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Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone), derived from some
Chinese edible medicinal herbs, exerts a potential anticancer activity on various cancer
cells, making it a drug candidate for cancer therapy. Yet, the role of aloe-emodin in
pyroptosis, a new type of cell death, is uncharacterized. In this study, we explored the
molecular mechanisms of aloe-emodin-triggered pyroptosis. Aloe-emodin inhibited
proliferation and migration and triggered caspase-dependent cell death of HeLa cells in
a dose-dependent manner. Aloe-emodin caused mitochondrial dysfunction and induced
pyroptosis by activating the caspase-9/3/GSDME axis. Transcriptional analysis showed
extensive changes in gene expressions in cellular pathways, including MAPK, p53, and
PI3K-Akt pathways when treated with aloe-emodin. This study not only identified a novel
role of aloe-emodin in pyroptotic cell death, but also performed a systematical genome-
wide analysis of cellular pathways responding to aloe-emodin, providing a theoretical basis
for applying anthraquinone derivatives in the treatment of GSDME-expressing cancers.
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INTRODUCTION

Pyroptosis, a newly recognized regulated cell death (RCD), is characterized by cell swelling and
bubble-like morphology, which is different from apoptosis (Fang et al., 2020). Pyroptosis was
initially recognized in immune cells as a general inflammation response against bacterial
infection in the field of inflammatory diseases (Bergsbaken et al., 2009). In this case,
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gasdermin D (GSDMD) was cleaved by caspase-1/4/5/11, and
its produced N-terminal fragment mediates the formation of
the pores on the plasma membrane (Shi et al., 2015; Man et al.,
2017). Activation of caspase-3 by chemotherapy drug could
also induce pyroptosis by gasdermin E (GSDME) cleavage. The
produced N-terminal fragment of GSDME causes pyroptosis
by translocating to the plasma membrane (Jiang et al., 2020).
Gsdme knock-out caused resistance to chemotherapeutic drugs
in specific cancer cells and reduced chemotherapy-induced
tissue damage in mice (Wang et al., 2017). Like chemotherapy
drugs, natural products from Chinese medicinal plants possess
potent anti-tumor activity, increase chemotherapy sensitivity
and reduce its adverse effects, which supplements
conventional chemotherapy anti-cancer drugs (Talib et al.,
2021). The anti-cancer function of pyroptosis by
chemotherapy drugs is rather well reported, but the effects
of the active ingredient of the Chinese herbal medicines on
pyroptosis are largely unknown.

Aloe-emodin (AE) is one of the anthraquinones compounds
derived from traditional Chinesemedicinal plants, such as Rheum
palmatum L., Aloe vera (L.) Burm. f., and Polygonum cuspidatum
Willd. ex Spreng.(Wang et al., 2008; Mandrioli et al., 2011; Wu Z.
et al., 2019). Emerging studies are focusing on the anti-cancer
properties of this compound. AE induces cell cycle arrest and
triggers cell death in various cancer cells, and also increases the
cellular sensitivity to chemotherapeuticagents (Chen et al., 2004;
Chihara et al., 2015; Sanders et al., 2018). Caspase activation may
also lead to GSDMs-mediated pyroptosis. Still, the effects of Aloe
Vera or AE on pyroptosis in cancer cells have not been reported.

Here, we demonstrated that aloe-emodin triggers cell death
through GSDME-dependent pyroptosis in HeLa cells. AE
treatment induces mitochondrial dysfunction, leading to ROS
production, cytosol release of cytochrome c, mitochondrial
translocation of Bax and AIF, caspase-9 activation, and
GSDME cleavage by active caspase-3. Furthermore,
transcriptomic analyses show the potential cellular pathways
upon AE treatment. Thus, our study reveals a novel role of
AE in cancer cell pyroptotic death and provides a
systematically transcriptional analysis of pathways and cell
responses in HeLa cells. Collectively, our data provide a
theoretical basis for applying anthraquinone derivatives in the
treatment of GSDME-expressing cancers.

MATERIALS AND METHODS

Antibodies and Reagents
Antibodies for GSDMD (ab209845) and GSDME (ab225893)
were purchased from Abcam. Antibodies for Bcl-2 (60178-I-IG),
Bax (50599-2-IG), and AIF (17984-I-AP) were purchased from
Proteintech. Antibody for α-tubulin (T5168) was from Sigma-
Aldrich. Antibodies for caspase-1 (98033), caspase-3 (9662S),
caspase-8 (4790S), caspase-9 (9502S), cytochrome c (12963S), Bid
(2002S) and Tom20 (42406S) were from Cell Signaling
Technology.

