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Abstract

Dynamic Bayesian networks (DBNs) can be used for the discovery of gene regulatory networks (GRNs) from time series gene expression
data. Here, we suggest a strategy for learning DBNs from gene expression data by employing a Bayesian approach that is scalable
to large networks and is targeted at learning models with high predictive accuracy. Our framework can be used to learn DBNs for
multiple groups of samples and highlight differences and similarities in their GRNs. We learn these DBN models based on different
structural and parametric assumptions and select the optimal model based on the cross-validated predictive accuracy. We show
in simulation studies that our approach is better equipped to prevent overfitting than techniques used in previous studies. We
applied the proposed DBN-based approach to two time series transcriptomic datasets from the Gene Expression Omnibus database,
each comprising data from distinct phenotypic groups of the same tissue type. In the first case, we used DBNs to characterize
responders and non-responders to anti-cancer therapy. In the second case, we compared normal to tumor cells of colorectal tissue. The
classification accuracy reached by the DBN-based classifier for both datasets was higher than reported previously. For the colorectal
cancer dataset, our analysis suggested that GRNs for cancer and normal tissues have a lot of differences, which are most pronounced
in the neighborhoods of oncogenes and known cancer tissue markers. The identified differences in gene networks of cancer and
normal cells may be used for the discovery of targeted therapies.
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Introduction
Learning gene regulatory networks (GRNs) from gene
expression data has been the focus of much research in
the last decades [7, 10, 38, 62]. The precise knowledge of
GRNs can help to understand the molecular mechanisms
driving diseases and facilitate the search for targeted
therapies [3, 32]. Multiple computational methods can be
used to learn GRNs from observational data, including
correlation analysis [20, 29, 34], Boolean networks [31,
36], Bayesian networks [5, 12, 59], differential equation
models [60, 61] and machine learning approaches [19]. A
recent benchmarking study [63] revealed no clear winner
among different methods for GRN reconstruction, with
different methods demonstrating advantages in different
settings.

A Bayesian network is a probabilistic graphical model
representing dependencies between random variables
via a directed acyclic graph (DAG). Due to its probabilis-
tic nature, this model is well suited to describe noisy
biological data. However, static Bayesian networks do
not allow directed cycles, rendering it impossible for

them to model feedback loops. The Dynamic Bayesian
Network (DBN) model overcomes this problem by includ-
ing dependencies between nodes at different time points
and accommodating the possibility of cycles [28, 39, 50].

DBN models were used to learn biological networks
[35], including GRNs [2, 6, 15, 30, 59, 64] and multi-
omics networks [48]. Learning DBN structures from data
is computationally challenging because the number of
possible network topologies grows exponentially with
the number of nodes. Some methods solve this issue by
employing a greedy search [48, 59], others restrict the
network topology by prohibiting instantaneous depen-
dencies between genes or limiting the number of possible
incoming edges per each node [18, 35, 57]. However, topo-
logical restrictions may potentially result in the discovery
of suboptimal models [41].

Another limitation of most network learning methods
lies in the assumption that all samples in the dataset
represent the same GRN, however this assumption may
be violated. For example, it has been shown experimen-
tally that protein–protein interactions differ drastically
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between tumor and normal cell lines [23]. Hence the
discovery of context-specific GRNs can facilitate the dis-
covery of targeted therapies [56]. Only limited research
was devoted to learning DBNs from distinct but related
contexts [24, 42, 43]. However, none of the methods was
applied to networks with more than 40 nodes, and all
suggested approaches utilized limited DBN topologies
that assume no instantaneous dependencies between
genes.

The goal of this study was to create a scalable frame-
work for learning DBN models that provide high pre-
dictive accuracy and can be used for learning GRNs
for multiple subgroups of samples, defined, for exam-
ple, by molecular, histological or clinical phenotypes. We
employed a Bayesian approach [26] for learning DBNs
that is scalable to networks with hundreds of nodes and
implemented in the R-package BiDAG [52]. BiDAG was
previously used for context-specific learning of static
gene networks [27, 51]. This package allows selecting
from a wide range of network topologies, including prior
information from public gene interaction databases and
modeling gene interactions whose strength changes over
time. In addition, the Bayesian approach to structure
learning implemented in the package is well equipped
to prevent overfitting, a known problem occurring in the
analysis of high-dimensional biological data.

