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Abstract

There are numerous sources of variation in the rate of synonymous substitutions inside genes, such as direct selection on
the nucleotide sequence, or mutation rate variation. Yet scans for positive selection rely on codon models which
incorporate an assumption of effectively neutral synonymous substitution rate, constant between sites of each gene.
Here we perform a large-scale comparison of approaches which incorporate codon substitution rate variation and
propose our own simple yet effective modification of existing models. We find strong effects of substitution rate variation
on positive selection inference. More than 70% of the genes detected by the classical branch-site model are presumably
false positives caused by the incorrect assumption of uniform synonymous substitution rate. We propose a new model
which is strongly favored by the data while remaining computationally tractable. With the new model we can capture
signatures of nucleotide level selection acting on translation initiation and on splicing sites within the coding region.
Finally, we show that rate variation is highest in the highly recombining regions, and we propose that recombination and
mutation rate variation, such as high CpG mutation rate, are the two main sources of nucleotide rate variation. Although
we detect fewer genes under positive selection in Drosophila than without rate variation, the genes which we detect
contain a stronger signal of adaptation of dynein, which could be associated with Wolbachia infection. We provide
software to perform positive selection analysis using the new model.
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Introduction

Detecting the selective pressure affecting protein-coding
genes is an important component of molecular evolution
and evolutionary genomics. Codon models are one of the
main tools used to infer selection on protein-coding genes
(Koonin and Wolf 2010). This is done by comparing the rate
of nonsynonymous substitutions (dN) that are changing the
amino acid sequence with the rate of synonymous substitu-
tions (dS) that do not affect this amino acid sequence.

Although there is overwhelming evidence of negative and
positive selection acting on the amino acid sequence of the
proteins (Boyko et al. 2008), synonymous substitutions affect-
ing the protein-coding genes are assumed to be effectively
neutral in most current models. This is a reasonable first ap-
proximation, especially for species with low effective popula-
tion size, such as many mammals (Keightley et al. 2005;
Romiguier et al. 2014). Therefore the synonymous substitu-
tion rate can be used as a proxy for the neutral substitution
rate, and comparison between dN and dS can be used to
identify selection acting on the level of amino acids (Yang
and Bielawski 2000).

A corollary of this assumption has been that most codon
models assume that synonymous substitution rates are

uniform across each gene. Yet there is no biological reason
to assume this uniformity, and actually some evidence against
it (for a review, see Rubinstein and Pupko 2012). This is
expected to particularly affect more sophisticated models,
where x varies between branches and sites. Indeed, violation
of the assumption of uniformity of the synonymous rate can
affect the performances of the site model (Rubinstein et al.
2011).

There are numerous sources of variation in the rate of
synonymous substitutions inside genes. First, the raw muta-
tion rate across each genome varies significantly. One of the
strongest effects on the mutation rate in mammals is CpG
sites. Transitions at CpG sites are more that 10-fold more
likely than transversions at non-CpG sites (Leffler et al.
2013) due to spontaneous deamination, which causes a mu-
tation from C to T, or from G to A. Both mutation frequencies
and repair efficiency are highly dependent on the context. For
example, the mammalian CpG mutation rate is lower in high
GC regions (Fryxell and Zuckerkandl 2000). This is probably
related to strand separation and hydrogen bonding in the
neighboring region (Segurel et al. 2014). High GC regions
themselves are characterized by a higher mutation rate, which
is probably caused by less efficient repair by the exonuclease
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domain. There are other context-dependent effects which are
known, many of which lack a mechanistic explanation, such
as a higher mutation rate away from T with an increasing
number of flanking purines (Hwang and Green 2004, for
reviews see Hodgkinson and Eyre-Walker 2011 and Segurel
et al. 2014).

Mutation rate is also affected by replication time and it has
been shown to be higher in late-replicating regions
(Stamatoyannopoulos et al. 2009). This effect has been attrib-
uted both to the interference between RNA and DNA poly-
merases (Jørgensen and Schierup 2009) and to variation in
the efficiency of mismatch repair (Supek and Lehner 2015). It
is not clear that this affects variation within genes, as opposed
to between genes, but it could do so in very long genes.

