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ABSTRACT

Motivation: Leveraging gene expression data through large-scale in-

tegrative analyses for multicellular organisms is challenging because

most samples are not fully annotated to their tissue/cell-type of origin.

A computational method to classify samples using their entire gene

expression profiles is needed. Such a method must be applicable

across thousands of independent studies, hundreds of gene expres-

sion technologies and hundreds of diverse human tissues and

cell-types.

Results: We present Unveiling RNA Sample Annotation (URSA) that

leverages the complex tissue/cell-type relationships and simultan-

eously estimates the probabilities associated with hundreds of tis-

sues/cell-types for any given gene expression profile. URSA

provides accurate and intuitive probability values for expression

profiles across independent studies and outperforms other methods,

irrespective of data preprocessing techniques. Moreover, without

re-training, URSA can be used to classify samples from diverse micro-

array platforms and even from next-generation sequencing technol-

ogy. Finally, we provide a molecular interpretation for the tissue and

cell-type models as the biological basis for URSA’s classifications.

Availability and implementation: An interactive web interface for

using URSA for gene expression analysis is available at: ursa.prince

ton.edu. The source code is available at https://bitbucket.org/youngl/

ursa_backend.

Contact: ogt@cs.princeton.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Genome-scale expression profiling is an invaluable technique for
quantifying gene-level activity under different experimental con-

ditions. For more than a decade, researchers and clinicians have

submitted their experimental data to public repositories such as

NCBI’s Gene Expression Omnibus (GEO) (Barrett et al., 2011)

and EBI’s ArrayExpress (Rustici et al., 2013). These repositories
now include almost half a million human expression profiles

from multiple laboratories and hospitals–only to further grow

with the advent of next-generation sequencing technologies.

Large but independent microarray datasets have been used to

discover tissue-specific patterns (Lukk et al., 2010; Shyamsundar

et al., 2005), establish breast cancer subtypes (Cancer Genome

Atlas, 2012; Curtis et al., 2012) and delineate the transcriptome

response to candidate drugs (Heiser et al., 2012; Lamb et al.,
2006). Previous integrative studies have leveraged these inde-

pendent datasets and have developed methods based on correl-
ation (Hibbs et al., 2007), differential expression (Engreitz et al.,

2011), supervised learning (Greene and Troyanskaya, 2011) and

data integration (Wong et al., 2012). However, directly dealing
with multicellularity is paramount for precisely defining human

homeostasis, disease manifestation and pharmacokinetics/
pharmacodynamics. To some effect, few studies have focused

on certain sample characteristics such as disease or phenotype

(Huang et al., 2010; Schmid et al., 2012). Yet, to take full ad-
vantage of the entire compendia in all the above contexts, we

must explicitly uncover tissue/cell-type-specific signals in
genome-wide expression data.

The current exponential rate of data submission nevertheless
makes manual annotation impractical, leaving a curated anno-

tation index for only a small fraction of samples (Supplementary

Fig. S1). Text-mining sample descriptions are often unreliable
due to the lack of standardized nomenclature and structured

descriptive information (Krallinger et al., 2010). Furthermore,
textual information may not reflect the potential specificity and

heterogeneity that are concealed in the molecular-level expres-

sion measurements of these samples. Therefore, we need a scal-
able and robust computational method to discover the tissue/

cell-type signals in each gene expression profile deposited in
these large heterogeneous data compendia.

In practice, tissue/cell-type annotation of gene expression pro-
files relies on the expression of known biomarker genes.

Although pervasive, this approach is limited by the number of

sufficient (or often any) known discriminative expression bio-
markers and ignores potential specific signals in the entire tran-

scriptome. Machine learning methods that model genome-wide
expression have emerged as promising alternatives (Li et al.,

2004), but so far have only been applied in the context of clas-

sifying tumor subtypes (e.g. ALL versus AML) in single datasets
(Juric et al., 2005; Ramaswamy et al., 2001; Tibshirani et al.,

2002). Applying such methods across a large collection of data-
sets is impeded by the dataset, platform and technology biases

(Leek et al., 2010; Rung and Brazma, 2013). The only successful

attempt at addressing dataset biases is a nearest -neighbor (NN)
classification method based on the barcode algorithm (McCall

et al., 2011; Zilliox and Irizarry, 2007).
The task of indexing these large heterogeneous data collections

by tissues/cell-types presents substantial challenges. First, a*To whom correspondence should be addressed.
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successful method for this task should be able to classify the

variety of human tissues/cell-types, not just the better-studied

large tissue classes. For example, classifying blood from brain is

a relatively easy problem, but discriminating among different

subtypes of blood is a much harder one. Second, the method

should maintain consistency with the developmental and ana-

tomical relationships between these tissues and cell-types.