Apart from BiDAG, we found five R-packages for learn-
ing DBNs, namely G1DBN [28], dbnlearn [8], dbnR [44],
ebdbNet [45] and bnstruct [9]. Only dbnR and bnstruct
are able to learn DBNs with the same range of topologies
as BiDAG. However, these packages can only learn models
whose parameters are constant over time, while BiDAG
can be used for learning both constant and time-varying
models. We compared BiDAG with these tools in simu-
lation studies to determine which tool best reconstructs
network structures.

Apart from BiDAG, none of the mentioned DBN learn-
ing tools includes functions enabling classification. For
this reason, for classification comparison, we chose stan-
dard classification tools that cannot perform network
reconstruction. In addition, we compared our results
with the DBN-based classifier reported in [24] for the
same datasets, however the code of this classifier is not
available.

To demonstrate the applications of the described
approach, we identified time-series datasets in the Gene
Expression Omnibus (GEO) database [1], which included
gene expression data for at least two different phenotypic
groups of the same tissue and comprised at least 50
observations in each of two consecutive time slices.
We found two datasets (GSE5462 and GSE37182) that
satisfied these criteria. To inform model selection in
the absence of ground truth, we used a cross-validated
measure of predictive accuracy that was previously used
to perform DBN model selection [35, 48]. In addition, we
used cross-validated classification accuracy to assess
the different models’ ability to distinguish between the
analyzed phenotypic groups. Concerning applications,

Figure 1. DBN graphical representation. (A) The unfolded structure of the
first-order DBN model consisting of T + 1 time slices can be represented
by initial and transition structures. (B) The edges between time slices are
highlighted in red and called inter-edges. The edges within time slices are
highlighted in blue and called intra-edges.

the suggested framework helped to understand if the
phenotypic groups in each dataset could be better
represented by GRNs with the same structure (but not
parameters) or if gene regulation differs substantially so
that different structures more accurately represent the
analyzed subgroups. In addition, our analysis demon-
strated that the range of modeling possibilities offered
by BiDAG is helpful for the discovery of models that
reach the highest predictive accuracy, while the DBN-
based classifier demonstrated competitive classification
accuracy.

Methods and data
A DBN is a probabilistic graphical model for the joint dis-
tribution of random variables X = (X1, . . . , Xn) observed at
time points t = 0, 1, . . . , T. The DBN model uses a directed
graph to encode a factorization of the joint distribution of
(Xt) along the time slices t = 0, . . . , T (Figure 1A). Here, we
consider DBNs in which structures are identical for all
time slices. We also assume that variables in time slice
t can depend on other variables in time slice t and on
variables in time slice t − 1, i.e.

P(Xt | Xt−1, . . . , X0) = P(Xt | Xt−1). (1)

Such DBN models are referred to as first-order DBNs.
The joint probability distribution of a DBN with T + 1

time slices is

P(X0, X1, . . . , XT) = P(X0)

T∏
t=1

P(Xt | Xt−1). (2)
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With these assumptions, the unfolded structure of
a DBN (Figure 1A) can be represented in a compact
way with two DAGs (G0, G→) which are referred to as
initial structure and transition structure, respectively
(Figure 1B). The initial structure contains only edges in
the first time slice. The transition structure describes
relationships between gene expression levels in all
other time slices, t > 0. The edges within one time
slice are called intra-edges and edges between time
slices are called inter-edges. In G0, only intra-edges
are present, while G→ contains both intra and inter-
edges. We are primarily interested in discovering the
transition structure because it describes both instan-
taneous dependencies (represented by intra-edges) and
dependencies between gene expression levels at different
time points (represented by inter-edges).

Within each time slice t > 0 the joint distribution of
X1, . . . , Xn is factorized according to a Bayesian network
model:

P(Xt | Xt−1) =
n∏

i=1

P(Xt
i | Pat

i), (3)

where Pat
i denotes the set of parents of node Xt

i in time
slices t and t−1 in G→. For G0 the parent sets Pa0

i are used
instead to factorize P(X0).

