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Abstract

Understanding the biology of sex differences is integral to personalized medicine. Cardiovascular disease and
cognitive decline are two related conditions, with distinct sex differences in morbidity and clinical manifestations,
response to treatments, and mortality. Although mortality from all-cause cardiovascular diseases has declined in
women over the past five years, due in part to increased educational campaigns regarding the recognition of
symptoms and application of treatment guidelines, the mortality in women still exceeds that of men. The
physiological basis for these differences requires further research, with particular attention to two physiological
conditions which are unique to women and associated with hormonal changes: pregnancy and menopause. Both
conditions have the potential to impact life-long cardiovascular risk, including cerebrovascular function and
cognition in women. This review draws on epidemiological, translational, clinical, and basic science studies to assess
the impact of hypertensive pregnancy disorders on cardiovascular disease and cognitive function later in life, and
examines the effects of post-menopausal hormone treatments on cardiovascular risk and cognition in midlife
women. We suggest that hypertensive pregnancy disorders and menopause activate vascular components, i.e.,
vascular endothelium and blood elements, including platelets and leukocytes, to release cell-membrane derived
microvesicles that are potential mediators of changes in cerebral blood flow, and may ultimately affect cognition in
women as they age. Research into specific sex differences for these disease processes with attention to an
individual’s sex chromosomal complement and hormonal status is important and timely.
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Review
Introduction
Sex differences from a medical perspective may include: 1)
diseases/conditions specific to one sex, 2) diseases/condi-
tions that disproportionately affect one sex, and 3) diseases/
conditions having distinctly different causes, manifestations,
outcomes (morbidity or mortality), or treatments depend-
ing on sex. In this context, sex is defined by the sex
chromosomal complement and the presence of reproduct-
ive organs [1]. Cardiovascular disease and cognitive decline
are two potentially related conditions which fall into the
second and third categories. For example, the development
of cardiovascular disease, including hypertension, occurs
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about 10 years earlier in men than in women, but it in-
creases exponentially in women after menopause [2]. Con-
ventional treatments for hypertension reduce blood
pressure in both men and women, but these treatments are
less likely to result in normotensive levels in women [3],
suggesting that there are sex differences underlying these
pathophysiologic processes [4-6].
Sex differences in autonomic function related to sympa-

thetic control of the vascular resistance, and to the synthe-
sis, uptake, and disposition of adrenergic neurotransmitters
may explain the greater incidence of hypertension in men
and the greater incidence of vasospastic diseases, such as
migraine, Raynaud’s disease, and postural orthostatic tachy-
cardia syndrome (POTS) in women [7]. In addition, sex dif-
ferences in the composition of the vascular and cardiac
extracellular matrix contribute to the greater incidence of
diastolic heart failure (heart failure with preserved ejection
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fraction, HFpEF) and transient apical ballooning syndrome
(Takotsubo cardiomyopathy) in women compared to men
[8-10].
Cognitive health following a cerebrovascular event also

shows sex differences. For example, post-stroke disability
[11], stroke-associated cognitive impairment [12] and de-
mentia [13] are greater in women than in men. By 2050,
the prevalence of Alzheimer’s disease is estimated to reach
11-16 million in the United States [14,15]. The social and
economic implications of this epidemic will be greatest in
women because of their longer life expectancy and greater
risk of dementia compared with men.
The physiological basis for these differences requires fur-

