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1  | INTRODUC TION

Epstein-Barr virus asymptomatically infects more than 95% of 
healthy adults worldwide. However, EBV is also an oncogenic her-
pesvirus associated with various neoplastic diseases, such as lymph-
oproliferative diseases in immunocompromised patients, various 
lymphomas and epithelial cancers.1,2 EBV-associated malignancies 
show a highly unusual geographic distribution in the world.3 The 
biased distribution of EBV-associated diseases is, at least partially, 
explained by differences in the host (human) genetic background, 
environmental factors (climate, prevalence of malaria) and dietary 
habits.

The development of high-throughput sequencing technologies 
enabled sequencing of EBV genomes derived from a wide vari-
ety of clinical samples, such as tumor biopsy samples and saliva.4 
The sequencing results have raised the hypothesis that certain 

EBV-associated diseases are caused by specific EBV strains. Several 
review articles have focused on EBV strain variation in relation to 
diseases.5-9 Here, we summarize the current knowledge of EBV 
strain variation and its relationship with cancer.

2  | EBV STR AIN VARIATION: GEOGR APHIC  
OR DISE A SE-SPECIFIC?

African Burkitt lymphoma, from which EBV was originally isolated,10 
is most common in equatorial Africa and designated as “endemic 
Burkitt lymphoma” (Figure 1). Endemic Burkitt lymphomas are 
nearly 100% EBV-positive,11 whereas many Burkitt lymphomas in 
non-endemic areas are EBV-negative.3 Epidemiological and sero-
logical studies indicate that EBV infection has a causal relationship 
with endemic Burkitt lymphoma. Endemic Burkitt lymphomas are 
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Epstein-Barr virus (EBV) is a human tumor virus and is etiologically linked to various 
malignancies. Certain EBV-associated diseases, such as Burkitt lymphomas and naso-
pharyngeal carcinomas, are endemic and exhibit biased geographic distribution 
worldwide. Recent advances in deep sequencing technology enabled high-throughput 
sequencing of the EBV genome from clinical samples. Rapid cloning and sequencing 
of cancer-derived EBV genomes, followed by reconstitution of infectious virus, have 
also become possible. These developments have revealed that various EBV strains 
are differentially distributed throughout the world, and that the behavior of cancer-
derived EBV strains is different from that of the prototype EBV strain of non-
cancerous origin. In this review, we summarize recent progress and future perspectives 
regarding the association between EBV strain variation and cancer.
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invariably associated with an immunosuppressed state caused by 
chronic malaria infection.11 Thus, endemic Burkitt lymphomas are 
most likely caused by environmental factors.

Nasopharyngeal carcinoma is an EBV-associated epithelial carci-
noma, and is common in South China and Southeast Asia (Figure 1).12 
More than 97% of NPC are EBV-positive,13 and the tight link be-
tween NPC and EBV is observed worldwide.3 Several predisposing 
factors have been postulated, including host immune-related genes 
such as human leukocyte antigens,14 and environmental factors such 
as dietary habits (i.e. eating salted fish).15 In addition, genetic and 
epigenetic aberrations of host cells drive NPC development and pro-
gression.16 On the other hand, it has long been known that distinct 
EBV strains are predominant in areas with a high incidence of NPC.17 
This suggests that EBV strain variation contributes to the endemic 
nature of NPC.

Another EBV-associated disease with a distinct geographic 
distribution pattern is EBV-associated T/NK lymphoma. Although 
T/NK lymphoma is a rare disease, it occurs with relatively high 
frequency in East Asia including Japan and Korea,18,19 where the 
incidence of NPC is relatively low. Thus, NPC endemic areas do 
not coincide with areas of relatively high incidence of T/NK lym-
phomas, although it is possible that they substantially overlap. 
The reason why EBV is associated with different malignancies in 
different areas within Asian countries is not clear. One possible 
explanation is differences in host genetic backgrounds; however, 
another explanation is differences in EBV strains that colonize dif-
ferent areas in Asia.

Another malignancy causally associated with EBV infection is 
EBVaGC.20 EBVaGC account for approximately 9% of all gastric can-
cers,13 and show no biased geographic distribution. The EBV infec-
tion causes CpG island methylation of host chromosomes and EBV 
genome DNA methylation as well.21 Chromosomal CpG methylation 
may trigger epithelial carcinogenesis through silencing of tumor 

suppressor genes.21,22 There is a possibility that EBVaGC are caused 
by oncogenic variants of EBV, which are functionally distinct from 
those derived from lymphoid cells.