Mutation rates are correlated with recombination rates.
Some suggest (Lercher and Hurst 2002; Hellmann et al. 2003,
2008) that recombination itself can have a mutagenic effect,
possibly through an interaction with indels. Evidence from
Drosophila suggests that recombination is not mutagenic, but
does influence local Ne and thus the efficiency of selection
(Castellano et al. 2018). Alternatively, this correlation can be a
result of GC-biased gene conversion (GC-BGC), whereby
mutations increasing GC content have a higher chance of
fixation in the population (Duret and Galtier 2009).
Although GC-BGC is a fixation bias, in some cases it can
create a pattern which is hard to distinguish from positive
selection (Ratnakumar et al. 2010).

Finally, the synonymous substitution rate can be affected
by selection at the nucleotide level. First, although synony-
mous substitutions do not affect the protein sequence, they
might affect translation efficiency. This effect is not limited to
species with large effective population size, such as Drosophila
(Carlini and Stephan 2003), because selection for codon usage
was identified even in Homo sapiens (Comeron 2004) and
other mammals, especially for highly expressed genes. It has
been suggested that bias in codon usage reflects the abun-
dance of tRNAs, and thereby provides a fitness advantage
through increased translation efficiency or accuracy of protein
synthesis (Bulmer 1991), although in many cases there is no
dependency between tRNA abundance and codon fre-
quency, and the source of the bias remains unknown
(Plotkin and Kudla 2011). Selection at the nucleotide se-
quence can be also caused by secondary structure avoidance,
as secondary structure can reduce translation efficiency
(Kudla et al. 2009; Kertesz et al. 2010). Other potentially im-
portant sources of selection on the nucleotide sequence, in-
dependent of the coding frame, include splicing motifs
located within exons, exon-splicing enhancers (Majewski
and Ott 2002), or genes for functional noncoding RNAs,
such as miRNAs or siRNAs, which often reside within coding
sequences (Mattick and Makunin 2006).

Because of all these mutational and selective effects, it is
important to model rate variation not only at the level of
protein selection but also at the nucleotide level. There are in
principle two different approaches to incorporate rate varia-
tion into codon models. We can extend either the Muse and
Gaut (1994) model, where both dN and dS are estimated as
two independent parameters, or the Goldman and Yang

(1994) model, where selection pressure on the protein se-
quence is represented by a single parameter (x) that defines
the ratio of nonsynonymous to synonymous substitutions
(dN=dS). First, it is possible to model synonymous (dS) and
nonsynonymous (dN) substitution rates separately by extend-
ing a two-rate model, as in Pond and Muse (2005) and
Mayrose et al. (2007). Second, it is possible to incorporate
site-specific rates as an independent parameter into single-
parameter models (Scheffler et al. 2006; Rubinstein et al.
2011). In the second case, the substitution rate parameter
captures biological factors acting on all substitutions, both
synonymous and nonsynonymous. These factors can include
mutation rates, fixation rates, or nucleotide selection.

Here we focus on the second approach, which is tradition-
ally used for large-scale positive selection analyses in eukar-
yotes (Clark et al. 2007; Markova-Raina and Petrov 2011;
Moretti et al. 2014; Zhang et al. 2014). Spielman et al.
(2016) report superior performance of a compound param-
eter for the estimation of selection strength on the protein.
Although we use a single parameter x to model the selection
strength at the protein level, x can vary both between align-
ment sites and between tree branches.

Although codon models accounting for nucleotide rate
variation have been available for more than a decade, they
are still rarely used for large-scale selection analyses, such as
Kosiol et al. (2008), Moretti et al. (2014), and Zhang et al.
(2014). This is probably because these models have even
higher computational demands, and the statistical perfor-
mance of different approaches to nucleotide rate variation
was never compared.

Here we extend the Scheffler et al. (2006) model, which
captures variation between codons, that is, uses a single rate
per codon, and perform a direct comparison with the model
of Rubinstein et al. (2011), which captures variation between
nucleotides, that is, with three rate parameters per codon.
Thanks to the computational efficiency of our method, we
can show that synonymous rate variation is pervasive, and
impacts strongly the detection of branch-site positive
selection.