ther research. Two conditions unique to women, pregnancy
and menopause, which involve major hormonal changes,
may contribute to distinct sex differences in morbidity, clin-
ical manifestations, response to treatments, and mortality
of cardiovascular disease and cognitive decline. This review
examines the evidence suggesting that hypertensive preg-
nancy disorders, in particular, preeclampsia, affect cardio-
vascular risk in women as they age. In addition, it examines
the evidence that menopausal hormone therapy (MHT)
given close to the time of menopause reduces the risk for
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cardiovascular disease and cognitive decline. We will dis-
cuss the possible role of cell membrane-derived micro-
vesicles in the blood that may affect endothelial function
and sex-specific differences in the regulation of cerebral
blood flow, as potential mechanisms mediating changes in
cognition (Figure 1).
Sex differences in cardiovascular pathophysiology
Mechanisms involved in vascular and cardiac control and
remodeling are regulated in part by sex steroid hormones.
These mechanisms include the synthesis and degradation
of norepinephrine [16,17], the expression of adrenergic re-
ceptors on vascular smooth muscle [18-22], the regulation
of ion fluxes in cardiac and vascular smooth muscle
[23-30], the production of endothelium-derived vasoactive
factors [31,32] which affect total peripheral resistance
(Figure 2, [33-37]), and cerebral blood flow [38-40]. Fur-
thermore, regulation of extracellular collagen and elastin
[41], and cellular apoptosis [42-46] may affect vascular
and cardiac stiffness and remodeling processes that influ-
ence the development of vascular lesions and cardiac
myopathies.
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Figure 2 The association between sympathetic nerve activity and total peripheral resistance in young men (n = 63; left panel) compared to
young women (n = 37; right panel). Data are combined from a series of studies investigating blood pressure regulation in healthy adults [33-36]. Each
diamond represents an individual. Measurements of nerve activity were obtained using microneurography of the peroneal nerve under the same
experimental conditions [37]. To control for fluctuations in sex hormones, women were studied only during the early follicular phase of the menstrual cycle.
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Thus, we suggest that two sex-specific conditions asso-
ciated with major hormonal changes in women, specific-
ally hypertensive pregnancy disorders and menopause,
contribute to the development of cardiovascular disease,
including hypertension and hypertension-related disor-
ders, that impact brain structure and function.

Pregnancy-associated hypertension
Hypertensive pregnancy disorders cover a spectrum of con-
ditions, including preeclampsia, gestational hypertension,
chronic hypertension, and preeclampsia superimposed on
chronic hypertension. Preeclampsia, unlike other hyperten-
sive disorders of pregnancy, is associated with proteinuria
(Figure 3) [47].
The National High Blood Pressure Education Program

Working Group Report on High Blood Pressure in Preg-
nancy indicated that hypertensive disorders occur in 6% to
8% of pregnancies [47]. However, population-based studies
evaluating the incidence of these disorders have not yet
Figure 3 Schematic of definitions, onsets, and consequences of hype
hypertension.
been conducted [48]. Consequently, available studies sig-
nificantly differ in reporting their frequencies: 7% to 22%
for hypertension in pregnancy, in general [49,50], and 1%
to 8% for preeclampsia, in particular [49,51,52]. These dif-
ferences result from lack of uniformity in defining the study
populations and the clinical definitions of the disorders. In
addition, the observed variations may have been further
amplified by inaccuracies of diagnoses and differences in
reporting chronic hypertension, which may predate preg-
nancy (chronic, prevalent hypertension), or occur for the
first time during pregnancy and persist thereafter (chronic,
incident hypertension) (Figure 3).
In addition to the short-term cardiovascular complica-

tions of preeclampsia (i.e., within three months postpar-
tum), preeclampsia is associated with an increased risk of
cardiovascular disease several years after the exposure. Two
common study designs have been utilized to examine this
long-term relationship. Case-control studies have examined
women with cardiovascular events (e.g., myocardial
rtensive disorders of pregnancy. GW = gestational week; HTN =
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infarction, venous thromboembolism, and stroke) and com-
pared their pregnancy histories with those of event-free
women of similar age (controls). These studies have sug-
gested that, compared with women without cardiovascular
events, women with cardiovascular events were more likely
to have experienced a preeclamptic or hypertensive preg-
nancy disorder [53-56].
Registry-based cohort studies also suggest that hyperten-

sive pregnancy disorders are associated with an increased
risk of cardiovascular events [57-63] and mortality
[60,63-67]. It is important to note that these studies have
not fully adjusted for traditional cardiovascular risk factors.
Without adjustment for these factors, it is not possible to
determine whether the association between hypertensive
pregnancy disorders and vascular outcomes is or is not re-
lated to traditional vascular risk factors (e.g., hypertension,
family history, hyperlipidemia, smoking, and diabetes
mellitus). Other limitations of the published studies include
that they are often registry based (selected clinical series),
have reported a limited number of outcomes (such as car-
diovascular deaths), and have not assessed the impact of a
hypertensive pregnancy disorder on age of onset of the car-
diovascular event. This information may be clinically useful
when individualizing risk profiles and intervention strat-
egies for women with a hypertensive pregnancy disorder.
Further, the diagnoses of preeclampsia and other hyperten-
sive pregnancy disorders typically have been ascertained
using codes from administrative data sources or self-
reported events, rather than using accepted diagnostic cri-
teria [58,61-63,68]. The four major studies that did confirm
the diagnosis of preeclampsia using accepted clinical cri-
teria included only mortality outcomes, and not the
incidence or prevalence of cardiovascular events (cardiovas-
cular morbidity) [64-67].
Major differences in the clinical presentations of pre-