To fully specify a DBN, we also need parameters θ

which describe probabilistic dependencies between each
node Xt

i and its parents in a DBN structure. We assume
that Xt

i are jointly normally distributed. This results in
the distribution of each node Xt

i being a linear regression
on its parents [14]:

P(Xt
i | G→, θ t)

= N

⎛
⎜⎜⎝Xt

i

∣∣∣∣ mt
i +

∑
t′∈{t,t−1}

∑

Xt′
j

∈Pat
i

βt
ij,t′X

t′
j , (σ t

i )
2

⎞
⎟⎟⎠ . (4)

For each time slice t, we have the parameters θ t =
(mt, Bt, (σ 2)t), where mt is a vector of regression intercepts,
Bt = (βij,t′)t a set of all regression coefficients and (σ 2)t a
vector of variances. For G0, the sum over parents in the
previous time slice is dropped. We consider two cases,
namely stationary DBNs where parameters stay constant
over time θ1 = . . . = θT =: θ→ and time-varying DBNs,
where θ1, . . . , θT are generally different. The parameters
θ0 and θ→ are different even for a stationary model. In
a time-varying model, we assume time-varying parame-
ters, while the structure G→ is assumed to be the same
across time slices 1, . . . , T.

We also consider a special case where the initial struc-
ture G0 is the same as the internal structure of the
transition structure G→, i.e. for all nodes, all intra-slice
edges in G→ are the same as these edges in G0.

For learning the DBN structure from observational
data D, we employ the Bayesian approach implemented

in the R package BiDAG [26, 52], and use the BGe score
for learning and sampling the structures of Bayesian
networks [14, 25]. The BGe score of a graph S(G | D) is
derived from its posterior probability that is proportional
to its marginal likelihood and graph prior:

P(G | D) ∝ P(D | G)P(G) =: S(G | D) (5)

As was shown in [11, 14], when some technical
assumptions are fulfilled, the score S(G | D) decomposes
in terms, each depending on a single node and its parents
(see details in Supplementary data):

S(G | D) = P(D | G)P(G) =
n∏

i=1

S(Xi, Pai | D) (6)

The BGe score assumes a normal-Wishart prior on
parameters [14] that satisfies the assumptions required
for score decomposition in Equation(6).

For DBNs, the dataset D consists of N observations
from T + 1 time slices. To learn a time-varying DBN, we
divide D in T + 1 parts and define the BGe score of a DBN
structure as

S(G | D)

=
n∏

i=1

S(X0
i , Pa0

i | D0)

T∏
t=1

n∏
i=1

S(Xt
i , Pat

i | Dt). (7)

To perform structure learning for a stationary model we
divide the data into two parts: D0 and D→, where D→

contains observations from all pairs of neighboring time
slices. Equation (7) then simplifies to

S(G | D) =
n∏

i=1

S(X0
i , Pa0

i | D0)

n∏
i=1

S(Xt
i , Pat

i | D→). (8)

We use the iterative order Markov chain Monte Carlo
(MCMC) scheme [26] to estimate the a posteriori (MAP)
structures G0 and G→. In addition, we estimate consensus
structures by averaging over a sample of graphs from the
posterior distribution and composing consensus struc-
tures of edges whose posterior probability is higher that
0.9 [26, 52].

Learning DBN models for phenotypic subgroups
In the proposed framework, each sample Dm contains
gene expression levels of one patient from all time
points and is assigned to a phenotypic subgroup Zm = k,
k ∈ (1, . . . , K). In this work, we analyzed two datasets,
each comprising gene expression from K = 2 subgroups
(Figure 2A), however the model can be extended to an
arbitrary number of groups.

Since the analyzed subgroups of samples in each
dataset are related, we propose considering two models:

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac219#supplementary-data
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Figure 2. DBN learning and classification framework. (A) We learn DBN-based classification models from the time-series gene expression data of
two phenotypic groups (group 1 and group 2) with various structural and parametric assumptions and assess the predictive accuracy and classification
accuracy of these models using leave-one-out cross-validation. (B) We evaluate models where phenotypic groups are represented by the same or different
DBN structures. For each model we consider a set of four structural restrictions/prior assumptions: (C) no restrictions, (D) model without intra-edges (E)
model that penalizes non-STRING edges (dashed) (F) model where non-STRING edges are blacklisted.

one which assumes that DBN structures are subgroup-
specific and the other one that represents all subgroups
by a single DBN structure (Figure 2B). In the latter case,
the differences between subgroups can be explained
by differences in DBN parameters. From a biological
perspective, it is interesting to understand to which
extent the interaction networks of different subgroups,
for example, defined by different phenotypes, differ from
each other.