We also assess the impact of nucleotide rate variation on
the BS-REL-family model (Murrell et al. 2015). Models based
on Goldman and Yang (1994) typically use the maximum
likelihood approach on the two nested models in order to
detect positive selection. This way the method can identify
genes, whereas individual sites can be detected only using
additional posterior analysis. This approach seems to be suit-
able for large-scale genome analyses, where one is interested in
identifying biological functions undergoing positive selection
(Clark et al. 2007; Kosiol et al. 2008; Zhang et al. 2014; Daub
et al. 2017). We chose Murrell et al. (2015) as a comparison,
because it is the only BS-REL model for gene-wide identifica-
tion of positive selection, whereas other positive selection
models in that family are intended for inference of selection
at individual sites, and, thus, cannot be compared directly.

We first use simulations to compare different approaches
of modeling synonymous rate variation. Then, we use our
model to detect positive selection in 12 Drosophila species
and in a vertebrate data set.
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We detect positive selection on genes from those two data
sets under our new model, and we demonstrate that it is
important to take rate variation into account for such infer-
ence of positive selection. We investigate factors affecting the
nucleotide substitution rate, and we show that the new
model successfully detects synonymous selection acting on
regulatory sequences within the coding sequence. We also
identify what are the gene features that affect rate heteroge-
neity the most.

New Approaches
We model the process of codon substitution as a Markov
process defined by the instantaneous rate matrix Q. In a
general case, Q can be written as follows (Rubinstein et al.
2011):

qij ¼

qðm;pÞkijpj i and j differ by one

synonymous substitution

at pth position of mth codon

qðm; pÞkijxpj i and j differ by one

nonsynonymous substitution

at pth position of mth codon

0 i and j differ by more

than one nucleotide

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Here, qðm;pÞ is the substitution rate for pth position
(p 2 f1; 2; 3g) of codon site m of an alignment
(m 2 1 . . . M, where M is the alignment length in codons).
The variable kij is the substitution factor to change from co-
don i to codon j. It is typically used to account for the differ-
ence between transition and transversion rates (Hasegawa
et al. 1985). In this case, kij depends on the substitution
type but does not depend on the codon position in which
substitution occurs. The rate qðm;pÞ is used to account for
various effects that are not captured by the variation in x. In
particular, it accounts for variation in mutation rate and se-
lection acting on the nucleotide sequence.

In Rubinstein et al. (2011), qðm;pÞ is modeled using a one-
parameter gamma distribution across sites of the alignment,
such that the mean relative substitution rate is equal to 1,
that is, qðm;pÞ � Gammaða; 1=aÞ. Keeping a mean rate of 1 is
important to avoid biases in the estimation of branch lengths.
There is no implicit assignment of rates to sites, as in the CAT
model (Lartillot and Philippe 2004). Instead, a random-effect
model is used: The gamma distribution is split into K equally
probable discrete categories qk using quantiles, and the site
likelihood is computed as the average of the likelihoods for
each possible rate assignment. This approach adds only one
extra parameter to the model, but it is computationally in-
tensive. Indeed, in order to compute a likelihood for the mth
codon in the alignment, it is necessary to compute likelihoods
for this codon given all possible rate assignments, that is,

qðm;1Þ; qðm;2Þ;qðm;3Þ 2 fq1; . . . ; qKg:

For K discrete categories, K3 likelihoods have thus to be
computed per codon site.

In Scheffler et al. (2006), unlike Rubinstein et al. (2011), the
three positions of each codon have the same rates, that is,
qðm;1Þ ¼ qðm;2Þ ¼ qðm;3Þ; we denote the rate of a codon m as
qðm;�Þ. Here a codon belongs to one of three categories, each
one represented by a single rate value qk. The rates and their
respective proportions are estimated from the data, which
leads to the estimation of four different parameters: two rate
parameters R1 < 1 and R2 > 1 and two proportion param-
eters 0 < p1 < 1 and 0 < p2 < 1. Effective proportions
are computed as follows: p̂1 ¼ p1; p̂2 ¼ ð1� p1Þp2, and
p̂3 ¼ ð1� p1Þð1� p2Þ. Rates are computed as: q1 ¼ sR1,
q2 ¼ s, and q3 ¼ sR2, where s is a scale factor chosen such
that the mean rate is equal to one:

P3
i¼1 p̂iqi ¼ 1. This ap-

proach is virtually equivalent to adding a branch length mul-
tiplier for certain site classes, and therefore likelihood can be
computed efficiently.