Reagents were purchased as follows: anthraquinone
derivations (Chrysophanol (AB0838), Emodin (AB0722),

Aurantio-obtusin (AB0387), Physcion (AB0706), Aloe-emodin
(AB0839), and Rhein (AB0861)) from alfabiotech, China. The
purity of these anthraquinone derivations was confirmed to be
95%–99%, according to the manufacturer’s instructions.
N-acetylcysteine (NAC) was purchased from Sigma-Aldrich
(A0737). Anthraquinone derivations were dissolved in DMSO
and diluted with fresh culture medium to the indicated
concentrations. Caspase-3/7 substrate Ac-DEVD-AFC (A0466)
and caspase inhibitor z-VAD-FMK (C2105) from Sigma-Aldrich;
protease inhibitor cocktail tablets (04693132001) from Roche;
CytoTox 96 Non-Radio cytotoxicity assay kit (G1780) and
CellTiter-Glo® 2.0 Cell Viability Assay (G9214) from Promega;
FITC annexin V apoptosis kit I (556547) from BD Biosciences;
Cell Counting Kit-8 (C0037), mitochondrial membrane potential
assay JC-1 kit (C2006), GSH assay kit (S0053), SOD assay kit with
NBT (S0109) and ROS assay kit (S0033S) from Beyotime.

Cell Culture and Treatments
293T, HeLa, SW480, HT29, MCF7, and A375 cells were
maintained in our laboratory and were cultured in DMEM
(HyClone) supplemented with 10% fetal bovine serum (FBS)
(Gibco), 2 mM L-glutamine, 100 U mL−1 penicillin, and
100 μg ml−1 streptomycin in a saturated humidity incubator
containing 5% CO2 at 37°C.

For anthraquinone derivatives or aloe-emodin treatments,
cells were grown to approximately 80% confluence, when the
medium was replaced with a fresh medium containing indicated
drugs and cultured for an indicated time. To inhibit caspase
cascade, pan-caspase inhibitor z-VAD-FMK was pre-added into
cells for 2 h. The concentrations of the drugs used were
mentioned in the figure or figure legends.

Cell Viability Assay
Cell proliferation was measured using a CCK-8 kit. Briefly, HeLa
cells were cultured in 96-well plates overnight until the cell
density reached ~80% confluence, and then replaced with a
fresh medium containing AE (0, 25, 50 μM) or cisplatin (5 μg/
ml) for the indicated times. Then, the cells were added with 10 μl
CCK-8 and incubated for another 2 h at 37°C before measuring
the absorbance at 450 nm using a microplate reader. For ATP and
LDH release assays, cells were treated with the indicated
concentrations of AE for 24 h. Then, cells were subjected to
ATP assay, and the supernatant was used for LDH activity
according to the manufacturer’s instructions. All studies were
performed in at least biological triplicates. The 50% cytotoxic
concentration (CC50) was calculated by the GraphPad Prism 9.0
software.

Wound Scratch Assay
Cell migration was evaluated using a wound scratch assay. HeLa
cells were cultured on 6-well plates to ~80% confluence. The
wound was created by scratching a straight line on the monolayer
cell with sterile pipette tips. After twice washing with PBS, cells
were replaced with a serum-free culture medium in the absence or
presence of 1 μM AE. Cell wound photos were taken with a light
microscope at the indicated time post-AE-treatment. The wound
width and the closure rate were calculated by ImageJ software.
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Cell Transfection
Transient transfection was performed using Jetprime (Polyplus)
reagents following the manufacturer’s instructions. For over-
expression, 293T cells were transfected with the pCS2-Flag-
GSDME plasmid for 18 h, then subjected to AE or DMSO
treatment for another 24 h, and analyzed as indicated. For
siRNA knockdown, 200 pmol of siRNAs were transfected into
2×106 HeLa cells. 48 h later, transfected cells were treated with
50 μM AE and anal as indicated. Sense sequences for the siRNAs
used are as follows: gsdme 1#:yzed 5′-GGTGACCTGATTGCA
GTAT-3′, gsdme 2#: 5′-GCAGCAAGCAGCTGTTTAT-3′,
gsdme 3#: 5′-GGATTGTGCAGCGCTTGTT-3′, and negative
control (NC): 5′-TTCTCCGAACGTGTCACGT-3’.