eclampsia and other hypertensive pregnancy disorders
probably result from differences in their underlying patho-
physiological mechanisms, which might have varying impli-
cations for cardiovascular disease later in life. However, the
mechanisms underlying these associations are poorly
understood. Some risk factors, such as diabetes and obesity,
may predispose women to hypertensive pregnancy disor-
ders and preeclampsia at younger ages, and independently
they may predispose women to cardiovascular complica-
tions and cognitive decline at different times in a women’s
life. In this situation, the pregnancy disorders have no
causal relation to the later cardiovascular disease or cogni-
tive decline. Alternatively, preeclampsia itself might induce
irreversible vascular and metabolic changes that may in-
crease the overall risk for cardiovascular disease (Figure 4).
In this situation, the pregnancy disorders have a direct
causal effect on vascular and cognitive outcomes.
In support of a direct causal effect, some studies

showed that, despite normalization of blood pressure
postpartum, these seemingly healthy women may dem-
onstrate unfavorable metabolic and vascular changes
[69], such as an impaired brachial artery flow-mediated
(endothelium-dependent) dilatation, a measure of endo-
thelial dysfunction, three years after the diagnosis of pre-
eclampsia [70]. Also, micro-albuminuria, which may be
a marker of endothelial dysfunction and/or renal injury,
has been reported to be more prevalent following a pre-
eclamptic pregnancy [71]. Echocardiographic studies
showed an increased risk of concentric remodeling, ec-
centric hypertrophy, and impaired left ventricular relax-
ation one year postpartum in women with preeclamptic
pregnancy compared with women with normotensive
pregnancy [72].
Clarification of the mechanisms that underlie the associ-

ation between hypertensive pregnancy disorders and future
cardiovascular disease is important to establish more spe-
cific clinical guidelines for screening and/or treatment of
cardiovascular disease in women. Current clinical guide-
lines recommend referral of women with a history of
hypertensive pregnancy to primary care or cardiology in
order to facilitate monitoring and control of cardiovascular
risk factors, but there are no specific guidelines for manage-
ment of these women [3].

Menopause
The risk of developing hypertension, ischemic heart disease,
myocardial infarction and stroke increases in women after
the onset of menopause, whether natural or surgically in-
duced [2,73]. Estrogen-based treatments reduced the devel-
opment of vascular lesions in experimental animals after
oophorectomy [74-76]. Human studies have confirmed a
reduced incidence of cardiovascular events and mortality in
women using MHT for relief of menopausal symptoms
after undergoing either surgical or natural menopause
[73,77-85]. However, the timing of the initiation of such
treatments is critical. Initiation of the treatment close to the
time of menopause (i.e. within about 3 years) is more effect-
ive than delays in treatment of up to 5 years. This time
period may represent a “window of opportunity” within
which estrogenic treatments might be effective in reducing
cardiovascular disease and associated events [86-88]. How-
ever, the impact of MHT on the development of hyperten-
sion at menopause remains controversial [89-92].

Sex differences, hypertension, and cognitive aging
Compared with men, women are at increased risk for
Alzheimer’s disease, the most common form of dementia
[93-96], and their cognitive performance declines faster
after the diagnosis of Alzheimer’s disease [97,98]. There
also appears to be a sex-specific pharmacological effect
of drugs targeting acetylcholinesterase activity [99].
Indeed, in experimental animals, sex differences have been
found for nearly all cholinergic markers, including
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Figure 4 Schematic representation of interactions among factors contributing to the development of preeclampsia and cardiovascular
risk in women as they age. Some risk factors, such as diabetes and obesity, may predispose women to hypertensive pregnancy disorders and
preeclampsia at younger ages, and independently they may predispose women to cardiovascular complications and cognitive decline at older
ages (A). Alternatively, preeclampsia itself might have direct causal effect (B) on vascular outcomes by inducing irreversible vascular and
metabolic changes that may increase the overall risk for cardiovascular disease.
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acetylcholinesterase activity, acetylcholine and acetylcho-
line receptor distribution [100-102]. These differences are
likely related to sex hormones. Testosterone may interfere
with the effects of cholinesterase inhibitors by decreasing
the amount of drug that reaches the brain or by modifying
the interaction of the cholinesterase inhibitor with cholin-
esterase [103,104]. However, reasons for these sex differ-
ences in the risk, progression, and treatment of dementia
are not well understood.
Starting with Alois Alzheimer’s initial findings in the