Third, the method must be robust across independent datasets

to overcome study/laboratory biases. Finally, with emerging pro-

filing technologies, the method should be readily applicable to

novel platforms/technologies. No existing approach, to our

knowledge, addresses all these challenges.

Here, we present a computational algorithm Unveiling RNA

Sample Annotation (URSA) that is the first to leverage the

relationships between tissues and cell-types (based on a tissue

ontology) and accurately identifies specific tissue/cell-type signals

present in a given gene expression profile. URSA constructs in-

dividual tissue/cell-type classifiers based on ontology-aware

sample labels and uses Bayesian Network Correction (BNC)

(Barutcuoglu et al., 2006) to integrate these individual classifiers.
We demonstrate that URSA substantially outperforms barcode-

based NN classification (the only prior approach to this prob-
lem) (Zilliox and Irizarry, 2007), as well as independent classifiers

that do not use the tissue ontology. Furthermore, although
URSA is trained on data from the single most popular micro-
array platform, it is able to make tissue/cell-type predictions

(without re-training) for samples measured by other microarray
platforms and even by next-generation RNA sequencing.

In the process of classification, our approach learns tissue/cell-
type signals without the use of any tissue-specific gene database

such as the human protein reference database (Prasad et al.,
2009). Thus, by examining the biological pathways enriched

among the feature-weights in each tissue/cell-type classifier, we
are able to provide a molecular-level interpretation of URSA’s

predictions.

2 METHODS

We setup the tissue/cell-type signal classification problem as a hierarch-

ical multilabel classification problem. From a curated collection of sam-

ples, we first label samples into positives and negatives based on the tissue

ontology to train an individual classifier for each tissue/cell-type. We then

aggregate these individual classifiers (in a Bayesian framework) based on

their ontological relationships (Fig. 1a and Supplementary Fig. S2)

(Gremse et al., 2011). Each individual classifier identifies indicative fea-

tures (i.e. genes) for that tissue or cell-type, and the Bayesian network

models the probabilistic relationship between classifiers to refine those

individual predictions. We have previously demonstrated that such BNC

improves classification accuracy in other settings, including gene function

prediction and geometric shape classification (Barutcuoglu and DeCoro,

2006; Barutcuoglu et al., 2006; Guan et al., 2008; Park et al., 2010).

URSA uses the BNC approach to tackle the challenges in tissue and

cell-type prediction: limited gold standards for many general (e.g. leuko-

cyte) and specific (e.g. T-cell acute lymphoblastic leukemia cell and

monocyte-derived dendritic cell) tissues/cell-types, and heterogeneity

and diversity in large expression compendia.

2.1 Gold standard generation by manual sample

annotation

A set of high-quality tissue and cell-type annotations is needed for train-

ing accurate classifiers within the URSA framework. To this end, we

manually annotated the cell-type(s) of414 000 microarray experiments

ranging over 500 GEO series/datasets from the hgu133plus2 platform.

These annotations are based on the sample descriptions and other textual

information available in GEO as well as the associated publications.

Tissue and cell-type terms in the BRENDA Tissue Ontology (BTO)

were used as the controlled vocabulary for sample annotation (Gremse

et al., 2011). Detailed description of the manual sample annotation pro-

cess is provided in the Supplementary Information. In our manual anno-

tations, 71 tissue/cell-type terms were represented by at least 3 GEO series

and 95 terms were represented in at least 2 GEO series. We excluded the

term connective tissue from the ontology because it had many children

terms, and thus appeared unresolved.

With an ontology of tissues, these manually curated annotations can

be hierarchically propagated: e.g.monocyte samples can also annotated to

leukocyte and blood (Fig. 1a and Supplementary Fig. S2). The minimal

subgraph (i.e. directed acyclic graph) that is rooted at the whole body term

and includes all cell-type terms covered in our manual annotations was

identified, and our manual annotations for 95 tissues/cell-types were then

propagated up to their ancestors based on the tissue ontology, hence

providing examples for over 244 different tissue/cell-type terms.

Fig. 1. Leveraging the complex relationship between tissues and cell-

types. (a) A small sub-tree of the BTO. The full hematopoietic system

sub-ontology is shown in Supplementary Figure S2. This complexity has

yet been incorporated in tissue and cell-type-specific studies. (b) Our ag-

gregation method uses this ontological structure to model the potential

dependencies between individual cell-type models. The double circles in-

dicate the noisy individual model predictions ŷi, and the single circles

indicate the latent calibrated predictions yi
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2.2 Expression data preparation

The Supplementary raw CEL files of gene expression samples were down-

loaded from GEO, and their probes were mapped to Entrez GeneIDs

using the BrainArray Custom CDF (Barrett et al., 2011; Dai et al., 2005).