To inform the choice between different structural and
parametric model assumptions, we suggest computing
mean absolute error (MAE) as a measure of predictive
accuracy, which was already used in previous applica-
tions of DBN to biological datasets [35, 48]. MAE reflects
how well the model predicts the changes in gene expres-
sion levels in time.

To avoid overfitting, we estimated MAE using leave-
one-out cross-validation (CV). In each CV run, we
removed one sample Dm from the data D and used
the remaining data (D)−m to learn DBN structure and
parameters. After that, we plugged in the values D0

m

containing gene expression levels of the test sample
from the first time slice and predicted gene expression
levels in all other time slices iteratively according to the
learned model. Finally, we computed MAE for each node
and time slice and averaged it across all genes, slices and
test samples.

In addition to the predictive accuracy, we measured
cross-validated classification accuracy to evaluate how
well the DBN-based classifier can discriminate between
the analyzed subgroups.

Other DBN learning tools do not provide functions for
classification. For this reason, we compared our DBN-
based classifier against random forest and naive Bayes
classifiers [17, 33]. We ran the CV 100 times for the

random forest classifier to average out randomness in
the results.

Structural assumptions
Including prior biological knowledge can improve
network learning [65], so we consider two different ways
to include such knowledge: by penalizing the edges that
cannot be found in public protein–protein interaction
databases, such as, e.g. the STRING database [53]
(Figure 1E) and by excluding these edges completely from
the search space (Figure 1F). Penalization is implemented
by imposing a nonuniform prior over structures:

P(G) ∝
n∏

i=1

1∏
j:Xj∈Pai

πij
, (9)

where πij = 1 if the interaction between genes Xi and Xj

can be found in the STRING database with a confidence
level of at least 0.4, and πij = 2 otherwise.

Most DBN models and tools prohibit intra-edges. We
do not assume the presence or absence of intra-edges
by default. Instead, we include the model without intra-
edges in the set of investigated models (Figure 2D) and
compare its predictive accuracy with other models,
including the model without any structural restrictions
(Figure 2C).

Work steps of the model
Our goal is to evaluate DBN models using all possible
combinations of structural assumptions depicted in
Figure 2B and Figure 2C:F. In addition, we consider
models with time-varying and constant parameters for
datasets where more than two time slices are present.
For each combination of structural and parametric
assumptions we perform the following CV procedure:
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.

Leave-one-out CV procedure for DBNs.

Input:
Time series gene expression data D and class membership
assignments of each sample (row of D): Z1, ..., ZN

B—blacklist matrix, � = (π)ij—penalization matrix, parameter
assumptions, ρ—posterior probability threshold
Output:
Cross-validated clustering accuracy of MAP and consensus
models
Cross-validated MAE of MAP and consensus models
For m = 1 : N
1. Define training data (D)−m and test sample Dm

2. Learn MAP and consensus structures and parameters
Given (D)−m, �, B:
For k = 1 : K
Learn MAP DBN structure Ĝk

Obtain a sample of DBN structures from the posterior
distribution G1 . . . GL

Given ρ and G1 . . . GL estimate consensus structure Gk

Given Ĝk and Gk estimate MAP parameters θ̂k, θk

Compute class posteriors P(Zm = k|Dm, Ĝ, θ̂ ) and
P(Zm = k|Dm, G, θ)

END For
3. Assign membership and compute MAE

Assign class memberships given MAP and consensus models
γ̂m = argmax

k
P(Zm = k|Dm, Ĝ, θ̂ )

γ m = argmax
k

P(Zm = k|Dm, G, θ)

Given Ĝγm , θ̂γm ,Dm compute MAE (MAP model)
Given Gγm , θγm , Dm compute MAE (consensus model)

END For
4. Compute clustering accuracy and global MAE of MAP and

consensus models
Compute clustering accuracy by comparing γ̂ , γ and Z
Compute global MAE by averaging over all test samples

Posterior probabilities of class memberships Zm of obser-
vations Dm are computed as follows:

P(Zm = k | Dm, G, θ) = τkP(Dm | Gk, θk)∑2
k′ =1

τk′ P(Dm | Gk′ , θk′ )
, (10)

where likelihoods P(Dm | Gk, θk) are computed according
to the learned DBN structures and parameters:

P(Dm | Gk, θk) = P(D0
m | G0

k, θ0
k )

T∏
t=1

P(Dt
m | G→

k , θ t
k), (11)

and P(k) = τk are estimated from the training data.
When the same structure for the analyzed subgroups

is assumed, the graphs in step 2 need to be learned only
once instead of K times separately for each subgroup.