brain of a woman, changes in the microvessels have been
repeatedly reported in the brain of patients with
Alzheimer’s disease. These changes are now known to in-
clude cerebral amyloid angiopathy [105], endothelial de-
generation [106], and vascular basement membrane
alterations [107]. The notion that vascular factors are in-
dependent risk factors for Alzheimer’s disease was initially
controversial. Vascular factors are the primary cause of
vascular dementia, and one hypothesis was that such fac-
tors would only be associated with mixed cases of
Alzheimer’s disease and vascular dementia. Additionally, it
had been suggested that cardiovascular factors may be a
consequence of Alzheimer’s disease, rather than a cause.
However, in the early 1990’s, two publications reported an
increased prevalence of senile plaques in patients with cor-
onary artery disease [108,109], thus linking cardiovascular
disease to Alzheimer’s disease. Since then, a number of
epidemiological studies have confirmed that vascular-
related conditions, such as hypertension [109,110], athero-
sclerosis [111], atrial fibrillation [112], diabetes [113,114],
obesity [115], and stroke [116] increase the risk of
Alzheimer’s disease. Vascular factors also affect the rate of
progression after a diagnosis of Alzheimer’s disease [117].
Thus, vascular dementia and Alzheimer’s disease are no
longer thought of as distinct entities, but as overlap-
ping diseases.
It is possible that women with a history of hypertensive

pregnancy disorders also have an increased risk of dementia
through their increased risk for cardiovascular disease and
Alzheimer’s disease later in life. This association is sup-
ported by the presence of white matter lesions, which ap-
pear on magnetic resonance imaging (MRI) as white matter
hyperintensities (Figure 1) in women with severe forms of
preeclampsia [118,119]. White matter hyperintensities are a
recognized risk factor for both vascular dementia and
Alzheimer’s disease [120,121]. Much remains to be learned
regarding the factors contributing to their development, or
to their causal relationship to changes in cognitive function.
However, no study has directly examined hypertensive

pregnancy disorders as a risk factor for subsequent cogni-
tive impairment. Two studies have suggested that pre-
eclampsia and eclampsia are associated with self-reported
worsening of cognitive function [122] and memory per-
formance [123], but they did not systematically examine
the association between hypertensive pregnancy disorders
and domain-specific cognitive functioning later in life.
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In women who develop eclampsia, a convulsive, severe
form of hypertensive pregnancy disorder, the dilation of
cerebral arteries is thought to result from a rapid increase
in blood pressure, with resulting neurologic symptoms re-
sembling those of a hypertensive encephalopathy [50]. With
resolution of the hypertension, neurologic symptoms also
resolve. However, the long-term consequences, for ex-
ample, as women transition into menopause [49], on cere-
bral vascular function and residual effects on cognitive
health remain unknown.

Cerebral blood flow and neuronal function
The brain does not have endogenous stores of energy.
Therefore, brain metabolism depends on blood supplied by
the cerebral circulation. In general, the dilatory capacity of
the arterial vasculature, including that of the cerebral circu-
lation, decreases with age [124-126]. This decrease is due,
in part, to reduced production of endothelium-derived
relaxing factors, such as nitric oxide, and increased produc-
tion of endothelium-derived contracting factors, which may
include cyclooxygenase products of arachidonic acid me-
tabolism and superoxide radicals. These changes occur in
the setting of decreased oxygen tension in the blood
[38,124,127-129]. As sex-steroid hormones regulate many
of these endothelium-derived relaxing and contracting fac-
tors [31,32], sex differences in the regulation of cerebral
blood flow should be expected to manifest across the life
span with changes in hormonal status.
One non-invasive method to measure vasodilator cap-

