
osteogenic and adipogenic properties found in purified per-
icytes [195, 196]. These discoveries imply that pericytes can
potentially be applied to bone regeneration, dental repair,
and adipose reconstruction [197]. Higher therapeutic effi-
cacy, including complete restoration of kidney function, was
observed after infusion of cord blood (CB) MSCs/pericytes
compared with regular bone marrow-derived MSCs. How-
ever, few donor cells were found in the restored area; also,
it was shown in culture and in vivo that the observed
renoprotective effects are mediatedmainly by angiogenic and
antiapoptotic factors secreted by the CBMSCs/pericytes [198,
199] and another source of stem cells is the umbilical cord
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itself [200–202]. In the perspective of cell therapies, the per-
icytes are mobilized and migrated toward the damaged cells,
secreting high levels of antiapoptotic and angiogenic factors,
such as vascular endothelial growth factor and keratinocyte
growth factor. These findings suggest that pericytes can effi-
ciently move to damaged sites and secrete growth factors that
can play beneficial autocrine or paracrine roles in tissue and
vascular repair [203–207]. MSCs are localized in the vascular
niche in bone marrow but are also found as MSC-like cells
around adult vessels (also termed pericytes and adventitial
cells), and there is substantial evidence that they play a
pivotal role in regulating blood vessel formation and function
through multiple mechanisms such as vasculogenesis, arteri-
ogenesis, and angiogenesis. AlthoughMSCs orMSC-like cells
have been safely used and do not pose the ethical concern
of embryonic stem cells, their effects in clinical studies
cannot be delineated to specific mechanisms. These might
include different simultaneously acting MSC-induced mech-
anisms. Immunomodulation towards a more repair-friendly
microenvironment, actual differentiation into vascular tissue,
and paracrine or systemic release of vasculogenic, angiogenic,
and/or arteriogenic-stimulating factors should in this respect
be acknowledged. Additionally, the results of preclinical
studies have been shown to depend not only on the model
chosen and the endogenous repair capacity of the cardiovas-
cular tissue in vivo, but also on cell source, administration
route, timing of cell delivery, and cell dosage and with these
specific homing and retention mechanisms. Clinical studies
on necessarily heterogeneous patients add many variables
(e.g., inflammatory and disease status, comorbidities, and
concomitant medication) and may explain the differences in
the results observed so far. MSCs markedly suppressedMMP
gene expression in macrophages in vitro, MMP-2 activity
ex vivo, and MMP activity in vivo and influenced TIMP-
1 in vivo. Negative correlations between elastin content and
MMPs were confirmed [32]. MSCs also decreased expression
of inflammatory cytokines, including IL-6, MCP-1, and TNF-
alpha which potentially may in turn lead to MMP upreg-
ulation in the aortic wall. This finding implies that MSCs
might suppress the excess immunopathologic reactions in
the aneurysmal vascular wall in a paracrine manner without
direct cellular contact. MSCs from bone marrow have been
reported to suppress dendritic cells, T cells, and natural killer
cell activities in vitro, which may be attractive in this setting.
Previous work has demonstrated that MSC mobilization
and homing are induced by MMP-2, MMP-9, chemokines,
or elastases. MSCs are also known to possess tropism for
inflammation. Because aortic ECM degradation by MMP-
2 and MMP-9 and chronic inflammation of the aortic wall
induced by chemokines are essential features of AAs, MSCs
that likely migrate toward MMPs and chemokines have an
advantage for aortic aneurysmal cell therapy [208, 209].

4. Discussion

Pathogenesis of aneurysm commonly involves inflammation,
MMPs activation, ECM remodeling, and VSMC dysfunction
and apoptosis, which ultimately lead to the weakening of

the vessel wall and arterial expansion under the influ-
ence of mechanical forces. Rupture, dissection, and distal
embolization are frequent and highly morbid complications
of aneurysm [210]. The degenerative remodeling seen in
arterial aneurysms can result from a combination of excessive
destruction and insufficient repair; when tissue is injured,
inflammatory cells infiltrate the injured area to clear dam-
aged or dead cells and degraded proteins. Evidences have
shown that SCs play an important role in tissue repair and
regeneration: SCs can recruit and stimulate the proliferation
of resident SCs, creating a favorable microenvironment for
vascular repair [211]. Studies recently have shown VW-
PCs in the adventitia of ApoE-deficient mice and these
progenitors contributed to experimental atherosclerosis and
did not originate from the bone marrow [212, 213]. VW-PCs
have been also isolated from the thoracic and abdominal
aortas of humans: it was found that a subpopulation of
EPCs was organized in a completely hierarchical manner
in a distinct zone of vascular wall which was named as
“vasculogenic zone” [16]. As mentioned above, CD34(+)
cells have paracrine activity, can secrete vascular endothelial
growth factor, and can promote neovascularization.

In cases of chronic inflammation such as arterial
aneurysms, the local proangiogenic environment caused by
activation of MMPs would induce the mobilization of local
VW-PCs and tissue-resident EPCs faster than that of the
circulated-EPCs or BM-EPCs and the presence of multipo-
tent SCs at sites of aneurysm and dissection formation that
can further differentiate into SMCs suggests the existence of
an active repair process involving SCs. VW-PCs are relevant
for the regeneration of vasa vasorum, a part of vessels which
provide the blood supply for the outer layers of the vascular
wall, such as the adventitia and neighbored parts of the tunica
media including the “vasculogenic zone,” where the VW-PCs
reside.