3  | EBV GENOME STRUC TURE AND 
SEQUENCING

3.1 | EBV genome

Epstein-Barr virus has a linear dsDNA genome of approximately 175 kb 
(Figure 2), which is circularized in latently infected cells. The prototypi-
cal strain B95-8 was the first complete EBV genome sequenced using a 
conventional strategy (i.e. subcloning followed by Sanger sequencing) 
(GenBank accession no. X01555.2).23 Subsequently, the sequence of 
a putative “wild-type” EBV strain was artificially created by repairing 
the 12-kb defect of the B95-8 strain (Figure 2)24 with the correspond-
ing sequence of the Raji strain EBV25 (EBV-wt,26 GenBank accession 
no. NC_007605.1). The EBV genome encodes more than 80 ORF, sev-
eral non-coding RNA (EBER1 and EBER2),1 and 44 mature miRNA.27

Viral genes that are specifically expressed in latently infected 
cells are called “EBV latent genes”.28 Among latent gene products, 
four EBNA (EBNA1, EBNA2, EBNA3A and EBNA3C) and LMP1 are 
essential for B-cell transformation.1 Viral genes that are specifically 
expressed during the productive replication cycle are called “EBV 
lytic genes” (Figure 2). Lytic genes encode viral transcription factors 
(e.g. BZLF1), a viral DNA polymerase (BALF5) and associated factors, 
and viral glycoproteins (e.g. gp350/220 and gp110) and structural 
proteins (capsid and tegument proteins) (Figure 2).

The EBV genome has various repetitive sequences scattered 
throughout the viral genome, such as within the coding regions of 
viral latent proteins or near the viral replication origins (Figure 2).1 
Short-read deep sequencing cannot determine the sequences of 
these repetitive regions (see below).

F I G U R E   1 Epstein-Barr virus (EBV) association frequencies of nasopharyngeal carcinomas (NPC) and Burkitt lymphomas are presented 
for different geographic areas. The sizes of the circles roughly represent the disease incidence relative to that in other geographic regions. 
Adapted from Chang et al3 and Cohen et al.13 Blue means EBV-positive. Burkitt lym, Burkitt lymphoma
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3.2 | A new era of sequencing: The hybrid 
capture approach

A new experimental strategy that was recently developed to enable 
high-throughput EBV sequencing29,30 uses a hybrid capture protocol 

analogous to human exome sequencing to enrich viral DNA se-
quences (Figure 3). In this method, overlapping 120-mer biotinylated 
RNA baits, designed by tiling across the EBV reference genome, are 
used for viral DNA enrichment,29 followed by short-read sequencing 
(such as Illumina HiSeq) and de novo sequence assembly.

F I G U R E   2 Schematic illustration of the Epstein-Barr virus (EBV) genome and viral gene products. A linear EBV genome, viral genes, 
non-coding RNA (EBV-encoded RNA [EBER] and BART), and viral microRNA genes (miR-BHRF1 and miR-BART) are illustrated. The BamHI 
restriction map is based on the sequence of the SNU-719 strain of EBV.46 The scale of DNA sizes is at the top. EBV latent gene products and 
lytic gene products (selected, green) are illustrated below. Repetitive sequences are shaded in purple. Viral gene promoters are indicated 
with arrows. Details of mRNA splicing are not faithfully represented. EBNA, EBV nuclear antigen; FR, family of repeats; IR, internal repeats; 
LMP, latent membrane protein; TR, terminal repeats
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F I G U R E   3 Experimental strategies to 
sequence whole Epstein-Barr virus (EBV) 
genomes. (Left) For the hybrid capture-
mediated sequencing, the prepared DNA, 
consisting of host cell DNA (black) and 
viral DNA (red), were fragmented and 
hybridized with biotin (green)-labeled 
RNA probes spanning the EBV genome. 
Captured EBV DNA were then subjected 
to deep sequencing using a short-read 
sequencer. (Right) For EBV-bacterial 
artificial chromosome (BAC) cloning, a 
linear targeting vector was transfected 
into EBV latently infected cells to obtain 
homologous recombinants. Alternatively, 
a circular donor plasmid and a CRISPR/
Cas9 plasmid were co-transfected into 
the cells to increase the homologous 
recombination efficiency.46,47 Episomal 
DNA were prepared and used to 
transform bacterial cells and obtain EBV-
BAC clones
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This new technology marks a new era of EBV genome sequenc-
ing. Until 2013, EBV whole genome sequences available from GenBank 
were limited to less than 10 strains (B95-8, EBV-wt, GD1,31 AG876,32 
GD2,33 HKNPC1,34 and Akata and Mutu35) (Figure 4). The number 
dramatically increased after 2014, when the hybrid capture method 
was developed. The method was applied to readily determine eight 
EBV strains derived from NPC biopsy specimens.30 The same experi-
mental strategy was used by the group of Farrell and colleagues to se-
quence 71 EBV strains derived from various areas of the world.36 The 
sequenced materials include various EBV disease-derived cell lines, 
spontaneously arising LCL, NPC tumor and biopsy samples, and saliva. 
Many of the Asian strains in the dataset were from Southern China, an 
NPC endemic area, and a few were from Japan and South Korea. This 
analysis clearly separated Asian EBV strains from those derived from 
the rest of the world.