To compare methods across different preprocessing techniques, expres-

sion data were processed using each of the three alternative preprocessing

algorithms: MAS5.0, fRMA and Barcode (Hubbell et al., 2002; McCall

et al., 2010, 2011). Default parameters and subroutines were used for each

preprocessing approach. Additionally, the absolute expression values

from the standard MAS5.0 were log transformed. As our method aims

at classifying single expression profiles, series-based preprocessing tech-

niques (i.e. RMA) were excluded from our study (Irizarry et al., 2003).

The Illumina Human Bodymap 2.0 RNA-seq data (GSE30611) was

downloaded from GEO and mapped to NCBI’s transcript reference

using the Bowtie and Tophat alignment algorithms with default param-

eters (Langmead et al., 2009; Trapnell et al., 2009). For tissue/cell-type

prediction, FPKM transcript expression values were given as input to our

hgu133plus2-trained method. Data transformation and significance test

for RNA-seq (and cross platform) experiments are explained later in this

section.

2.3 Individual tissue and cell-type classifiers

Labeling positive and negative samples correctly is essential for any ac-

curate classifier. Conventional multilabel classification assumes that all

labels are mutually exclusive. For example in our study, macrophage

samples would be considered negative examples when classifying for

leukocytes, ignoring the fact that macrophages are merely a specific type

of leukocytes (Fig. 1b). Using the tissue ontology, we thus reconsider the

positive and negative samples for each individual tissue and cell-type

classifier. For a given tissue term, samples annotated directly to that

term or any of its descendant terms (i.e. cell-types) are now considered

positive; samples annotated to only its ancestor terms are excluded from

training; and the remaining samples annotated to other term in the ontol-

ogy—including sibling terms—are considered negative. Now, macrophage

samples would be considered positive examples for the leukocyte classi-

fier. This re-labeling is based on the very design of the tissue ontology,

and consequently expands the number of positive examples and removes

ambiguous examples.

Each individual tissue or cell-type is first classified using an independ-

ent one-versus-all support vector machine (SVM) classifier using the

ontology-aware training standard. SVM maximizes the margin between

positive (i.e. yi¼ 1) and negative (i.e. yi¼�1) examples and finds a linear

decision boundary without any assumptions of the probability distribu-

tions (Burges, 1998). Given l pairs (i.e. samples) of expression data xi and

its label yi, we use the L2 linear SVM (with the default cost parameter)

implemented in the LIBLINEAR software (Fan et al., 2012):

min
w

1

2
wTwþ C

Xl

i¼1
max 1� yiw

Txi,0
� �2

where C40 is the cost parameter, and w the linear decision boundary (i.e.

feature weight vector). Bayesian correction (explained later in text) is

trained and applied using the SVM outputs ŷ1, . . . , ŷN of these N cell-

type-specific models.

2.4 Bayesian network correction

We use the structure of the tissue ontology as a framework of the

Bayesian network (Fig. 1 and Supplementary Fig. S2). We model each

term’s SVM output as a random event ŷi and treat it as a noisy obser-

vation of a latent binary event yi representing the true label (i.e. cell-type)

of a given sample (Fig. 1b). The edges from y to ŷ impose the independ-

ence of the noisy random variable ŷi to all other noisy variables ŷj (i 6¼ j)

given its true label yi. This allows us to calculate the likelihood:

Pðŷ1, ::: ,ŷN jy1, ::: ,yN Þ ¼
YN

i¼1
P ŷijyið Þ

The distribution of positive and negative unthresholded SVM outputs

varies across different terms (i.e. cell-types), and so the output values were

dynamically binned based on the number of positive examples and their

range. These empirical distributions represent the conditional probabil-

ities P(ŷi j yi¼ 0) and P(ŷi j yi¼ 1). The conditional probability table for

each term was estimated based on a 2-fold cross-validation that never

split datasets between folds to mitigate potential batch effects. Laplace

smoothing was applied for robustness.

The parent–child conditional probability tables were defined as in the

original Bayesian correction method (Barutcuoglu et al., 2006).

Intuitively, constant priors of 0.5 were assigned to leaf nodes, and the

whole-body root node was assigned a probability of 1. This root assign-

ment allows potential dependencies between every latent variable. This

allows us to calculate the prior:

P y1, ::: ,yNð Þ ¼
YN

i¼0
P yijch yið Þð Þ

where ch(yi) is child labels of yi.

Finally, we infer the posterior probabilities P(yijŷ1, . . . , ŷN) for each

term i using the Lauritzen algorithm as implemented in the SMILE li-

brary (Druzdzel, 1999; Lauritzen and Wermuth, 1989). These posterior

probabilities for each term (i.e. cell-type) are the estimated probabilities

that our method uses to annotate gene expression samples.