VW-PCs not only may promote vascular repair by dif-
ferentiating into vascular SMCs and fibroblasts, but also may
facilitate tissue damage by differentiating into inflammatory
cells. Active MMPs can induce the secretion of angiogenic
cytokines such as vascular endothelial growth VEGF and
stimulate host SCs proliferation and differentiation. Each of
these cell types has a different function and could lead to
effective repair, maladaptive remodeling, or further arterial
damage.

Other severalmechanisms involved in arterial aneurysms
pathophysiology are hemodynamic forces (share stress);
these factors are important mediators of vascular remodeling
promoting arterial ECs proliferation and migration and
medial SMC proliferation resulting in adaptive enlargement
and luminal tortuosity. Thus, VW-PCs are innately resistant
to proaneurysmal environmental stresses such as reactive
oxygen species production; VSMC-PCs significantly
decreased expression of MMPs and were able to attenuate
formation of elastase-induced arterial aneurysms [214].
MMPs are a family of zinc dependent proteolytic enzymes
that degrade various components of ECM and mediate ECM
remodeling in both physiological and pathological processes.
Several works reveal that proteolytic activity of MMPs
controls availability of active molecules such as growth



8 Stem Cells International

factors [215]: MMPs play a critical role in vascular formation
and remodeling through degrading vascular basement
membrane and ECM proteins and modifying angiogenic
growth factors and cytokines. Both vascular formation and
remodeling are complicated processes including recruitment,
migration, proliferation, and apoptosis of vascular cells
consisting of stem/progenitor cells, ECs, VSMCs, and other
mural cells. ECM degradation and remodeling indispensable
to vascular structure alterations highlight MMP functions
in VSMC behaviors. MMP-2, MMP-9, MT1-MMP, MMP-3,
MMP-1, and MMP-7 have been recognized in vascular
tissue and play pathogenic roles in vascular remodeling via
regulating VSMC behaviors [216].

Early outgrowth EPCs have limited capacity for pop-
ulation doubling and induce only transient angiogenesis;
late outgrowth EPCs can expand to more than 100 pop-
ulation doublings. Early outgrowth EPCs exert an angio-
genic effect mainly by secretory products, whereas late
outgrowth cells were thought to produce the effect by direct
engraftment. Among those were MMP-9, IL-8, macrophage
migration inhibitory factor, various cathepsins and protease
inhibitors, S100 proteins A11, A8, and A4, plasminogen
activator inhibitor-2, and apolipoprotein E as well as a
potent proangiogenic and prosurvival factor, and thymidine
phosphorylase [217, 218].

It is possible to assume that the VW-PCs act, with
different functions, in different phases of the natural history
of aneurysms. In the early stages, under the auspices of the
various growth factors released by the action of MMPs, the
VW-PCs were associated with compensatory mechanisms
that vessels oppose to lesional phenomena of their wall; in the
later stages, VW-PCs may actively participate and contribute
to the formation of the aneurysm, through the gradual and
definitive calcification and loss of function of the arterial wall,
and its rupture and dissection.

Stem cells are quiescent and reside in “stem cell niches”
of the vessel wall but they become activated by insult stimuli,
for example, endothelial injury by angioplasty or aneurismal
development. If damage is moderate, the laminar flow will
stimulate stem cells to differentiate into ECs to maintain the
vessel integrity.When severe damage or atherosclerotic lesion
occurs, locally the disturbed flow is induced, resulting in stem
cell differentiation towards SMCs, which accumulates within
the intima [219, 220].

The existence of VW-PCs provides an exciting prospect
to directly manipulate local responses within the vasculature,
as it has already happened, in a similar way, in cell therapy
for critical limb ischemia [220]. In fact, several approaches
such as site specific delivery and generating MMP inhibitors
with increased selectivity are thought to be helpful forMMPs-
targeted therapy.

It could be concluded that, therapeutically, the benefit to
address VW-PCs at sites of arterial aneurysms may be the
possibility to predict the natural history of arterial aneurysm
and frame the developmental stage of disease, studying also
the behavior of the cells involved in the inflammatory process
characterizing the aneurysm.

Then, addressing the specific MMPs involved in VW-
PCs activities, by means of specific antiproteases drugs, may

prevent that the initial compensatory mechanism will be
replaced by the anomalous degenerative mechanism which
leads to aneurysm formation.
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[189] K. J. Mitchell, A. Pannérec, B. Cadot et al., “Identification
and characterization of a non-satellite cell muscle resident
progenitor during postnatal development,” Nature Cell Biology,
vol. 12, no. 3, pp. 257–266, 2010.

[190] G. Q. Wallace and E. M. McNally, “Mechanisms of muscle
degeneration, regeneration, and repair in the muscular dystro-
phies,” Annual Review of Physiology, vol. 71, pp. 37–57, 2009.

[191] F. Rahimov and L. M. Kunkel, “Cellular and molecular mecha-
nisms underlying muscular dystrophy,” Journal of Cell Biology,
vol. 201, no. 4, pp. 499–510, 2013.

[192] M. Corselli, C.-W. Chen, M. Crisan, L. Lazzari, and B. Péault,
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