Caspase Assay
Caspase activities were assayed as described (Meng et al., 2016).
Briefly, cell lysates were mixed with 20 μM Ac-DEVD-AFC in a
Na-Citrate buffer (50 mM Tris-HCl, pH 7.4, 1 M Na-Citrate,
10 mM DTT, and 0.05% CHAPS), and incubated at 37°C for
30 min. Fluorescence intensities at λExc/λEm≈405/510 nm were
measured every 5 min for 1 h at 37°C. Data were collected and
analyzed using Graphpad Prism 9.0 software.

Mitochondrial Membrane Potential (ΔΨm)
Measurement
ΔΨmwas measured using the mitochondrial membrane potential
assay kit with JC-1. After drug treatment, cells were washed with
PBS twice and replaced with a fresh cell culture medium. Cells
were added with JC-1 dye working solution, mixed thoroughly,
and then incubated for 15 min at 37°C in the incubator. Cells were
observed under a fluorescence microscope after removing the
supernatant and twice washing with JC-1 staining buffer. JC-1
accumulates in the matrix of mitochondria to form polymers
(aggregates) when ΔΨm is high, which can produce red
fluorescence. When ΔΨm is depleted, JC-1 cannot aggregate in
the matrix of mitochondria. At this time, JC-1 is a monomer and
can produce green fluorescence. In this way, the change of
mitochondrial membrane potential can be measured through
fluorescence color change (Reers et al., 1995). CCCP (carbonyl
cyanide m-chlorophenyl hydrazone) was set as the positive
control.

Flow Cytometry Analysis
Adherent HeLa cells were washed with PBS, digested with trypsin,
and collected by centrifugation. Then, cells were mixed with
annexin V-FITC and PI staining working solution gently,
incubated at room temperature in the dark for 15 min and
subjected to flow cytometry analysis using BD FACS Canto II
Flow Cytometer.

Determination of the Activities of
Antioxidant Enzymes
HeLa cells were collected and washed twice with PBS before lysis.
The lysates were ultracentrifuged at 12,000 g for 30 min. The
activities of antioxidant enzymes (SOD and GSH) were measured

according to the manufacturer’s protocol (Kit S0109 and S0053,
Beyotime Institute of Biotechnology, PR China).

ROS Measurement
The ROS levels were measured by a ROS Assay Kit with DCFH-
DA according to the manufacturer’s instructions. Briefly, after
AE-treatment, the cell culture medium was replaced with a
serum-free medium containing DCFH-DA (10 μM). After
incubation at 37°C for 15 min, cells were washed three times
with a serum-free cell culture medium to remove additional
DCFH-DA. ROS scavenger NAC (5 mM) was pre-treated for
2 h. Fluorescence images were observed and captured under a
fluorescence microscope.

Immunofluorescence Labeling and
Confocal Microscopy
Immunofluorescence labeling was conducted according to our
standard protocols (Meng et al., 2020). At the indicated time post-
AE-treatment, cells were fixed with 4% PFA for 10 min in PBS
and permeabilized for 15 min with 0.2% Triton X-100 in PBS.
After blockade of nonspecific binding by incubation of cells for
30 min with 2% bovine serum albumin (BSA) in PBS, samples
were incubated with the appropriate primary antibodies and
subsequently incubated with fluorescein-labeled secondary
antibodies (ThermoFisher). Confocal fluorescence images were
acquired at the confocal microscope (Olympus). All image data
shown are representative of randomly selected fields from at least
three replicates.

SDS-PAGE and Immunoblotting
Western-Blot (WB) assay was conducted according to our
standard protocols (Meng et al., 2020). Briefly, cell lysates
were mixed with 5 × SDS loading buffer, boiled at 95°C for
5 min, and then subjected to SDS-PAGE. Proteins were
transferred to PVDF membranes and subjected to the
following steps. Membranes were blocked for 30 min by 5%
nonfat milk in TBST and then incubated with primary antibody
for 1 h at room temperature. After three washes with TBST,
membranes were incubated with the HRP-conjugated second
antibody for 30 min. After another three washes, membranes
were incubated in the chemiluminescent substrate, and the
antibody-bound protein was detected using LAS 4000
(Fujifilm). Mouse primary antibodies were diluted according
to the manufacturer’s instructions when used in
immunoblotting.

Transcriptomic Analysis
HeLa cells were treated with AE (50 μM) for 6 or 40 h. Total RNA
was extracted using TRIzol reagent, and subjected to RNA
transcriptome sequencing after determination of its quality.
RNA transcriptome sequencing was performed by Biomarker
Technologies (Beijing, China) following the standard protocol.
The reads weremapped to the reference genome ofHomo sapiens.
Relative gene expression was calculated in FPKM. Changes in
more than twofold gene expression with p < 0.05 were considered
reliable and statistically significant. Differential expressed genes
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(DEGs) were functionally classified using GO functional
enrichment and KEGG pathway analysis using online analysis
tools of DAVID (the Database for Annotation, Visualization, and
Integrated Discovery) (https://david.ncifcrf.gov/).