2.5 Method training and testing

Genomic experiments are known to suffer from potential laboratory and

dataset biases (Leek et al., 2010; Zilliox and Irizarry, 2007). Not control-

ling for this bias (during evaluation of any method applied to these data)

may result in an overestimation of performance and overfitting to

dataset-specific biases at the expense of the desired signals. Therefore,

for each cell-type, the series/datasets of the manually annotated samples

were partitioned into three sets with each set containing roughly the same

number of samples. Two partitions were used as the training set and the

other as the testing set. Never splitting a single series/dataset between

training and test sample sets ensures that our approach does not identify

signals specific to particular studies, but rather those reflective of cell-

types and tissues.

2.6 Cross-platform prediction

The individual classifiers in URSA were trained on samples only from the

most popular Affymetrix Human Genome U133 Plus 2.0 platform

(hgu133plus2). URSA has not been explicitly modified or tuned for pre-

dicting across other platforms. As input to our method, a gene expression

profile from other array-based and sequence-based platforms were quan-

tile transformed to generate a hgu133plus2-like expression profile

(Section 2.6.1., later in the text). Additionally, a permutation test

(Section 2.6.2., later in the text) was performed to correct for potential

biases from gene coverage differences across platforms.

2.6.1 Quantile transformation The individual cell-type models in

URSA have been trained on one microarray platform (hgu133plus2).

To detect cell-type-specific information from other gene expression plat-

forms, we must first transform those expression values to a comparable

expression space. If we can effectively transform those values, our meth-

od—without any modifications or retraining—may be able to measure

cell-type-specific signals in these cross-platform experiments. The individ-

ual expression values xi may not be comparable across different platform

technologies (especially between array-based and sequence-based plat-

forms), but signals based on the relative abundance between genes

should be more or less preserved irrespective of the technology used.

Therefore, we quantile transform these cross-platform samples to pre-

served their relative gene abundances (or gene order) and compute
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hgu133plus2-like expression values based on a hgu133plus2 reference dis-

tribution. This reference distribution was constructed by averaging the

expression value of each quantile across 1000 random hgu133plus2

arrays.

The most crucial bottleneck for cross-platform annotation is the bias

in gene coverage across platforms. The hgu95v2 microarray platform

(covering �12 000 genes), for example, covers about two-thirds the

genes covered by hgu133plus2 (�18000 genes). Classification is handi-

capped by thousands of missing values, and hence, the mean expression

value of the reference distribution was used to impute missing gene values

(Troyanskaya et al., 2001).

2.6.2 Permutation test A simple permutation test was performed to

select significant predictions. The input data xj consist of real and

imputed gene values. Introducing noise to the actual data will blur any

real signal and decrease its associated probability value. Thus, we per-

mute only the sample data �1(xj), . . . , �K(xj) to generate a null distribu-

tion of SVM outputs �(ŷi)¼ (�k(ŷ1), . . . , �k (ŷN)), where �k(ŷi)¼wi
T
�

�k(xj). This null distribution is then used to call out questionable anno-

tations: any tissue annotation P(yijŷ1, . . . , ŷN) with a value lower than

even a single random annotation P(yij �k(ŷ1), . . . , �k(ŷN)) is considered

insignificant and assigned a value of 0.

2.7 Double-blind evaluation of sample annotations

In addition to the evaluation based on our manual sample annotations

(Section 2.5., earlier in text), we conducted a rigorous double-blind lit-

erature-based study to evaluate the quality of URSA’s novel predictions.

To control for any subjective bias, we must also evaluate a random group

of predictions in the same literature-based study. First, 120 hgu133plus2

array experiments from GEO that were not in our manual annotation

were randomly selected. These experiments were partitioned into three

groups. URSA annotations were made for all samples, but only group 1

predictions were retained and group 2 samples were assigned predictions

from group 3. This procedure provides random annotations while ensur-

ing the same apparent behavior of predictions as true predicted annota-

tions. We use this conservative background to completely blind the

evaluator from distinguishing original from random annotations.

The quality of predicted annotations should be judged based on re-

trieval of both the most precise tissue term and more general terms con-

sistent with the precise term. For example, an acute lymphocytic leukemia

(ALL) sample predicted to ALL but also other non-blood related terms

such as urinary bladder and colon is precise but not consistent, whereas

the same sample predicted to blood cancer cell or leukocyte in addition to

ALL is both precise and consistent. Estimated annotations in group 1 (i.e.

original) and group 2 (i.e. random) were evaluated as precise and/or

consistent based on associated publications and textual sample descrip-

tions. We also repeated this double-blind study for other microarray

platforms: hgu133a, hgu95v2 and hugene1.0st.