Here we propose having one rate per codon
qðm;1Þ ¼ qðm;2Þ ¼ qðm;3Þ, while allowing this rate to vary fol-
lowing a gamma distribution, qk � Gammaða; 1=aÞ. The
same approach to model rate variation has already been
used (Baele and Lemey 2013; Gil et al. 2013), but it was re-
stricted to the assumption of constant selective pressure (x)
across all sites and phylogenetic branches.

Our approach is closely related to Scheffler et al. (2006), as
we are modeling a single rate per codon. The distinction is
that we are using unit gamma distribution to model rates
because of its flexibility while being controlled by a single
parameter, as opposed to four parameters required for the
3-rate model of Scheffler et al. (2006). The approach described
by Rubinstein et al. (2011) also uses gamma distribution to
model rates, but those rates are associated with a single nu-
cleotide site, not a single codon site, which substantially
increases the computational complexity. In the approaches
proposed by Pond and Muse (2005) and Mayrose et al.
(2007), gamma-distributed rates are also assigned to individ-
ual codons. The important distinction is that in those cases
synonymous and nonsynonymous rates are modeled sepa-
rately, which makes estimation of selection as a ratio between
the two rates more challenging (see also Spielman et al. 2016).

Using our approach, we extended two widely used codon
models: the site model M8 (Yang et al. 2000) and the branch-
site model (Zhang et al. 2005). In principle, our approach
could be applied to any GY94-based model. In M8, selection
pressure represented by the x parameter varies between the
sites of an alignment following a beta distribution, while stay-
ing constant over the branches of the phylogenetic tree. In
this model, a subset of sites can evolve under positive selec-
tion. In the branch-site model, x varies both between the
sites of the alignment and the branches of the phylogenetic
tree. In this model, a subset of sites can thus evolve under
positive selection on a predefined subset of branches. These
two models were implemented in Godon, a codon model
optimizer in Go, in four variants: no rate variation, site rate
variation (Rubinstein et al. 2011), codon 3-rate variation
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(Scheffler et al. 2006), and codon gamma rate variation as
described above.

Four of the eight models were implemented and used for
the first time to our knowledge: branch-site models with site
rate variation similar to Rubinstein et al. (2011), codon 3-rate
variation similar to Scheffler et al. (2006), gamma distributed
codon rate variation as proposed above, and M8-based model
with gamma-distributed codon rate variation. All models
were implemented within a common framework, ensuring
fair comparisons.

Results

Simulations
Site Models
We have simulated four data sets using various flavors of the
M8 model: a data set without rate variation, a data set with
site rate variation, a data set with gamma-distributed codon
rate variation, and a data set with codon 3-rate variation
(table 1). We then used the four corresponding models to
infer positive selection in those data sets. In all four cases, as
expected, the model corresponding to the simulations shows
the best result in terms of receiver operating characteristic
(ROC, fig. 1 and table 2) as well as accuracy (supplementary
table S1, Supplementary Material online), and precision ver-
sus recall (supplementary fig. S1, Supplementary Material
online).

In the absence of rate variation, the statistical performance
of the four methods is very similar, even though the M8
model without rate variation has a slightly better ROC
(fig. 1A), a false positive rate (FPR) which is closer to the
theoretical expectation (supplementary fig. S2A,
Supplementary Material online), and a slightly higher sensi-
tivity (supplementary fig. S3A, Supplementary Material on-
line). Despite increased complexity, the sensitivity of the
codon gamma variation model is only marginally reduced
relative to the model without rate variation (supplementary
fig. S3A, Supplementary Material online).

The M8 model without rate variation largely underper-
forms on the data set with site rate variation: It has a worse
ROC (fig. 1B) and a higher FPR (supplementary fig. S2B,
Supplementary Material online). On the other hand, codon

Table 1. Summary of Estimations Performed on the Simulated Data Sets.

Simulation

M8 Branch-Site

Inference NoVar. Site
Var.

Codon
Gamma Var.

Codon
3-Rate Var.

NoVar. Site
Var.

Codon
Gamma Var.

Codon
3-Rate Var.