BiDAG package
The R-package BiDAG [52] implements a collection of
MCMC methods that can be used for learning and
sampling of static Bayesian network structures as
well as DBNs. To implement the work steps of the
model described in Section 2.3, we used the following
functions:

• iterativeMCMC implements a hybrid MCMC approach
introduced in [26] and was used for MAP structure
search

• orderMCMC was used for sampling from the poste-
rior distribution

• modelp was used for model averaging
• scoreagainstDBN was used to compute likelihoods

from Equation (11)
• compareDBNs was used for model comparison

Data
We applied the described framework to two biological
datasets, each containing time-series gene expression
data of two phenotypic subgroups of the same tissue type
(Section 4).

The dataset GSE5462 contains gene expression data of
116 biopsies from 58 breast cancer patients at two time
points: pre-treatment and 10–14 days after treatment
with letrozole [37]. We log2-transformed and normalized
the raw data using robust multiarray averaging (RMA, R-
package affy, [13]) for subsequent DBN analysis.

The second dataset, GSE37182, contains expression
data of 172 biopsies from 15 colorectal cancer patients,
totaling 88 normal tissue biopsies and 84 tumor tissue
biopsies [40]. The samples were obtained during surgery
and left at room temperature at four time points: 20 min
(t = 0), 60 min (t = 1), 180 min (t = 2) and 360 min (t = 3).
Afterwards, the samples were stored at −80◦C until RNA
extraction. The data from the repository were already
normalized separately within each group (tumor and
non-tumor). To make samples between two conditions
comparable, we used the package NormalyzerDE [58] and
performed median normalization.

Gene filtering
To select genes to be included in the DBNs we per-
formed DGE analysis using the R package limma [46].
We considered genes as differentially expressed between
conditions if their false discovery rate (FDR)-adjusted P-
value was smaller than 0.05. We did not apply a log2-fold-
change cutoff.

Simulation studies
We generated 50 two-step DBNs structures. For each
DBN structure, we generated 30 training samples from
four consecutive time slices and two test samples. We
learned MAP and consensus structures corresponding to
posterior thresholds of p ∈ {0.3, 0.5, 0.7, 0.9, 0.99} using
the Bayesian approach implemented in BiDAG ([52],
Section 2.4). We also learned best-scoring structures
using greedy hill climbing and the BIC score from the
R-package bnlearn [49] with the limits on the number
of parents of 3 and 5. For each limit, we also learned
consensus structures based on bootstrap support levels
of p ∈ {0.3, 0.5, 0.7, 0.9, 0.99}. Finally, we learned DBN
structures using the R-packages dbnR and bnstruct.
dbnR implements the MMHC approach for DBNs [54].
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The package bnstruct implements hill climbing as well,
however it automatically discretizes continuous data.

We compared the learned structures with the ground
truth using true positive rate (TPR), FDR and structural
Hamming distance (SHD). SHD is defined as the number
of edge additions, deletions and reversals needed to make
the two graphs match [54].

Results
Simulated data
In the simulation studies (Section 2.7), we generated 50
random DBNs and data from these DBNs, followed by
network reconstruction using available software pack-
ages. We explored the situation when the number of
observations between neighboring time points is smaller
than the number of nodes.

The MCMC approach reached the highest TPR, fol-
lowed by hill climbing and MMHC (Figure 3A). However,
hill climbing applied to discretized data showed the worst
result discovering less than 40% of true positives. Such
a poor performance likely demonstrates the effect of
information loss due to data discretization. Notably, all
best-scoring structures resulted in a high FDR. Structural
overfitting of maximum score structures in the high-
dimensional setting was previously demonstrated in [26]
and Bayesian model averaging proved to be effective for
decreasing the FDR.