The number of available EBV sequences is increasing exponentially 
(Figure 4), and approximately 200 EBV genomes have been sequenced 
by the group of Farrell and colleagues.36,37 Eighteen additional EBV 
strains derived from NPC biopsy specimens38 and nine EBV strains 
derived from biopsy specimens of Chinese EBVaGC patients39 were 
sequenced by other groups.

One drawback of the hybrid capture approach is that repet-
itive sequences (Figure 2) cannot be determined because the 
method uses short-read sequencers.36 Most of the repetitive re-
gions therefore remain to be sequenced. Another drawback is that 
sequence assembly becomes difficult when multiple EBV strains 
are present in the material, which is often the case in the saliva 
of healthy individuals40,41 and that of infectious mononucleosis 
patients.42

3.3 | Cloning of the EBV genome and sequencing

To circumvent the problems associated with the hybrid capture 
method, the DNA of each EBV genome can be cloned prior to se-
quencing. Cloning of EBV genomes can be achieved by inserting a 
BAC vector sequence into EBV episomes in EBV latently infected 
cells through homologous recombination (Figure 3). The experimen-
tal strategy was pioneered by the group of Hammerschmidt and col-
leagues43 using the prototype B95-8 strain as the starting material, 
followed by BAC cloning of the Japanese Burkitt lymphoma-derived 
Akata strain by our group.44 The experimental strategy was recently 
applied to the Chinese NPC-derived EBV M81 strain,45 which had 
not been sequenced previously. The obtained M81 EBV-BAC was 
sequenced using a short-read sequencer and Sanger sequencing-
mediated gap filling. Phylogenetic analysis indicated that M81 is 
closely related to other NPC strains (GD2 and HKNPC1), whereas it 
is distant from other strains (B95-8 and Mutu).45

We recently improved the EBV-BAC cloning efficiency using 
CRISPR/Cas9-mediated genome editing technology to introduce 
a single cut at the transgene insertion site and stimulate homolo-
gous recombination (Figure 3).46,47 A long-read sequencer (PacBio 
Menlo Park, CA, USA) was then used to obtain “complete” EBV 
genome sequences, including the repetitive regions, of two gas-
tric cancer-derived EBV strains (SNU-719 and YCCEL1). Sequence 
comparison of SNU-719 and YCCEL1 indicates that, although they 
are not identical, they belong to the same group of Asian type 
EBV.

Currently, EBV-BAC cloning can only be applied to es-
tablished EBV-positive cell lines. In addition, converting the 

F I G U R E   4 Epstein-Barr virus (EBV) 
sequencing milestones and the recent 
explosive increase in EBV whole genome 
sequences. Green dots indicate EBV 
strains whose sequences were completely 
determined, whereas gray circles indicate 
those in which genome sequences were 
determined except for the repetitive 
regions. Red squares indicate EBV strains 
that were cloned as bacterial artificial 
chromosome (BAC) clones and completely 
sequenced. GC, gastric cancer. References 
(Ref.) are indicated. NPC, nasopharyngeal 
carcinomas
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strategy into a high-throughput method is difficult. However, 
one advantage of EBV-BAC cloning is that it can be used to 
clone multiple strains that coexist in a single specimen. In addi-
tion, purified EBV-BAC clone DNA can be used to reconstitute 
infectious viruses and examine their phenotypes (Figure 3, see 
below).

4  | EBV GENOME HETEROGENEIT Y

4.1 | Overview of viral genome heterogeneity

A methodology formerly used to detect EBV strain variation is de-
tection of restriction fragment length polymorphisms by means of 
Southern blot.17,40 Sanger sequencing of specific viral genes (e.g. 
LMP1, EBNA1, BZLF1) was later used to detect sequence diversity. 
Genome-wide analysis is becoming possible based on the results of 
high-throughput sequencing.