M8 No variation � � � � � � � �

Site variation � � � � � � � �

Codon gamma variation � � � � � � � �

Codon 3-rate variation � � � � � � � �

BS No variation � � � � � � � �
Site variation � � � � � � � �
Codon gamma variation � � � � � � � �
Codon 3-rate variation � � � � � � � �

BUSTED � � � � � � � �

NOTE.—Bullets and circles indicate which models were used to simulate data sets and which models were used for inference on these data sets. Combinations indicated with
bullets are discussed in the main text, whereas combinations indicated with circles are discussed in the Supplementary Material online. M8, M8 model of Yang et al. (2000); BS,
branch-site model of Zhang et al. (2005); BUSTED, BUSTED model from the BS-REL-family (Murrell et al. 2015). Codon gamma variation refers to the proposed parametrization,
whereas codon 3-rate variation refers to the parametrization introduced in Scheffler et al. (2006).

Codon gamma variation Codon 3−rate variation

No variation Site gamma variation

0.000.250.500.751.00 0.000.250.500.751.00
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D

FIG. 1. ROC of four M8-based models (M8 with no rate variation, M8
with site rate variation, M8 with codon gamma rate variation, and M8
with codon 3-rate variation) and of BUSTED on data sets (A) without
rate variation, (B) with site rate variation, (C) with codon gamma rate
variation, and (D) with codon 3-rate variation. Specificity is defined as
the proportion of correctly identified alignments simulated under a
model with positive selection, and sensitivity is defined as the pro-
portion of correctly identified alignments simulated without positive
selection. The dashed diagonal line shows theoretical performance of
the random predictor, and the dashed vertical and horizontal lines
indicate theoretical performance of the perfect predictor.
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gamma variation performs almost as well as site variation, and
clearly better than the model with no variation.

For both data sets with codon rate variation, there is a
relatively large decrease in the performance of models both
without rate variation and with site rate variation. ROC is
decreased (fig. 1C and D) and FPR is inflated (supplementary
fig. S2C and D, Supplementary Material online). Performance
of the two variants of codon rate variation is similar. Codon
gamma rate variation even increases the FPR above 50% for
the model without rate variation at the significance level of
0.05. Stronger rate variation (i.e., smaller a value) causes a
higher FPR (supplementary fig. S4, Supplementary Material
online).

From this, we can conclude that (i) the performance of
models accounting for codon variation is acceptable in all
three scenarios, that is, no rate variation, site rate variation,
and codon rate variation; (ii) in the presence of codon rate
variation in the data, models not accounting for this kind of
variation suffer from a notable loss of statistical performance.

We have mainly focused on a realistic scenario in which
true branch lengths are unknown. However, to confirm that
our results are not biased by the differences in branch lengths,
we also fit the models using the true branch lengths. In this
case, performance is very similar, both in terms of ROC (sup-
plementary fig. S5, Supplementary Material online) and of
FPRs (supplementary fig. S6, Supplementary Material online).

Branch-Site Models
The simulations based on the branch-site model show a qual-
itatively similar behavior to the simulations based on the M8-
type models regarding ROC (fig. 2), FPR (supplementary fig.
S7, Supplementary Material online), area under curve (AUC),
precision (supplementary tables S2 and S3, Supplementary
Material online), and precision versus recall (supplementary
fig. S8, Supplementary Material online), although the per-
formances are more similar between models. As with M8-
type models, codon rate variation models perform well in all
four cases, whereas simulating with codon rate variation
causes a clear underperformance in both other models.
Unlike in the case of M8-type models, FPRs are only margin-
ally inflated compared with theoretical expectations with
smaller values of a (supplementary fig. S9, Supplementary
Material online). Nevertheless, the models with codon rate
variation show the best performance.

When using true or estimated branch lengths performance
is very similar (ROC: supplementary fig. S10, Supplementary

Material online). The main difference is an increase in the FPR
of the model without rate variation (supplementary fig. S11,
Supplementary Material online).

More complex models have a computational cost.
Analyses with codon gamma rate variation were 3.3 and 2.8
times slower compared with no rate variation for M8 and
branch-site models, respectively. The codon 3-rate variation
model by Scheffler et al. (2006) provides a similar statistical
performance while having a higher computational cost: 3.7
and 6.7 times slower compared with no rate variation, respec-
tively. This increased computational load might be explained
by a larger dimensionality of parameter space. Site rate

Table 2. AUC for All M8-Based Simulations (see Fig. 1) and for BUSTED.

Simulation

Estimation No Var. Site Var. Codon 3-Rate Var. Codon Gamma Var.