acity of the cerebral arteries in humans is by transcranial
Doppler during graded hypercapnia [130,131]. This tech-
nique has demonstrated that women have higher cerebral
blood flow responses to hypercapnia compared with men
of the same age, until the age of menopause [132]. How-
ever, this may be due, in part, to the higher baseline cere-
bral blood flow velocity in women of any age group.
Although autoregulation should prevent changes in blood
pressure from altering cerebral blood flow, emerging evi-
dence suggests that sex differences in dynamic auto-
regulation exist [133]. Therefore, sex differences in “true”
cerebral vasodilator capacity, when accounting for baseline
flow velocity and acute changes in blood pressure, and
their underlying mechanisms are unclear. Production of
vasodilatory prostaglandins may be greater in women than
in men, because the cyclooxygenase inhibitor indometh-
acin reduces the vasodilatory capacity to a greater extent
in postmenopausal women than in age-matched men
(Figure 5).
The vasodilatory capacity of the brachial artery de-

creases with preeclampsia [134] and menopause [135].
However, the effects of these conditions on the vasodila-
tory capacity of the cerebral circulation are unclear. For
example, hypertensive pregnancy disorders, particularly
preeclampsia, represent circumscribed events, and the
future consequences of such events on cerebral vascular
function have not been elucidated. In addition, although
the risk of systemic hypertension increases at meno-
pause, these effects of menopause on the cerebral circu-
lation have not been defined. Furthermore, the effects of
MHT on the cerebral circulation remain unclear
[136-142].
Studies in experimental animals and cultured cells have

consistently shown that estrogen enhances neurologic func-
tion and is neuroprotective, thus the maintenance of ad-
equate estrogen levels could prevent or delay dementia in
menopausal women. In observational studies comparing
cognitive performance and dementia risk between a group
of postmenopausal women who used MHT and a group of
non-MHT users, MHT users performed better than non-
users on the Modified Mini-Mental State Examination, and
on tests of verbal fluency, verbal memory, and verbal and
spatial working memory [143-148]. However, other obser-
vational studies did not identify a difference in cognitive
function and dementia risk between the MHT users and
non-users [148-151].
As with cardiovascular disease, controversy exists regard-

ing whether MHTcan preserve neurologic function and de-
crease the risk of dementia when administered early in
menopause (onset of treatment within 3-5 years). In the
Women’s Health Initiative Memory Study (WHIMS), de-
mentia was not prevented in older women who initiated
MHT later (after 5 years) into menopause [152,153]. How-
ever, several meta-analyses showed a 20% to 40% decrease
in the risk of Alzheimer’s disease for women who use MHT
early in menopause [154-157], in observational studies.
Unfortunately, observational studies are subject to
confounding effects. For example, better educated and
healthy women are more likely to be MHT users and more
likely to be compliant than are less-educated and less-
healthy women (confounding by “healthy users” effect).
Education and health are determinants of cognitive func-
tion by themselves, and these variables may not be fully ad-
justed during statistical analysis [152,158].
By contrast, randomized controlled clinical trials are not

influenced by such confounding effects. Some randomized
controlled trials have shown beneficial effects of MHT on
cognition [159-161]. However, WHIMS, the largest ran-
domized controlled trial designed to date to examine the ef-
fects of hormone therapy on cognitive function and
incident dementia, found that conjugated estrogens, given
to women at age 65 years and older (late into menopause),
with or without medroxyprogesterone acetate, did not pro-
tect against dementia or cognitive decline. Rather, MHT
substantially increased the risk of dementia and cognitive
decline in these age groups [162-166].
It has been hypothesized that administration of estro-

gen during perimenopause, when endogenous estrogen
concentrations are labile, protects against age-associated