The first major EBV variants identified were type 1 (type A) and 
type 2 (type B).1 Type 1 EBV (e.g. B95-8, GD1 and Akata) is the main 
EBV strain prevalent worldwide; type 2 EBV (e.g. AG876 and P3HR-
1) is as abundant as type 1 EBV in sub-Saharan Africa. Type 1 and 
type 2 EBV encode different EBNA2 genes, with only 54% amino 
acid sequence identity.48 A recent whole genome sequencing study 
confirmed that EBNA2 and EBNA3 are the only genes that can distin-
guish type 1 and type 2 EBV strains.36

Various SNP are identified in viral latent and lytic genes. EBV 
latent genes are more heterogeneous than viral lytic genes.36,49 
Although relatively little attention has been paid to the heterogene-
ity of viral lytic genes, it is becoming clear that they play significant 
roles in EBV-mediated tumorigenesis.

Relatively large deletions within the EBV genome have also been 
detected in B95-8 strain24 and in several Burkitt lymphoma-derived 
strains.50

In the following sections, we summarize recent findings of viral 
genome heterogeneity related to cancer.

4.2 | Viral latent gene heterogeneity and deletions 
in cancer

The essential roles of viral latent proteins in EBV-mediated transforma-
tion have prompted an extensive analysis of latent gene heterogeneity, 
especially that of LMP1.5-9 LMP1 genes are classified into six patterns, 
namely China 1, China 2, Alaskan, Mediterranean, NC (North Carolina) 
and B95-8.51 The functional differences between the LMP1 of epithe-
lial cancer-derived EBV (CAO-LMP1, belonging to China 1 type) and 
lymphoid-derived EBV (B95-8 type) are well-characterized.52 NPC-
derived CAO-LMP1 is less cytostatic than B95-8 LMP1 (Figure 5).53 
Such functional difference is attributed to amino acid differences in 
the transmembrane domain of LMP1, and is not related to the 30-bp 
deletion in the carboxy-terminal cytoplasmic domain.53 Functional dif-
ferences in LMP1 most likely contribute to differences in viral pheno-
types, although this remains to be experimentally verified.

It was previously demonstrated that EBNA3B acts as a tumor 
suppressor (Figure 5).54 Recombinant EBV lacking the EBNA3B gene 
shows higher B-cell-transforming ability than the wild type, and 
EBV-transformed B cells lacking the EBNA3B gene expand more rap-
idly in mice than those having the EBNA3B gene. EBNA3B mutations 
were detected in various EBV-positive human lymphoma samples,54 
suggesting that EBV strains with EBNA3B gene mutations are se-
lected in these tumors.

Deletion of the EBNA2 gene is commonly found in Burkitt 
lymphoma-derived cell lines, such as P3HR-1 and Daudi (Figure 5).50 
The EBV genome lacking the EBNA2 gene shows a specific latent 
gene expression pattern55 characterized by the expression of BHRF1 
(a viral counterpart of cellular blc-2), which confers anti-apoptotic 
activity to Burkitt lymphoma cells (Figure 5). This suggests that the 
EBV genome with deletion of the EBNA2 gene is selected to confer 
growth advantages during Burkitt lymphomagenesis.

Another well-characterized EBV alteration is the region deleted 
in the B95-8 strain (Figure 5). The B95-8 deletion removes most 
of the BART miRNA sequences and one lytic origin of replication 

F I G U R E   5 Summary of Epstein-Barr virus (EBV) gene heterogeneity possibly affecting EBV-mediated carcinogenesis. References (Ref.) 
are indicated. EBER, EBV-encoded RNA; EBNA, EBV nuclear antigen; FR, family of repeats; IR, internal repeats; LMP1, latent membrane 
protein 1; SNP, single nucleotide polymorphism; TR, terminal repeats
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(Figure 2). Although this deletion is apparently dispensable for 
EBV-mediated B-cell transformation, it may affect EBV-mediated 
epithelial carcinogenesis, as BART miRNA are highly expressed in 
EBV-positive NPC and EBVaGC.56 A pair of recombinant viruses 
with and without BART miRNA regions was used to identify NDRG1 
(N-myc downstream-regulated gene 1), an epithelial cell-specific me-
tastasis suppressor, as a possible target of BART miRNA.57 Another 
study demonstrated that BART miRNA of M81 strain EBV play 
multiple roles following infection of primary B lymphocytes, such 
as suppression of lytic replication and suppression of tumor growth 
in mice.58 However, because of the lack of an appropriate infection 
system for epithelial cells, the behavior of the M81 virus during epi-
thelial cell infection remains to be clarified.