No variation 0.916 100% 0.846 94.4% 0.785 88.8% 0.758 84.5%
Site variation 0.912 99.6% 0.897 100% 0.812 91.9% 0.806 89.7%
Codon 3-rate variation 0.900 98.2% 0.862 96.1% 0.884 100% 0.880 98.0%
Codon gamma variation 0.912 99.6% 0.875 97.6% 0.867 98.1% 0.898 100%
BUSTED 0.865 94.5% 0.819 91.3% 0.749 80.2% 0.749 84.8%

NOTE.—Second number computed as proportion of maximum AUC for a particular simulation.

Codon gamma variation Codon 3−rate variation

No variation Site gamma variation
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FIG. 2. Performance (ROC) of four branch-site-based models
(branch-site with no rate variation, branch-site with site rate varia-
tion, branch-site with codon gamma rate variation, and branch-site
with codon 3-rate variation) and of BUSTED on data sets (A) without
rate variation, (B) with site rate variation, (C) with codon gamma rate
variation, and (D) with codon 3-rate variation. The pink dashed line
indicates the 0.95 specificity threshold (i.e., FPR of 0.05). The dashed
diagonal line shows theoretical performance of the random predictor,
and the dashed vertical and horizontal lines indicate theoretical per-
formance of the perfect predictor.
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variation models were 62.6 and 44.7 times slower, respectively
(table 3). Thus codon rate variation captures biological signal
at a much lower computational cost than site rate variation,
especially when coupled with a gamma model.

Comparisons with BS-REL
It has been demonstrated (Murrell et al. 2015) that in certain
cases the statistical power of BS-REL is superior to other
methods, including the branch-site model. Therefore, it is
important to study how rate variation affects the perfor-
mance of those models. The only BS-REL model suitable for
the gene-wide identification of positive selection is BUSTED
(Murrell et al. 2015), and the current implementation sup-
ports neither rate variation nor dS variation (implemented by
Pond and Muse 2005).

The BS-REL framework differs from the branch-site and M8
models by the frequency parametrization. BS-REL is based on
the approach of Muse and Gaut (1994), whereas the branch-
site and M8 models are based on the approach of Goldman
and Yang (1994). During simulations, we used F0 frequencies,
that is, identical frequencies of all the codons (pi ¼ 1=61). As
F0 can be considered a special case of both Muse and Gaut
(1994) and Goldman and Yang (1994), we do not expect any
bias caused by this difference between the two approaches.

BUSTED shows significantly inflated rates of false positives
in the presence of codon gamma rate variation (supplemen-
tary figs. S2C and S7C, Supplementary Material online, simu-
lations under M8 and branch-site, respectively). At a typical
significance level of 0.05, the FPR of BUSTED is close to 0.3 and
0.2 for the M8 and branch-site simulations, respectively (i.e.,
the proportion of false positives can be 4–6 times higher than
we expect by chance). This shows that the statistical perfor-
mance of the BS-REL family models is also affected by not
taking into account rate variation.

Vertebrate Data Set
Given the good performance of the codon gamma rate model
in the simulations, we applied it to real data. First, we used 767
one-to-one orthologs from vertebrate species. This represents
a set of genes with high divergence (more than 450 My),
conservative evolution (Studer et al. 2008), and relatively
low effective population sizes (although some vertebrates
have high Ne, see Gossmann et al. 2012), thus relatively
weak impact of natural selection. We analyzed them with

four variants of the branch-site model: no rate variation,
site rate variation, codon gamma rate variation, and codon
3-rate variation. We used the branch-site model to search for
positive selection, as it is more sensitive to episodic positive
selection (see Supplementary Material online, page 3).

In most cases (each case corresponding to a single branch
of a gene tree), the data support the codon rate variation
models based on Akaike information criterion (AIC): out of
8,907 individual branches tested, data support codon gamma
rate variation in 43% of the tests, codon 3-rate variation in
47%, site rate variation in 9.4%, and no rate variation model
was favored only in 12 tests (0.1%).