Figure 5 Sex differences in cerebral vasodilatory capacity, after accounting for baseline cerebral blood flow velocity and mean arterial
pressure, in men and women between 55-75 years of age (average 65 years; unpublished data provided by Jill Barnes, an author of
this review). The cerebrovascular responses to hypercapnia in age matched men (n = 6) and women (n = 6) are shown during control conditions
(left panel) and during cyclooxygenase inhibition of vasodilating prostaglandins (right panel). Cyclooxygenase inhibition reduced the vasodilatory
capacity (as area under the response curve, AU) only in older women (*p < 0.05). Data are mean ± SE.
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cognitive decline and dementia [167-173], but little is
known about the mechanistic underpinnings of this hy-
pothesis. In the rat hippocampus, aging leads to a loss of
hippocampal estrogen receptor α, estradiol sensitivity,
and loss of estradiol-mediated neuroprotection against
global cerebral ischemia. However, estradiol administra-
tion to middle-aged rats was neuroprotective, supporting
the hypothesis of a “window of opportunity” or a critical
period for the initiation of MHT [174].
Other mechanisms by which estrogen might provide

neuronal protection, as suggested from studies of animals
and cultured cells include: 1) improving synapse formation
on hippocampal dendritic spines [175-177]; 2) increasing
the activity of choline acetyltransferase in the basal fore-
brain and hippocampus (choline acetyltransferase is a
synthetic enzyme for acetylcholine, a neurotransmitter im-
plicated in memory function, that is markedly reduced in
Alzheimer’s disease) [178-181]; 3) reducing β-amyloid
deposition in the brain and preventing the toxic effects of
β-amyloid 1-42 on the neuronal mitochondria [45,182,183];
and 4) facilitating cerebral blood flow and acting as an anti-
oxidant [40,184-186].
Following publication of clinical trial results from the

WHIMS, there is a need for a randomized controlled trial
to determine the neuroprotective effects of MHT in re-
cently (< 3 years) postmenopausal women. However, deter-
mining these effects of MHT initiated close to menopause
on the risk of dementia requires decades of follow-up, and
is thus not feasible. A possible remedy to this obstacle is to
use noninvasive imaging markers and measures of cerebral
blood flow as short-term surrogate outcomes.

Surrogate imaging markers for investigating cognitive
health
Volumetric MRI can be used to assess longitudinal ef-
fects of MHT on brain structure. Whole-brain and hip-
pocampal volumes on MRI decrease during physiologic
aging, accelerating after the fourth decade [187,188],
with an annual rate of 0.2% decline in whole-brain
volumes after age 54 years [189]. This decline in brain
volume is consistent with autopsy studies showing that
brain weight decreases after age 40 years. This decrease
is thought to result from the degenerative processes of
senescence such as cell shrinkage [187,188]. A direct re-
lationship has been identified between hippocampal vol-
umes on MRI and hippocampal neuronal density at
autopsy in cognitively normal older adults and patients
with Alzheimer’s disease [190]. Although, volumetric
MRI is regarded as a surrogate for the structural integ-
rity of the neurons in the elderly [191], similar studies of
hippocampal volume in women close to menopause or
with a history of hypertensive pregnancy disorders, and
obtained in conjunction with assessments of cognition
are needed.
A quantitative MRI marker of cerebrovascular health is

white matter hyperintensities associated with small-vessel
vascular disease in the brain [192]. Hypertensive renal
disease is strongly associated with white matter
hyperintensities [193], and better control of blood pres-
sure slows their progression [194,195]. There is an associ-
ation between white matter hyperintensity load and future
risk of mild cognitive impairment [196-198]. On average,
white matter hyperintensities are more common in pa-
tients with mild cognitive impairment and Alzheimer’s
disease [199,200], in agreement with autopsy studies in
which vascular disease was more common in patients with
Alzheimer’s disease pathology [199,200]. Thus, quantita-
tive analysis of the load of white matter hyperintensities
may provide insight into the mechanisms by which meno-
pause and hypertensive pregnancy disorders affect cogni-
tive function in women.
Results of cross-sectional studies using MRI to assess the

effects of MHT on brain morphology are mixed. One study
found a decrease in gray matter volumes in MHT users
compared to non-users [201], while another study found
that MHT did not affect gray or white matter volumes