Quantification and Statistical Analysis
Results are presented as mean ± SD (standard deviation)
containing at least three biological replicates. Data were
analyzed using a Student’s t-test to compare two experimental
groups. A difference is considered significant as the following:
*p < 0.05, **p < 0.01.

RESULTS

AE Inhibits Cell Growth, Cell Migration and
Induces Cell Death in HeLa Cells by
Activation of Caspase Cascade
We first examine the effects of AE on the characteristics of cancer
cells. The chemotherapy drug cisplatin (DDP) was set as a
positive control. CCK8 assays showed significant inhibition of
HeLa proliferation in a dose-manner at concentrations following
AE treatment of 25 and 50 μM (Figure 1A). Also, in the presence

of AE, HeLa cells migrated slower into the scratch area than
control at 24, 36, and 48 h (Figure 1B). The relative wound width
at each time point was calculated by comparing with that at 0 h
(Figure 1C). Meanwhile, AE treatment induced significant cell
death based on detection of the LDH release (Figure 2A) and
reduced the cell viability based on detection of ATP contents in a
dose-dependent manner (Figure 2B). The CC50 for AE was
30.09 μM, which was determined with cell viability data
(Supplementary Figure S1). Annexin V-FITC/PI assay
showed that AE could induce phosphatidylserine exposure and
plasma membrane permeabilization of HeLa cells, indicating cell
death (Figure 2C).

To examine whether AE activates the caspase cascade,
enzymatic activities against synthetic caspase-3/7 substrate Ac-
DEVD-AFC were assayed. Caspase activity was significantly
higher in HeLa cells treated by AE compared to the control
group (Figure 2D). Immunoblotting analyses showed that both
initiator caspases (caspase-8/9) and effector caspase (caspase-3)
were activated and cleaved to their cleaved forms in AE-treated
cells in a dose-dependent manner (Figure 2E). Pretreatment of a
pan-caspase inhibitor z-VAD-FMK completely blocked AE-
induced caspase activity (Figure 2D) and cell death
(Figure 2F). Thus, AE-induced cell death of HeLa cells is
caspase-dependent.

FIGURE1 | AE inhibits the proliferation andmigration of HeLa cells. (A) Effects of AE on the proliferation of HeLa cells. HeLa cells were treated with AE or DDP for the
indicated hours, and the cell proliferation was examined by the CCK-8 assay. (B,C) Effects of AE on the migration of HeLa cells. Cell migration was detected by wound
scratch assay. The wound width was calculated using ImageJ. Results are as means ± SD from three independent experiments. *p < 0.05, **p < 0.01. Scale bar,
100 μm.
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AE Triggers GSDME-Dependent Pyroptosis
in HeLa Cells
Next, we investigated the mechanisms underlying AE-induced
HeLa cell death. The microscope images showed that HeLa cells
treated with AE and DDP became round and swollen with
bubble-like structures from the plasma membrane, representing
the typical pyroptosis morphology (Figure 3A, red arrows). To

determine which gasdermin mediates this process, cleavages of
GSDMD and GSDME were examined. Immunoblotting results
showed that GSDMD was not expressed or expressed at a low
level in HeLa cells (Figure 3B). GSDME cleavage was observed
in the presence of AE in a dosed manner (Figure 3C), indicating
that GSDME rather than GSDMD is activated in AE-treated
HeLa cells. Two additional pieces of evidence supported these