Only bnlearn and BiDAG provide tools for model aver-
aging. Hence we did not include other approaches in the
comparison of consensus graphs. We observed that con-
sensus structures contained fewer false-positive edges
but also fewer true positives. SHD, which sums all differ-
ences (TP, FP and errors in directions of edges), was lower
for consensus than for MAP structures (Figure 3B). The
lowest SHD was achieved with the MCMC scheme at the
posterior threshold of 0.99, demonstrating an advantage
of using BiDAG for DBN structure learning.

The better performance of BiDAG comes at the cost of
longer runtimes. BiDAG needed 14 min to find the MAP
structure and perform the sampling from the posterior
distribution. Hill climbing required 4.5 min, including 100
bootstrap runs needed to estimate consensus structures.
Hill climbing applied to discretized data required the
longest time of 68 min to learn the best scoring graph.

Analysis of time-series gene expression data
We applied the proposed approach to two transcriptomic
datasets from the GEO repository (Section 2.5, Section
4): the colorectal cancer dataset GSE37182 and the
breast cancer dataset GSE5462. For each dataset, we
learned several DBN models (Sections 2.1–2.2) using
the Bayesian approach and measured, via leave-one-
out cross-validation (CV), how they perform with regard
to predictive accuracy and classification accuracy
(Section 2.3).

For the colorectal cancer dataset, we learned a DBN
with time-varying parameters and compared it with a

Table 1. Cross-validated classification accuracy demonstrated
by DBN-based and standard classification tools

Model Accuracy # genes

BiDAG, different DBN structures 0.85 125
Naive Bayes 0.83 125
Random forest 0.79 125
BiDAG, same DBN structure 0.79 125
DBN-based, Kourou et al. [24] 0.71 39
Various ML approaches Kourou et al. [24] 0.58–0.66 39

DBN assuming parameters that stay constant across all
time slices t > 0. A time-varying DBN can describe the
underlying process with higher precision. However, it can
also lead to overfitting.

Analysis of breast cancer time-series gene
expression data
The GSE5462 dataset contains gene expression measure-
ments for two groups of breast cancer patients: respon-
ders and non-responders to treatment (Section 2.5).
We selected the genes that were either differentially
expressed between responders and non-responders or
differentially expressed in post-treatment compared
with pre-treatment samples (Section 2.6). In addition, we
included all transcription factors of the identified genes
found in the database Omnipath [55].

The best model learned by BiDAG yielded a higher
classification accuracy than naive Bayes and random
forest (Table 2). We further noted that all models in this
work outperformed the highest classification accuracy of
DBN models reported in [24] as well as the ML approaches
that the authors used for comparison.

The lowest MAE was reached for DBNs learning the
same DBN structure for both subgroups (Table 3). This
finding aligns well with the differential gene expres-
sion and pathway enrichment analysis. Since out of 22
283 genes, only 19 were differentially expressed, we can
assume that the GRNs are very similar in responders
and non-responders. However, the highest classification
accuracy of 0.85 was reported for models that learned
DBN structures independently for responders and non-
responders (Table 2).

We chose the MAP model for the downstream analysis
that learned the same DBN structure for responders
and non-responders and blacklisted all non-STRING
interactions. Even though the classification accuracy
of this model was only the second highest, the lower
MAE suggests that it better predicts the changes in post-
treatment gene expression levels and hence is more
appropriate for the analysis of gene expression dynamics.

Pathway enrichment analysis showed that no KEGG
[21] pathway was enriched in the differentially expressed
genes. However, when we assessed the set of all parent
nodes of these genes in the estimated DBN structure
(Supplementary data, Figure S1), three KEGG pathways
(p53 signaling, cellular senescence and cell cycle) were
enriched (FDR < 0.05). Thus, the DBN model connected
genes found to be important for treatment response to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac219#supplementary-data
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Figure 3. Comparison of performance of DBN structure learning algorithms on simulated data. A total of 50 random two-step DBN structures were
generated with n = 120 nodes and three parents on average for each node in the transition structure. The training datasets contained 30 samples from
four consecutive time slices, the test datasets included two samples each. MCMC (blue, R-package BiDAG), hill climbing (HC, red and green, R-package
bnlearn), MMHC (violet, R-package dbnR) and hill climbing applied to discretized data (HC.discr, yellow, R-package bnstruct) were used to learn the DBN
structures and compare them with the ground truth using (A) the TPR and FDR and (B) SHD. The performance of the hill climbing was evaluated for
two limits for the parent set size: maxp = 3 (red) and maxp = 5 (green). Consensus models for MCMC and hill climbing were learned using a range of
posterior thresholds and bootstrap support levels of (0.3, 0.5, 0.7, 0.9, 0.99).