Miller et al. Biology of Sex Differences 2013, 4:6 Page 8 of 15
http://www.bsd-journal.com/content/4/1/6
[202]. Other studies found greater volumes of hippocampus
[203-205], prefrontal cortex [206], cerebellum [203,207],
temporal lobe gray matter [203,206], parietal lobe gray mat-
ter [203,206,207] and white matter [208] in cognitively nor-
mal MHT users compared to non-users. Some of these
regions of brain morphology are involved in memory
function.
Contrary to the findings from observational studies, data

from WHIMS indicate greater hippocampal atrophy in
postmenopausal women who are treated with hormones at
age 65 years and older [209] and a slightly greater increase
in white matter hyperintensities [210]. In WHIMS, women
with low baseline cognitive function and high ischemic
white matter hyperintensities were more prone to this
MHT effect on the hippocampus, suggesting greater vul-
nerability of an already compromised brain to hormone
treatment [209,210]. Furthermore, hippocampal volumes
correlated with cognitive function in the treated group,
suggesting MHT induces cognitive impairment through in-
creased brain atrophy [163]. White matter hyperintensities
in WHIMS were associated with baseline blood pressure,
and a greater longitudinal increase in white matter hyper-
intensities occurred in those with higher blood pressure,
demonstrating longitudinal blood pressure effects [211].
MRI findings in WHIMS are consistent with the previously
reported decline in cognitive function and an increased risk
of dementia with hormone treatment, and demonstrate
that MRI-based measures of brain morphology are useful
surrogates of cognitive function in postmenopausal
women [210].
Diffusion tensor imaging is gaining acceptance as the

preferred quantitative imaging technique for assessing
white matter integrity in the aging brain. Data from ex-
perimental models suggest that the directionality of dif-
fusion along the axonal projections measured with
fractional anisotropy decreases with the loss of myelin
and axons [212,213]. The reduction in fractional anisot-
ropy in the white matter has been associated with the
ischemic white matter hyperintensities in cognitively
healthy elderly men and women. These fractional anisot-
ropy reductions are not confined to hyperintense lesions
but are also found in the normal appearing white matter
[214,215]. One possible explanation for these diffusion
abnormalities in the normal appearing white matter is
that the decrease in fractional anisotropy may be ante-
cedent to the white matter hyperintensities which are
the end stage of ischemic vascular damage to the white
matter [216]. The relationship between vascular risk fac-
tors and fractional anisotropy reduction in the white
matter [215] further suggests that fractional anisotropy
reduction in the aging brain may be a marker for sub-
clinical cerebrovascular disease. Although the biological
basis of diffusivity changes in the aging brain is yet un-
clear, the association between white matter fractional
anisotropy and cognitive function underscores the po-
tential of this new imaging technique [217-219].
Retention of the radio-labeled compound, Pittsburgh

compound-B (PiB), monitored by positron emission tomog-
raphy (PET) is a direct measure of the β-amyloid deposits
in Alzheimer’s disease. A positive PET scan indicating the
presence of β-amyloid deposits in cognitively normal adults
is proposed as one of the research criteria for preclinical
Alzheimer’s disease [220]. PiB binds to both β-amyloid 1-40
and β-amyloid 1-42 peptide species. Because β-amyloid 1-
40 is the major β-amyloid peptide species within blood ves-
sels, PiB is also sensitive to the β-amyloid associated
vasculopathy or cerebral amyloid angiopathy [221]. Reten-
tion of PiB increases with age, and high PiB retention (at
levels found in Alzheimer’s disease) was observed in 5.7%
of normal individuals between the ages of 50 to 59 years,
and in 19.0% of individuals between the ages of 60 to 69
years [222]. In the population-based Mayo Clinic Study of
Aging, high PiB retention was present in 33% of cognitively
normal older adults (average age, 79 years) [223]. Although
estrogen is thought to modify the risk of Alzheimer’s dis-
ease, the effects of MHT on β-amyloid pathology need fur-
ther investigation.
Mediators of altered cerebral blood flow
Changes in cerebral blood flow may affect brain function
acutely, as might occur with stroke or a preeclamptic event,
or chronically, as might occur during changes in hormonal
status (pregnancy and menopause) or during sustained
hypertension [211]. To link these blood flow events to al-
tered cognition, we can hypothesize that activation of some
components in the blood (i.e. soluble components such as
hormones or cytokines and/or cellular blood elements, in-
cluding cell membrane-derived microvesicles), may reduce
cerebral circulation, ultimately causing structural changes
to the brain followed by cognitive impairment (Figure 1).
Although this hypothesis requires rigorous testing, several
lines of evidence point to its plausibility.
Blood platelets alter arterial diameter through their in-