FIGURE 2 | AE induces caspase-mediated cell death of HeLa cells. (A–C) Effects of AE on the cell death of HeLa cells. HeLa cells were treated with AE or DDP for
16 h. Cell death was examined by the released LDH (A), cellular ATP (B), and flow cytometry with annexin V/PI staining (C). (D,E) Effects of AE on the caspase activation
of HeLa cells. HeLa cells were treated with AE or DDP for 24 h. Cell lysates were prepared and subjected to caspase-3 activity assay (D) and immunoblotting analysis
with the indicated caspase antibodies (E). Caspase activity was calculated as relative fluorescence units (RFU) changes per minute (Vmax). (F) Inhibition of caspase
activity reverses the AE mediated-cell death of HeLa cells. HeLa cells were treated with AE or DDP for 24 h, and the cell death was examined by the released LDH.
Caspase inhibitor z-VAD-FMK was added at 2 h before AE or DDP treatment. Data in C and E are representative of three independent experiments. The statistical data
are expressed as means ± SD from three independent experiments. **p < 0.01.
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results. First, in human colon cancer cell lines (SW480 and HT-
29) that naturally expressed GSDMD but no other gasdermins,
AE only triggered apoptotic cell death (Figure 3A, yellow
arrows). Second, AE induced the GSDME activation in
GSDME-expressed cells (A375 and MCF7 cells) (Figure 3D).
Thus, we concluded that AE could cause pyroptosis dependent
on GSDME. Additionally, AE treatment activated caspase-9 and
caspase-3 (Figure 2E), and pretreatment of z-VAD-FMK
attenuated the cleavages of caspase-9 and GSDME
(Figure 3E), suggesting that the caspase-9/3/GSDME axis
might activate AE-induced pyroptosis.

To further support the key conclusions that AE induces
pyroptosis dependent on GSDME in HeLa cells, we
synthesized three pairs of siRNA and found that the three#
pair had the best down-regulation effect. As expected, when
gsdme was knockdown, the percentage of pyroptotic cells
induced by AE significantly decreased, and the percentage of
apoptosis increased (Supplementary Figure S2). In addition,

we tested the GSDME expression in several cell lines maintained
in our lab, and selected 293T cells for the GSDME over-
expression experiment due to the lack of endogenous
GSDME and its high transfection efficiency. As expected,
overexpression of GSDME led to pyroptosis when treated
with AE, accompanied by the GSDME cleavage
(Supplementary Figure S3).

Effects of the Hydroxyanthraquinone
Derivatives on GSDME Activation
Given that Aloe-emodin shares a very similar structure with
rhubarb anthraquinone aglycones (Figure 4A), we investigated
whether these drugs are also involved in GSDME activation in
HeLa cells. Among them, apparent cleavage of GSDME was
detected upon Emodin and AE treatment but not in other
compounds, including Rhein, Chrysophanol, Aurantio-obtusin,
and Physcion (Figure 4B).

FIGURE 3 | AE activated the caspase9/caspase3/GSMDE axis and induced pyroptosis of HeLa cells. (A) The effects of AE on the morphology of HeLa cells. HeLa,
HT-29, and SW480 cells were treated with AE (50 μM) or DDP (5 mg/L) for 16 h. Shown are representative microscopic images of cells. The red arrows indicate the
pyroptotic cells, and the yellow arrows represent the apoptotic cells. Scale bar, 100 μm. (B) Immunoblotting detection of GSDMs cleavage in AE-treated HeLa cells. Cell
lysates in (A) were prepared and subjected to immunoblotting analysis with the indicated antibodies. (C) Immunoblotting detection of GSDMs cleavage in HeLa
cells in AE-dosed manner. (D) Immunoblotting detection of GSDME cleavage in AE-treated A375 and MCF7 cells. Cells were cultured with AE (50 μM) for 24 or 48 h,
followed by immunoblotting analysis with the indicated antibodies. (E) Inhibition of caspase activity reverses the AEmediated-GSDME cleavage. HeLa cells were treated
with AE (50 μM) or DDP (5 mg/L) for 24 h, followed by immunoblotting analysis. Caspase inhibitor z-VAD-FMK was added at 2 h before AE or DDP treatment. Data of
immunoblots are representative of three independent experiments.
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AE Induces Mitochondrial Dysfunction
The mitochondrial pathway is involved in various stimuli,
including chemotherapeutic drugs, TNF treatment, and UV
radiation (Lin and Beal, 2006; Canta et al., 2015). Prompted
by this notion, we examined mitochondrial functions in cells
treated with AE. AE treatment in HeLa cells broken down the
mitochondrial ribbon into dispersed ministacks. Mitochondrial
structures were stained by the anti-Tom20 antibody and
MitoTracker, respectively (Figures 5A,H). Simultaneously, the
JC-1 staining assay indicated that AE caused induced
mitochondrial membrane potential (ΔΨm) depletion in HeLa
cells (Figure 5B). In addition, AE exposure might increase
mitochondrial oxidative stress, with the increased intracellular
ROS generation and decreased antioxidant enzymes glutathione
(GSH) and superoxide dismutase (SOD) levels (Figures 5C–E).