3 RESULTS

We address the cell-type prediction challenge as a multilabel

classification problem with hierarchical constraints to account

for the diverse nature of biological samples. We assess the

impact of incorporating the tissue ontology in our method and

the method’s robustness across different microarray preprocess-

ing methods. Although our method can be readily retrained to

any additional expression technologies given manually curated

samples, we find that our method is capable of precisely annotat-

ing samples across platforms (including next-generation

sequencing-based assays) without any modifications to the ori-

ginal method or its parameters. We finally show that our

tissue/cell-type predictions are interpretable based on the biolo-

gical processes enriched among learned informative genes.

3.1 URSA uses the tissue ontology to accurately predict

tissue/cell-type signals

To address the challenge of limited gold standards and high noise

levels in the tissue/cell-type classification problem, URSA incorp-

orates the BTO to better predict tissue/cell-type signals in a given

gene expression sample. BTO systematically defines parent-to-

child relationships between tissue and cell-type terms (Gremse

et al., 2011). URSA wields the complexity of this ontology to

both systematically label samples to train tissue/cell-type SVM

classifiers and also apply BNC to make consistent predictions.
To measure the impact of incorporating the ontology, we com-

pare URSA with individual (i.e. independent) one-versus-all

SVM classifiers whose outputs are converted to estimate prob-

ability values using logistic regression (Platt, 1999). For these

one-versus-all SVMs, whole blood samples are considered as

negatives in a leukocyte classifier, for example. Both methods

were trained on�9000 samples and tested on�5000 independent

samples (Fig. 2a). The top-predicted term for each sample was

evaluated and automatically considered incorrect if the estimated

probability value was below a cutoff. Multiple cutoffs from 0 (i.e.

no cutoff) to 0.9 (i.e. high-confidence cutoff) were tested

(Fig. 2a). This setup simulates the user experience with a prede-

fined cutoff and penalizes correct top predictions with a low

probability value.

Across the entire range of probability cutoffs, URSA offers

accurate top predictions for more samples in the holdout set.

Without a cutoff on the estimated probabilities, both naı̈ve

SVM and ontology-aware URSA show considerable accuracy

of the top-predicted term over the heterogeneous evaluation set

(Fig. 2a, leftmost bar). However, URSA accurately predicts an

additional �550 samples misclassified by the independent SVMs.

Furthermore, URSA conveniently computes a probability value

for each predicted tissue/cell-type annotation that provides a

natural intuition about the strength of the predicted tissue/cell-

type signal present in a given sample. Although probabilities can

also be obtained for the individual SVMs, URSA’s Bayesian

framework provides a unified probabilistic model that enforces

potential dependencies between distant and close tissues. This

abstraction consequently computes consistent parameter estima-

tions: e.g. if the probability for leukocyte is high, then the prob-

ability for blood should also be high, but not necessarily vice

versa. Lending import to the calibrated probability values calcu-

lated by BNC, the proportion of URSA’s accurate corrections of

SVM’s mis-annotations increases with higher probability cutoffs

(Fig. 2a). In case of high confidence predictions (0.9 cutoff),

URSA provides accurate annotations for �94% of the test sam-

ples, 45% (42200) of which were misclassified by the individual

SVMs. More detailed description is provided in the

Supplementary Information.
In addition to the overall performance evaluation, it is import-

ant to consider how annotation accuracy depends on the number

of expression profiles available for training for each tissue term

(namely ‘term size’). Term size also serves as an appropriate es-

timation of the term’s specificity in the tissue ontology, as sample

annotations were propagated based on the same ontology.
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URSA’s ontology-aware Bayesian framework aggregates multiple

individual classifiers so that classifiers for large terms (such as

blood) could help classify related specific small terms (such as

T-cell acute lymphoblastic leukemia cell). Using area under the

precision-recall curve (AUPRC), we compare the entire ranking

accuracy of URSA and the individual SVM classifiers across tis-

sues/cell-types. URSA provides increased performance for 65 of

the 71 tissue terms spanning both large general terms (such as B-

lymphocyte40.98, breast40.89 and lung40.95) and small spe-

cific terms (such as T-cell acute lymphoblastic leukemia cell¼ 1,

HeLa cell40.91 and bronchial epithelial cell40.83) (Fig. 2b and

Supplementary Table S1). Decreased performance for a few terms

could be attributed to the incompleteness of the tissue ontology

(e.g. the missing parental relationship between hepatocyte and

hepatoma cell). URSA’s improvements over individual SVMs

are greater for leaf nodes than non-leaf nodes (Supplementary

Fig. S3). The observed inverse relationship and larger improve-

ments for leaf nodes than for non-leaf nodes highlights the need

for URSA—especially for the specific terms where individual clas-

sifiers often perform poorly due to the lack of training data. Thus,

although the number of training samples affects the quality of

individual models, our results show that exploiting the known

cell-type associations enables URSA to be reasonably immune

to this effect. These results are further discussed in the

Supplementary Information.
Even without the use of the tissue ontology, independent