teractions with the vascular endothelium and smooth
muscle cells [224-226]. These interactions are modulated
by sex-steroid hormones [227-229]. Indeed, the content
of several classes of vasoactive and mitogenic agents in
platelets—including nitric oxide, prostacyclin, thromb-
oxane A2, 5-hydroxytryptamine, tissue factor, tissue fac-
tor pathway inhibitor, transforming growth factor β,
matrix metalloproteinases, and platelet-derived growth
factors—varies with estrogen treatments [227,230-234].
Preeclampsia is characterized by a maternal hyper-

coagulable state, with increased intravascular coagulation
and micro-thromboses that impair blood supply to several
organs (Figure 4) [235-239]. Whether this hypercoagulable
state or platelet activation contributes to overall
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cardiovascular risk or cerebrovascular vasodilatory cap-
acity in women as they age remains to be determined.
Platelet activation may contribute to the progression of

mild cognitive impairment or dementia. Significantly
higher basal expressions of the platelet activation markers
glycoprotein IIb/IIIa (PAC-1 binding) and P-selectin were
observed in patients who developed cognitive decline at
one year of follow-up (decrease of Mini-Mental State
Examination score >4) compared with patients without
decline (decrease in score ≤4) [240]. Furthermore, platelets
from patients with Alzheimer’s disease and mild cognitive
impairment contain higher concentrations of amyloid
precursor protein and serotonin, and lesser amounts of
epidermal growth factor and matrix metalloprotease-2
compared to healthy controls [241]. With ischemia, plate-
let aggregates accumulate both inside and outside of the
blood-brain barrier and co-localize with toxic fragments of
amyloid precursor protein. These observations suggest
that progressive injury of brain parenchyma may be
caused not only by degeneration of neurons destroyed
during ischemia, but also by chronic damage to the blood-
brain barrier, with the accumulation of amyloid precursor
protein in the perivascular space, thereby leading to
Alzheimer’s-disease pathology [242].
During cell-cell interactions, such as platelet interactions

with other blood elements (i.e., leukocytes), cerebral vas-
cular endothelium, or neurons, sealed membrane vesicles
of <1 μm in diameter are shed into the circulation. Each
microvesicle carries surface proteins/receptors characteris-
tic of its cell of origin. Microvesicles are biochemically
active and potentially important in several diseases, in-
cluding cerebrovascular disease, preeclampsia, myelopro-
liferative disorders, and ischemic brain disease [243-247].
The composition of microvesicles and their numbers in
the circulation depend on their cells of origin and the
stimuli that trigger their production. Digital flow cytome-
try (FACSCanto™) and solid-phase fluorescence assays can
be used to accurately identify and quantify the cellular ori-
gins of circulating microvesicles and their pathophysio-
logic characteristics [246,248,249]. Thus, it is possible to
evaluate populations of circulating microvesicles, in early
as well as late disease processes (e.g., development of
white matter hyperintensities, β-amyloid pathology of
Alzheimer’s disease, structural MRI changes associated
with neuronal degeneration), and to study their associa-
tions with the cognitive health of women who have experi-
enced preeclampsia, menopause, or who have used MHT.
For example, in a subgroup of the women enrolled in the
Kronos Early Estrogen Prevention Study (KEEPS) [250],
increases in white matter hyperintensities over a four year
period correlated with the number of activated, platelet-
derived microvesicles at baseline [251].
These results suggest that blood borne microvesicles are

part of a cascade of events that lead to the development of
white matter hyperintensities. The effects of MHT on 1)
the number and cellular origins of microvesicles, 2) the de-
velopment of white matter hyperintensities, and 3) on dir-
ect measures of cerebral vasodilatory capacity remain to be
determined. These studies can be extended to men in order
to evaluate the association of testosterone deficiency with
overall cardiovascular risk and cognitive decline.

Conclusions
Viewing research and delivery of medical care through a
“sex-based lens,” with attention to an individual’s sex
chromosomal complement and hormonal status, is funda-
mental to individualized medicine. Changes in cerebrovas-
cular function and cognitive health in women affected by
female-specific conditions, such as preeclampsia and
menopause, remain unexplored or controversial. Interdis-
ciplinary research teams using population-based epidemi-
ologic methods, structural imaging, and functional
physiological and biochemical approaches are positioned
to address these important and timely research questions.
The ultimate goal is to improve preventive, diagnostic,
and treatment strategies that could reduce sex disparities
in disease and improve the health for women and men
throughout their life spans.
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