Mitochondrial disruption during cell death is regulated by the
apoptosis-inducing factor (AIF) and Bcl-2 family proteins, which
results in the release of cytochrome c (cyto c) that directly interacts
with Apaf-1 and caspase-9 to form the apoptosomes. In
apoptosomes, caspase-9 is activated by dimerization, which
initiates the mitochondrial pathway (Gulbins et al., 2003). To
determine the molecular events underlying AE-induced
mitochondrial dysfunction during cell death, we examined the
expression and translocation of these proteins. Immunoblotting
results showed that AE increased the Bid cleavage and Bax/Bcl-2

ratio in a dosedmanner (Figure 5F). AE also led to Bax translocation
to membrane parts and caused cyto c and AIF partitioning into the
cytosol phase (Figure 5G). Besides, endogenous BAX formed a
punctate perinuclear structure and showed a clear colocalization
with the mitochondria upon AE-treatment (Figure 5H). In contrast,
cyto c diffused in the cytoplasm and showed less mitochondrial
localization (Figure 5H). Therefore, AE induces mitochondrial
dysfunction and promotes Bid/Bax-induced cytochrome c release.

Systematically Transcriptional Analysis of
AE-Treated HeLa Cells
To provide a comprehensive understanding of the effects of AE
treatment in gene expression and cell signaling pathways in epithelial
HeLa cells, a transcriptomic analysis was conducted. Considering that
HeLa cells exhibited apparent pyroptosis morphology at
approximately 24 h post-AE-treatment (Figure 3A), we selected 6
and 40 h, representing the early and late phases, respectively. At 6 h,
1,390 differentially expressed genes (DEGs) were identified in the
aloe-emodin treatment group, among which 760 genes were up-
regulated and 630 were down-regulated (Figure 6A). A total of 976
DEGs were mapped to GO terms, and the top 10 enriched GO
functions were listed. The functions weremainly divided into positive
regulation of transcription, inflammation response, cell proliferation,
and cell death process (Figure 6B). In addition, a total of 405 DEGs

FIGURE 4 | Effects of the hydroxyanthraquinone derivations on GSDME activation. (A) The schematic structures of hydroxyanthraquinone derivations that are
similar to AE. (B) Effects of the hydroxyanthraquinone derivations in (A) on the GSDME cleavage. HeLa cells were treated with 50 μMof chrysophanol, emodin, aurantio-
obtusin, physcion, aloe-emodin, or rhein for 16 h, followed by immunoblotting analysis with the indicated antibodies. Data of immunoblots are representative of three
independent experiments.
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FIGURE 5 | AE induces mitochondrial dysfunction of HeLa cells. (A) Effects of AE on the mitochondrial morphology. HeLa cells were treated with AE (50 μM) for
24 h. Fluorescence detection of Tom20 (green) and DAPI (blue) are shown. Statistics of cells showing obvious mitochondrial ministacks are listed in the lower-left corner.
At least 100 cells were counted for each group, and the statistical data shown are from three independent determinations. Scale bar, 10 μm. (B) Effects of AE on the
mitochondrial membrane potential. The mitochondrial membrane potential was determined by the JC-1 assay. The merged fluorescence detections of JC-1
aggregates (red) and JC-1monomer (green) are shown. Color change from orange to green indicated that the JC-1 changed from aggregates tomonomers, and that the
mitochondrial membrane potential changed from a high level to a low level. Scale bar, 100 μm. (C–E) Effects of AE on the mitochondrialoxidativestress. HeLa cells were

(Continued )

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8545268

Li et al. Aloe-Emodin Induces Pyroptosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


were subjected to KEGG pathway analysis, and ten mostly
predominant pathways were identified. These pathways were
related to the MAPK signaling pathway, pathway in cancer, p53

signaling pathway, PI3K-Akt signaling pathway, and TNF signaling
pathway (Figure 6C). Considering that genes expression was
transient and different at early and later stages, we compared

FIGURE 5 | treated with 50 μM of AE for 24 h. ROS was detected by H2DCF-DA staining (C), and antioxidant enzymes levels of GSH (D) and SOD (E) were measured.
ROS scavenger NAC (5 mM) was pre-treated for 2 h. (F) Effects of AE on the expression of Bcl-2 family proteins. HeLa cells were treated with AE or DDP for 24 h,
followed by immunoblotting analysis. Bax/Bcl-2 ratio was calculated by comparing the band intensities of Bax protein to Bcl-2 protein using the ImageJ software. (G,H)
Effects of AE on the cellular translocation of mitochondrial proteins. Cells were treated with AE for 24 h. (G) Total membrane and cytosol proteins were isolated and
immunoblotted with the corresponding antibodies. M: membrane fraction. (C) cytoplasmic fraction. (H) Colocalization of cytochrome c or BAX (green) with MitoTracker
(red) is shown in fluorescence images (upper) and the statistics of Pearson correlation coefficient (lower). The Pearson correlation coefficient was calculated from more
than 20 cells for each experiment using ImageJ software. Vertical lines represent SD. **p < 0.01. Scale bar, 25 μm. Data are representative of three independent
experiments.