SVMs perform reasonably well for easy problems such as dis-

criminating blood samples, and so the improvement of our ap-

proach is relatively small (AUPRC of 0.9072 for individual

SVMs versus AUPRC of 0.9823 for URSA). However, inde-

pendent SVMs are unable to effectively discriminate more spe-

cific cell-type samples such as T-cell acute lymphoblastic leukemia

cell samples (SVM AUPRC 0.0034), whereas our ontology-

aware approach accurately classifies holdout samples of this spe-

cific blood cancer subtype (URSA AUPRC 1.0). This improve-

ment of URSA can be attributed to the effective incorporation of

the ontological complexity (Supplementary Fig. S2). Notice this

improvement also holds true across a wide range of non-blood

cell-types such as prostate gland (0.0317 versus 0.9906), bronchial

epithelial cell (0.0174 versus 0.8333) and mesenchymal stem cell

(MSC) (0.0017 versus 0.6093) (Fig. 2b and Supplementary Table

S1). The fact that these signals were learned in a completely data-

driven approach—not from known biomarkers—indicates that

our method can provide a data-driven estimation of specific

blood (and non-blood) cell-type signals.

3.2 URSA’s performance is robust to expression data

preprocessing

Data preprocessing and normalization can have a significant

impact on downstream analysis, including prediction of tissues/

cell-type signals (Zilliox and Irizarry, 2007). MAS5.0 and fRMA

are the two most well-known algorithms for preprocessing single

arrays (Hubbell et al., 2002; McCall et al., 2010). Additionally,

the barcode preprocessing algorithm was shown to accurately

estimate whether a gene is expressed in a given microarray ex-

periment and in specific tissues (McCall et al., 2011; Zilliox and

Irizarry, 2007).
We test the robustness of URSA’s ranking accuracy to differ-

ent preprocessing methods. Our first evaluation (using AUPRC)

shows that URSA improves performance over individual SVMs

across all three data processing methods: MAS5.0 (Fig. 2b),

fRMA and Barcode (Supplementary Fig. S4). Next, we compare

URSA with a NN classifier after barcode processing, which is, to

our knowledge, the only previous approach shown to predict

cell-type (Zilliox and Irizarry, 2007). It is important to note

that the overall accuracy of the NN classifier relies on the accur-

acy of the barcode preprocessing algorithm. URSA correctly

annotates �95% of the test samples independent of the prepro-

cessing algorithm used, with 4650 samples being correctly

Fig. 2. Prediction accuracy improves after integrating the tissue ontology.

MAS5 was used for preprocessing. (a) Accuracy of the most probable

estimation above a range of probability cutoffs. Estimations below the

probability cutoff are discarded. The Bayesian framework corrects many

of the mistakes made by individual SVMs and provides meaningful prob-

ability values. (b) Scatter plot comparison between URSA and individual

SVM classifiers. Each point represents a unique tissue/cell-type with

direct sample annotations, and the size of the point represents the

number of samples curated to that particular tissue or cell-type. Points

above the diagonal correspond to improvements by our method. URSA’s

improvements are independent of term size
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predicted exclusively using URSA (Supplementary Fig. 5a).

Furthermore, our method returns better ranking accuracy for

at least 50 of the 71 tissues/cell-types than the NN classifier

(Supplementary Figs. S5b and S6). Again, the performance im-

provements appear to be robust to term size.
These analyses show that URSA can adapt to both generic

(e.g. MAS5.0) and specific (e.g. Barcode) preprocessing methods

to discover tissue/cell-type-specific information in genome-scale

experiments. Moreover, robustness to preprocessing suggests

that URSA is modeling biological signals rather than systematic

biases or data processing artifacts present in these large compen-

dia. We focus our remaining analyses using the most commonly

used MAS5.0, chosen for its simplicity and application to many

array platforms.

3.3 URSA is precise for experiments from other

expression platforms

URSA is trained using data from the most popular gene expres-

sion microarray platform HG-U133 Plus 2.0 (hgu133plus2)—

with �70000 samples (from 2500 datasets/series) in GEO. We

have shown that URSA performs well for samples from this

platform, but there exist many other expression datasets that

use other platforms, with new ones emerging continuously. The

Affymetrix Human Genome U133A (hgu133a), for example, is

arguably the second most common microarray platform, asso-

ciated with �1000 studies in GEO. Other genome-wide array

platforms such as HG-U95Av2 (hgu95av2) and HuGene 1.0

ST (hugene1st) have been used for their focused gene coverage.