A recent case-control study compared EBV sequences isolated 
from saliva (of 142 population carriers) with those isolated from 
primary NPC biopsy samples (62 patients).42 Cluster analysis iden-
tified five subgroups (type 1 A-C and type 2 A-B) in population 
carriers, and type 1A and 1B were predominant in NPC patients. A 
genome-wide association study identified a panel of NPC-associated 
SNP and insertion/deletions. The most significant polymorphism is 
a 4-base deletion polymorphism downstream of the EBER2 gene 
(Figure 5). The result may be related to previous findings that EBER2, 
but not EBER1, contributes to the efficiency of EBV-mediated 
transformation.59

4.3 | Viral lytic gene heterogeneity in cancer

Research interest has focused on a viral BZLF1 gene, a master regula-
tor of viral lytic replication.1 BZLF1 is highly polymorphic both for its 
coding sequence and promoter region.7,60

When the NPC-derived M81 strain was reconstituted and used 
to immortalize B lymphocytes, M81 EBV spontaneously replicated 
at unusually high levels in established LCL.45 This is consistent with 
the observation that NPC patients have unusually high antibody ti-
ters against EBV lytic proteins.2 The propensity to enter lytic infec-
tion is believed to enhance the malignant potential in animal models 
of lymphomagenesis.61 A recent study further demonstrated that 
sequence variation of the BZLF1 promoter region of M81 EBV con-
tributes to the property to enter the lytic cycle.60

The M81 virus and other epithelial cancer-derived EBV strains 
show high propensities to infect epithelial cells.45,62 Epitheliotropism 
is apparently advantageous for the virus to increase the chance to 
infect the nasopharyngeal epithelium. The viral gB protein (gp110) 
of the M81 strain is at least partly responsible for the enhanced tro-
pism toward epithelial cells (Figure 5).45

4.4 | Other heterogeneities possibly affecting 
carcinogenesis

Subtle variations of repetitive sequences, such as those of FR63 and 
IR1,64 can significantly affect viral phenotypes. The IR1 heterogene-
ity generates a modestly defective EBNA-LP and has a detrimental 
impact on B-cell transforming ability (Figure 5).64

Sequence variations of EBV genes also result in amino acid epi-
tope exchanges, which should have a significant impact on EBV-
specific T-cell immunity.65 EBV latency-associated gene products, 
especially EBNA3, are targets of immune recognition during per-
sistent infection. A higher frequency of SNP and a higher ratio of non-
synonymous amino acid changes in latency-associated genes suggest 
that these genes are evolving under positive selection to escape host 
immunity (Figure 5).36 Sequence polymorphisms of LMP2A, an EBV-
encoded B-cell receptor mimic, have been detected in clinical isolates 
from various diseases, but their pathogenetic roles remain unclear.6

5  | CONCLUDING REMARKS

Numerous efforts have been made to determine whether cancer-
specific EBV variants exist. However, no definitive answers have 
been obtained to date. In the case of HPV, HPV 16 and 18 are well-
characterized as high-risk HPV.66 The EBV genome (175 kb) is more 
than 20-fold larger than that of HPV (~8000 bp) and encodes approxi-
mately 10-fold more ORF. The identification of high-risk EBV is diffi-
cult because multiple viral gene heterogeneities likely cooperate in the 
acquisition of oncogenic potential. In addition, there is no experimental 
system to investigate phenotypic changes caused by heterogeneities.

Nasopharyngeal carcinomas researchers started conducting case-
control studies to identify high-risk EBV that are tightly associated with 
NPC. Future studies should focus on verifying the biological significance 
of EBV sequence variations. It is now possible to establish new EBV-
positive NPC cell lines directly from patient NPC tissues.67 CRISPR/
Cas9-mediated rapid cloning method46,47 can then be applied to the cell 
lines. EBV strain variation in EBVaGC is also being investigated,39 and 
EBV-associated T/NK lymphomas should be a future target.

Knowledge about EBV strain variation is important for clinical 
applications. The identification of high-risk groups of people who 
are predisposed to NPC should have significant impact on the early 
diagnosis of NPC. In addition, this knowledge is important for devel-
oping EBV vaccines and anti-EBV T-cell therapy to prevent the at-
tenuation of antiviral T-cell immunity caused by viral strain variation.
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NOTE

After this review was submitted, a paper was published online, high-
lighting a pathogenic link between intragenic EBV deletions and EBV-
associated neoplastic disorders, including T/NK lymphomas. (Okuno 
Y, Murata T, Sato Y, et al. Defective Epstein-Barr virus in chronic 
active infection and haematological malignancy. Nat Microbiol. 2019. 
https://doi.org/10.1038/s41564-018-0334-0).
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