FIGURE 6 | Systematically Transcriptional Analysis of AE-treated HeLa cells. (A) Volcano map shows DEGs’ overall scatter in HeLa cells at 6 h post-treatment.
Each point represents a specific gene transcript. The abscissa indicates the fold-change of gene expression in AE-treated samples divided by those in control samples.
The ordinate shows the statistical test values for the significant difference in expression. Red dots correspond to up-regulated genes, green dots refer to the significantly
down-regulated genes, and black dots indicate a non-significant change in gene expression. (B) Gene Ontology (GO) enrichment analysis of the DEGs into
biological processes using the DAVID (the Database for Annotation, Visualization, and Integrated Discovery) online analysis tool (https://david.ncifcrf.gov/). The lower
abscissa indicates the number of genes annotated to a specific GO term. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the
DEGs using the DAVID online analysis tool. The horizontal axis represents the p-value. The big circle indicates amore significant number of DEGs enriched in this function.
(D) Heatmap shows the synergistic expression patterns of the DEGs involved in regulating cell death or mitochondrial function at 6 h or 40 h post-AE treatment. Color
change (from blue to red) indicated that the relative intensity changed from low to high.
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DEGs at 6 and 40 h post AE treatment. A total of 91 genes were
synergistically expressed, among which 36 genes were up-regulated,
and 56were down-regulated. Interestingly, 10 upregulated geneswere
involved in the cell death process, and 12 downregulated genes were
related tomitochondrial functions (Figure 6D), which was consistent
with our functional study above. Thus, transcriptome analysis
provides genome-wide gene expression changes during the
treatment of AE.

DISCUSSION

Aloe-emodin exhibits a broad spectrum of pharmacological benefits,
such as anticancer, anti-inflammatory, antivirus, antibacterial
activities (Dong et al., 2020). Of most importance, AE shows
remarkable anticancer effects in lung, breast, colon, pancreatic
cancer cells by inducing apoptosis and inhibiting cancer cell
proliferation (Sanders et al., 2018). Mechanically, AE affects the
MAPKs, PKC, Ras/ERK, ROS-JNK, PI3K/Akt/mTOR pathway
(Acevedo-Duncan et al., 2004; Tu et al., 2016; Tseng et al., 2017;

Dou et al., 2019; Shen et al., 2020), and regulates the expression of a
set of genes, such as the casein kinase II, ALP, c-Myc, ERα, NAT, and
NF-κB (Chen et al., 2014; Dong et al., 2020). To our knowledge, we
first discovered that AE could trigger pyroptosis by inducing
mitochondrial dysfunction and activating the Bax/caspase9/
caspase3/GSDME pathway in HeLa cells (Figure 7). In addition,
we provide a systematically transcriptional analysis of pathways and
gene expression in AE-treated cells.

Both activations of GSDMD and GSDME could induce
pyroptotic cell death. However, it seems that GSDME, rather
than GSDMD, contributed to AE-induced pyroptosis because
SW480 cell, which has a high level of GSDMD but without
GSDME expression, was refractory to AE-caused pyroptosis.
On the contrary, in GSDME-expressing cells such as A375
and MCF7 cells, GSDME was cleaved by caspase-3 cleaves,
and the pore-forming ability of the N-terminus was released.
Therefore, AE may trigger pyroptosis in GSDME high expression
cells but apoptosis in GSDME-deficient cells.

Aloe-emodin could induce caspase activation via the death
receptor pathway (caspase-8 activation) and the mitochondrial

FIGURE 7 | A schematic diagram of this work. Aloe-emodin can induce caspase-8 activation, Bid cleavage, BAX translocation to permeabilize the mitochondrial
membrane and release cytochrome c into the cytosol. Cytochrome c then activates caspase-9 and subsequent caspase-3. Active caspase-3 mediates the GSDME
cleavage, and GSDME-N could directly oligomerize and cause plasma membrane lysis which will cause pyroptosis characteristics, including LDH release and the
formation of plasma membrane bubbles.
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pathway (caspase-9 activation) (Figure 2E). Suppression of
caspase-8 inhibited AE-induced the cyto c release and caspase-9
activation (Lin et al., 2010), indicating that the death receptor
pathway controlled the AE-induced mitochondrial dysfunction. In
consistent with this, we also observed that AE induced Bid cleavage
(Figure 5F). Since activation of caspase-8 in the death receptor
pathway results in cleavage of Bid, and translocation of activated
Bid activates mitochondria pathway (Yin, 2000; Kim et al., 2017),
AE-induced mitochondrial dysfunction is then subsequently
linked via cleavage of Bid to the death receptor pathway (Figure 7).