Table 2. Ten DBN models with the lowest cross-validated MAE learned by BiDAG for the breast cancer dataset

Model intra_edges blacklist prior init_trans class_structures MAE

MAP + non-STRING - sharing intra same 0.428
MAP + non-STRING - sharing intra different 0.436
MAP + non-STRING - no sharing different 0.437
consensus + non-STRING - sharing intra same 0.438
consensus - - - sharing intra same 0.438
consensus + non-STRING - sharing intra different 0.44
consensus + - - sharing intra same 0.448
consensus + non-STRING - no sharing different 0.448
MAP + - STRING sharing intra same 0.450
consensus + - STRING sharing intra same 0.452

genes from major cancer-related pathways. Among these
genes, the most connected node was CDK1 (Cyclin Depen-
dent Kinase 1), which is a known target for treating breast
cancer [22]. Interestingly, Cdk inhibitors are already
approved for treating breast cancer as the first-line treat-
ment in combination with letrozole (used in the analyzed
dataset) [47] which confirms the discovered link.

Analysis of colorectal cancer time-series gene
expression data
For the colorectal cancer dataset GSE37182, we per-
formed the DGE analysis at three consecutive time
points, using t = 0 as a reference (Section 2.6). The
number of differentially expressed genes increased
with time. In total, we identified 58 genes that were
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Table 3. Ten DBN models with the lowest cross-validated MAE learned by BiDAG for the colorectal cancer dataset

Model parameters intra_edges blacklist prior class_structures MAE

consensus time-varying - - - different 0.210
MAP time-varying - - - different 0.214
MAP time-varying + - - different 0.221
consensus time-varying - - - same 0.222
MAP time-varying - - - same 0.224
MAP time-varying + - - different 0.226
MAP time-varying + non-STRING - different 0.228
MAP time-varying + - - same 0.230
consensus time-varying + - - different 0.233
MAP time-varying + non-STRING - same 0.233

differentially expressed over all time points in cancer
and tumor biopsies.

We proceeded with the identification of transcription
factors that may be involved in regulating the identified
genes using the Omnipath database. We combined them
with the first set of genes and used their union for
the DBN analysis with BiDAG. We learned multiple DBN
models using various structural and parametric assump-
tions (Sections 2.1–2.2) and performed cross-validation
as described above to select the best model (Section 2.3).

The classification accuracy was 100% for all models
and higher than the accuracy of the best model reported
in [24] (98.5%). The MAE was clearly the lowest for DBNs
assuming time-varying parameters (Table 4) as none of
the 10 best models assumed constant parameters. From
a biological perspective, the time-varying model is also
plausible. First, the time lags between the measurements
were nonuniform. Second, the tissue was left at room
temperature, and the process of degradation likely led to
changes in the strengths of dependencies between genes.
Among the time-varying models, the lowest MAE was
reached for models where intra-edges were prohibited.

Finally, we observed that DBN models that learn struc-
tures for tumor and normal subgroups independently
resulted in the lowest MAE. Consequently, for the down-
stream analysis, we selected a consensus DBN model
which learns structures separately for normal and tumor
samples and blacklists intra-slice edges. Despite being
learned independently, the DBN models for cancer and
normal subgroups shared 60% of edges. Such a high
overlap suggests that a lot of underlying processes in
cancer and normal cells can be described by the same
dependencies between genes.

To highlight the differences and similarities between
the analyzed phenotypic groups, we identified the nodes
with the most different and similar interaction partners
in networks representing tumor and normal subgroups.
There were 18 nodes that had neighborhoods with empty
intersections in two networks. Out of these, three genes
(FOS, JUN, GADD45B) belong to the KEGG colorectal can-
cer pathway. Two genes from this set, namely FOSB and
JUN, were identified and validated as markers for colorec-
tal tumor tissue degradation [40](Figure 4A). Out of 20

nodes with most similar neighborhoods 10 can be found
of a generic transcription pathway (Figure 4B, Supple-
mentary data, Figure S2, [4]).