As hundreds of such platforms have been used for human gene

expression measurements, re-training classifiers for each plat-

form is impractical. Instead, the challenge is to overcome tech-

nical differences across platforms and predict tissue/cell-type

signals in a platform-independent manner.
We test URSA’s potential to measure the tissue-specific signa-

tures in profiles from other array-based platforms without re-

training its parameters. For this, we quantile-transform input

data from cross-platform samples and filter final predictions by

using a permutation test (see Section 2). To evaluate these pre-

dictions in a manner that best emulates an end-user’s experience,

we conduct a double-blind literature study on ‘original’ and

‘random’ annotations (see Section 2). The evaluation shows

that the majority of URSA’s predicted annotations are both pre-

cise and consistent regardless of the microarray platform

(Supplementary Fig. S7). Despite missing expression values for

410 000 genes (due to limited gene coverage), our method is still

able to provide high-quality annotations even for hgu95av2 sam-

ples. These consistent trends illustrate URSA’s potential to

detect cell-type-specific signals across microarray platforms

rising above technical biases and even substantial gene coverage

differences.
Next-generation sequencing is another rapidly growing tech-

nology for transcriptome profiling. A sample annotation method

that can be applied to this burgeoning technology is also of great

interest, and yet the current number of available tissue/cell-type-

specific experiments limits the prospect of effectively training

classifiers specifically for RNA-seq experiments. To address

this problem, we test URSA’s ability to detect tissue-specific sig-

natures in RNA-seq experiments using the model trained on

microarray data. At the outset, this is a challenging task due

to the substantial technical differences between microarrays

and RNA-seq. We challenge URSA to annotate RNA-seq ex-

periments in the Illumina Bodymap 2.0 reference dataset

(GSE30611), which consists of a diverse set of samples from 16

different tissues, generated with both single-end and pair-end

sequencing methods. URSA correctly predicts the tissue of

origin for all single-end and pair-end samples, except for adrenal

gland and adipose tissue samples (Fig. 3). For adrenal gland,

URSA ranked adrenal gland as the second most significant

tissue signal for adrenal gland samples (and not for any of the

other tissue types such as kidney or thyroid gland). Although

URSA can eventually be re-trained to better fit growing next-

generation sequencing data, its robustness across platforms and

technologies demonstrates URSA’s promise to remain applicable

and relevant to emerging experimental approaches and data

processing methods.

3.4 URSA’s tissue and cell-type-specific models are

biologically interpretable

With accurate models constructed from414 000 diverse samples

representing over 244 tissue/cell-type terms, URSA’s discrimina-

tive features (i.e. genes) could paint a molecular portrait of

tissue/cell-type-specific gene expression. To test this hypothesis,

Fig. 3. Accurate prediction of tissue of origin for RNA-seq samples.

Heatmap of URSA’s estimated tissue probabilities of 32 RNA-seq ex-

periments (16 different tissues) in the Illumina Bodymap dataset. The

rows are the individual samples, either single-end (s) or pair-end (p),

and the columns are the estimated cell-types
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we use the PAGE algorithm (Kim and Volsky, 2005) to examine

the Gene Ontology (GO) biological processes (Ashburner et al.,

2000) represented in each tissue/cell-type model. In effect, the

analysis summarizes the gene weights and offers a rich description

of the models. Testing all 244 cell-type models, we find that many

of the processes enriched among most informative genes in these

models appear to be the relevant cell-type-specific GO terms. For

example, the top GO term for the B-lymphocyte model is B cell

activation (adjusted P50.001), whereas the top GO term for the

B-cell lymphoma cellmodel is regulation of inflammatory response

(adjusted P50.001). GO terms astrocyte differentiation, regula-

tion of synaptic transmission and behavior are enriched in the

brainmodel (adjustedP50.001). Complete results with associated

z-scores are provided in Supplementary Table S2 and further dis-

cussed in the Supplementary Information.
Certain associations are not necessarily obvious. The top GO

terms in the MSC model include mesenchymal-specific develop-

mental processes such as skeletal system development, cartilage

condensation and muscle organ morphogenesis (Supplementary

Table S2). The enrichment of glycosaminoglycan biosynthetic

process in the MSC model has some support in that glycosami-

noglycans regulate osteoblast differentiation of bone marrow-

derived human MSCs and chondrogenesis in mouse MSCs

(Kim et al., 2007; Mathews et al., 2012). The top specific GO

terms in the embryonic stem cell (ESC) model include calcium-

dependent cell–cell adhesion, positive regulation of Wnt receptor

signaling pathway and glutamine family amino acid metabolic pro-

cess. During mouse embryogenesis, inner mass formation and

cell surface polarization is regulated by the calcium-dependent

cell–cell adhesion system (Shirayoshi et al., 1983). Highly con-

served Wnt family proteins play a key role in embryogenesis and

oncogenesis, but moreover the positive regulation (i.e. activation)