Conventional chemotherapy effectively inhibits tumor
growth, but the tumor becomes insensitive to chemotherapy in
the later stage, andmany patients relapse over time (Norden et al.,
2008). Chemotherapy resistance is one of the significant problems
for effective clinical therapy. In etoposide-resistant melanoma
cells, loss of GSDME decreased cell response to etoposide. In
contrast, over-expression of GSDME increased the cell sensitivity
to etoposide, suggesting that increased GSDME activation is
related to reduced etoposide resistance (Lage et al., 2001).
Interestingly, a combination of AE or the Aloe vera extract
increased the cellular sensitivity to chemotherapeuticagents
and was more effective in killing cancer cells (Luo et al.,
2014). Still, the mechanism of this action is largely unknown.
Our results showed that AE activates the caspase-9/caspase-3/
GSDME axis. However, it is worth noting that the ability of AE to
induce pyroptosis is much lower than that of DDP, because AE-
induced pyroptosis may require a higher concentration or more
treatment time (Figure 3D). In consistent with this, PLK1
inhibitor BI2536 can increase cisplatin chemosensitivity by
accelerating GSMDE-mediated pyroptosis, but BI2536
treatment alone only causes GSMDE activation to a much less
extent (Wu M. et al., 2019). Thus, these findings may explain
potential roles in reversing chemotherapyresistance in GSDME-
expressed cancer cells.

Several anthraquinones derivatives are found in the well-
known Chinese herbal medicines, and have been developed as
pharmacological tools and drugs (Malik and Müller, 2016; Diaz-
Munoz et al., 2018). Besides AE, we found that emodin-treatment
could also trigger GSDME cleavage. By preliminary comparison
of the chemical structures of the six anthraquinones in this study,
we found that AE and emodin share similar free hydroxyl groups
at positions 1 and 3 (Figure 4), which may be the reason for
GSDME cleavage. However, it needs to be confirmed using more
derivatives. Thus, it is intriguing to investigate whether other
anthraquinone derivatives also induce pyroptosis and find out
which anthraquinones have the most potent effects or whether/
how they could interact with each other. Thus, this study reveals a
novel pharmacological characteristic of anthraquinone
derivatives, which provides valuable information for the
potential use of anthraquinone containing Chinese herbs.

We here showed that AE could kill GSDME-expressed cancer
cells by pyroptotic cell death, making it a potent anti-cancer
agent. In addition, GSDME-mediated pyroptosis of tumour cells
enhances the it phagocytosis by tumour-associated macrophages,
and triggers the recruitment of immune cells to induce anti-
tumor inflammatory responses (Zhang et al., 2020; Li et al., 2021).
However, it should be noted that GSDME is expressed in various

normal tissues, including immune system cells (www.biogps.org).
Thus, AE-mediated pyroptosis may induce toxicity and cause
disorder in immune system in certain normal human cells. There
have been negative effects reported on AE, such as hepatotoxicity
and nephrotoxicity (Zhu et al., 2012; Dong et al., 2017; Dong et al.
, 2020). Besides, because AE is difficult to be absorbed by the small
intestine and has a short half-life (Yu et al., 2016), it has not been
used clinically extensively. Thus, researches are urged to enhance
its oral bioavailability, improve tumor-targeting property, and
reduce the toxicity to normal cells (Şeker Karatoprak et al., 2022).
One in vitro study reported that AE-loaded in SBA-15
demonstrated better water solubility, and exhibited particular
toxicity on HeLa cells and little effect on the normal cervical cells
(Jangra et al., 2021), but extensive in vivo researches are required
before its clinical implications.

Taken together, here we found that AE induces mitochondrial
dysfunction and activates the Bax-caspase9-caspase3-GSDME
axis. AE exerts pyroptosis in the GSDME-expressed tumor
cells. Besides, AE treatment causes extensive changes in gene
expressions and cellular pathways. These results of this study
suggest a novel mechanism for anthraquinone derivatives in the
treatment of cancer cells.
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