Discussion
DBNs are powerful models for analyzing time-series gene
expression data because they allow us to shed light on
the GRNs that orchestrate molecular processes. Recently,
a lot of research has focused on learning context-specific
gene networks [23, 27, 42, 51]. In this work, we proposed
a framework for learning DBNs for multiple phenotypic
groups. This framework employs the Bayesian approach
to structure learning of DBNs implemented in the R-
package BiDAG and provides a broad range of modeling
options, including various DBN topologies, constant and
time-varying parameters, the inclusion of priors as well
as Bayesian model averaging. We demonstrated in sim-
ulation studies that BiDAG outperforms other available
tools for DBN structure learning.

We applied the proposed framework to two time-series
gene expression datasets, each comprising data from two
subgroups of samples. The GSE5462 dataset included
gene expression data of breast tumor biopsies taken
before and after treatment with letrozole. Our analysis
suggested that GRNs do not differ substantially between
responders and non-responders. However, the analysis of
the learned DBN structure suggested that differences in
the signaling pathways of the subgroups might lie at the
phosphoproteome level since the kinase CDK1 appeared
to be densely connected to a few genes that were dif-
ferentially expressed between the responders and non-
responders. Even with only a few differences detected
at the gene expression level between the subgroups, the
classification accuracy was higher than reported in the
previous study [24].

For the colon cancer dataset, the best predictive accu-
racy was reached for the model assuming different DBN
structures for tumor and normal samples. This finding
indicates that GRNs differ considerably in normal and
tumor cells and aligns well with experimental results
obtained from the analysis of normal and tumor cell lines

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac219#supplementary-data
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Figure 4. Subnetworks of DBN transition structures discovered for the GSE37182 dataset. Structures of time-varying DBN models without intra-edges
were learned independently for normal and tumor subgroups. The blue edges denote the edges which are specific to the normal model; red edges are
specific to the tumor model. Black edges are present in both models. The solid lines correspond to edges between genes which were found as interactors
in the STRING database. Genes from the colorectal cancer pathway (KEGG) are highlighted in orange. (A) Most differently connected genes (FOSB, JUN,
FOS, GADD45B) in DBN transition structures of cancer and normal DBN models that are either enriched in the colorectal cancer signaling pathway or
were previously validated as biomarkers of cancer and their parents in the learned DBN models. (B) Most similarly connected genes, which were also
found on the generic transcription pathway [4] (highlighted in green).

in [23]. At the same time, in our analysis, the DBN struc-
tures for normal and cancer groups overlapped by 60%.
This finding corresponds to the common understand-
ing that many housekeeping pathways work similarly in
tumor and healthy cells. The biggest differences between
networks were identified in the neighborhoods of genes
from the colorectal cancer pathway as well as genes that
were previously validated as markers stratifying cancer
and normal tissue [40].

In both analyzed datasets, the range of modeling
options available with BiDAG helped to learn the models
with the highest predictive accuracy. Models with time-
varying parameters demonstrated the best results for
the colon cancer dataset, and the presence of intra-
edges resulted in the highest predictive accuracy for
the breast cancer data. No other DBN tool includes
both of these options. In the case of the colon cancer
dataset, the consensus model resulted in the lowest
MAE, demonstrating the advantage of the Bayesian
approach.

Despite clear advantages, this work has some limita-
tions. BiDAG requires longer runtimes than other meth-
ods for structure learning and much longer runtimes
than standard classification methods. However, BiDAG is
still feasible for relatively large networks and longer run-
times are compensated with better performance. Specific
model choices, namely the assumption of normal dis-
tributions of the random variables and linearity of the
dependencies of their means, may also be considered as a
limitation of the model. However, BiDAG also implements
the BDe score for categorical variables and it allows users
to define their own scoring functions. Hence the model
can be extended to other distributions.

Key Points

• The proposed strategy for learning GRNs of multiple
phenotypic groups unifies the efficient method of DBN
structure learning and the versatile approach to model
selection, enabling the discovery of models with high
predictive and classification accuracy.

• The efficient Bayesian approach to structure learning is
better equipped to prevent overfitting than greedy hill
climbing coupled with other conventional techniques.

• Application of the proposed method to the real transcrip-
tomic data revealed differences and similarities between
the regulatory networks of cancer and normal cells that
aligned well with previous findings and can be used to
facilitate the discovery of targeted therapies.
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