of Wnt signaling maintains the pluripotency in human ESCs

(Logan and Nusse, 2004; Peifer and Polakis, 2000; Sato et al.,

2004). L-glutamine is needed for the culture and maintenance of

human ESCs and is shown to inhibit mouse embryogenesis in

high concentrations (Amit and Itskovitz-Eldor, 2006; Kent,

2009; Nakazawa et al., 1997). The enrichment of these non-trivial

and specific biological processes demonstrates the expressive

(and accurate) interpretation of URSA’s predictions.
Based on the enriched biological processes (i.e. GO terms), we

examine whether the models are specific enough to distinguish

even closely related cell-types such as skeletal muscle cells and

heart cells (Fig. 4). Skeletal muscle and heart are among the

most studied human tissues, and thus are appropriate examples

to test the specificity of our models, which are based solely on

genome-wide expression experiments. Both skeletal muscle and

heart are comprised of muscle cells, and so one might expect

that the top GO terms for both tissue models would be general

muscle-related GO terms such as actin-mediated cell contraction.

Instead, we find that although all top enriched processes for skel-

etal muscle are general muscle GO terms as expected, the top

processes for heart (e.g. ventricular cardiac muscle tissue develop-

ment and heart contraction) are specific to heart cells (Fig. 4).

Thus, without prior knowledge of tissue and cell-type-specific

genes, URSA’s models identify genes involved in corresponding

cell-type-specific biological processes. This approach could be ex-

tended for understanding poorly characterized cell-types including

specific cancer subtypes. Our analysis altogether provides biolo-

gical intuition and credence to the basis for URSA’s tissue and

cell-type annotations.

4 DISCUSSION

In multicellular organisms, integrative analysis leveraging large

gene expression compendia requires accurate annotations of

Fig. 4. Tissue-specific biological processes enriched in URSA’s skeletal muscle and heart models. Barplot of enrichment z-scores of top GO terms in the

two models are shown. Both skeletal muscle and heart are primarily populated by muscle cells; yet, the heart tissue model selects genes specifically

involved in cardiac muscle processes
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samples to their tissue and cell-type of origin. In this article, we

present a scalable computational method URSA that predicts

tissue/cell-type signals in expression profiles across platforms

and technologies. Key to its performance is the incorporation

of the tissue ontology. Much of URSA’s improved performance

can be attributed to the construction of more than one hundred

additional intermediate (i.e. non-leaf) classifiers, which are then

integrated using a Bayesian framework.
URSA can be used to automatically annotate samples in

public gene expression repositories where most samples are cur-

rently lacking tissue/cell-type-specific information. Researchers

can discover specific signals in their own samples via our inter-

active interface at ursa.princeton.edu. Others interested in inte-

grative studies can download the URSA Cþþ software and

annotate samples on a large scale.
Despite URSA’s current applicability to a wide variety of tis-

sues/cell-types, its predictions can be further improved as the

ontology used for integration adds additional terms and associ-

ations. For example, immunologists may be interested in the

signal of specific T-lymphocytes such as CD4þ T cells, Th17

cells, germinal B cells, and so forth. Unfortunately, the current

BRENDA ontology (which was used as a controlled vocabulary

and the ontology structure of our method) does not include such

terms. Nonetheless, URSA’s ability to delineate tissue/cell-type

signals without known biomarker genes makes it naturally ex-

tendable to such specific cell-types as the BRENDA ontology is

extended with more terms and associations (Gremse et al., 2011).

We plan to regularly maintain and update the software with new

tissue and cell-type annotations and the latest version of the

BRENDA ontology.
Both the strength and the limitation of our method across

platforms and technologies depend on the amount of tissue

signal in the gene order and the number of missing values. For

a given gene expression profile from a different platform, quan-

tile transformation is applied to compute hg133plus2-like expres-

sion values. In consequence, our method is robust to different

normalization techniques used because only the information of

relative gene abundance is transferred. However, specific signals

associated with the particular gene expression value may be lost,

and properly incorporating such signals may provide greater pre-

diction accuracy. Furthermore, expression values for genes not

measured in hg133plus2 could affect the accuracy of our method,

although simple mean imputation seems to alleviate that effect.
URSA’s tissue and cell-type-specific models provide a biolo-

gical interpretation of its predictions. As such, URSA could po-

tentially be used to test and identify possible sample

contaminations, resolve cancer samples of unknown primary ori-

gin and perhaps provide insight into the molecular basis of

poorly characterized clinical subtypes.
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