A large proportion (43%) of branches detected to be under
positive selection with the no rate variation model are not
detected to be under positive selection with the codon rate
variation model (table 4). This effect is even stronger (72%)
when multiple testing correction is used (table 4B). The ma-
jority of the positive predictions from the standard branch-
site model are not supported when both multiple testing and
codon rate variation are accounted for. This suggests that
evolution on these branches can be explained by nucleotide
substitution rate variation without positive selection (see
Discussion). We observe relatively high agreement in predic-
tions between the site rate variation and codon rate variation
models (after multiple testing correction), as those are two
different approaches to model the same evolutionary process.
Supplementary figure S12, Supplementary Material online,
shows the number of genes detected by the branch-site
models with codon gamma rate variation and without rate
variation, mapped to the vertebrate species phylogeny. There
was no positive selection identified using M8 models, with or
without codon gamma rate variation.

Supplementary table S4, Supplementary Material online,
shows prediction agreement between each model and the
best supported model out of four, confirming the good per-
formance of the codon variation model. Although the codon
3-rate model has a slightly higher proportion of tests which
support it, the codon gamma rate variation model has the
highest prediction agreement with the best model (supple-
mentary table S4B and C, Supplementary Material online).

Codon gamma rate variation model was 4.7 times slower,
whereas codon 3-rate variation model was 8.7 times slower,
and site rate variation model was 69 times slower (table 3)
than no rate variation.

Table 3. Inference Time of Different Models.

Inference Model

No Site Codon Codon
Data Set Var. Var. Gamma Var. 3-Rate Var.

M8 simulations 91 h 1x 5,723 h 63x 300 h 3.3x 339 h 3.7x
Branch-site simulations 47 h 1x 2,126 h 46x 132 h 2.8x 318 h 6.7x
Vertebrate data set 55 h 1x 3,837 h 69x 258 h 4.7x 481 h 8.7x
Drosophila data set 966 h 1x — 5,746 h 5.9x —
Drosophila data set 1,000 alignments 115 h 1x 10,079 h 88x 677 h 5.9x 1,278 h 11x

NOTE.—First number shows total CPU-hours used, second number indicate relative slowdown compared with the fastest model. For the simulated data sets, only time used by
models of the same family is shown, that is, comparison between M8 and branch-site models is not included.
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With real data, differences between genes are not only
stochastic, but more interestingly are expected to be driven
by underlying biological differences. It is thus interesting to
find which factors affect rate variation as estimated by the
model, as well as to know which genes favored the model
with codon rate variation the most.

We focused on gene features associated with the underly-
ing evolutionary process, such as recombination rate, GC
content standard deviation (indicative of shifts in recombi-
nation hotspots; Glemin et al. 2015), and expression level
(associated with stronger purifying selection; Drummond
et al. 2005; Pal et al. 2006; Kryuchkova-Mostacci and
Robinson-Rechavi 2015). Parameters which can directly affect
the performance of the method were also included in the
linear model to avoid potential biases, for example, number of
sequences and alignment length. We also included total in-
tron length and number of exons, because they can affect
synonymous selection associated with splicing, or disparity
between mutation rates associated with chromosomal local-
ization of exons.

Here and below we used three response variables for our
analyses. First, we create linear models using the relative sup-
port of the model (based on Akaike weights, see Materials
and Methods) as a response variable. These models allow us
to understand for which categories of genes the effect of rate
variation is the strongest. Second, models using the a param-
eter of the gamma distribution (codon rate variation) as a
response variable allow us to identify gene properties associ-
ated with high substitution-rate variance. Finally, a model for
the proportion of branches which are inferred to have

evolved under positive selection when rate variation is not
taken into account, but not when it is, allows us to identify
the main causes of discrepancy between the results of the two
models.

In this analysis, each group of orthologous genes was
treated as a single observation. Estimated parameter values
obtained by testing different branches of the tree were
averaged.

The relative support of the model with codon gamma rate
variation is mostly affected by total branch length, alignment
length, and mean GC content of the gene (supplementary
table S5, Supplementary Material online). The positive corre-
lation with tree length and alignment lengths is probably
related to the increase in total amount of information avail-
able for the model. The relation to GC content might be due
to the relationships between recombination rates, substitu-
tion rates, and GC content (Duret and Galtier 2009; Rudolph
et al. 2016; see Discussion).

For the shape parameter of the gamma distribution a, the
strongest explanatory variable is GC content (supplementary
table S6, Supplementary Material online). As with relative
support of the model, this could be related to recombination.
We also observe a weak relation with maximal expression
level. Highly expressed genes tend to have a higher rate var-
iation, which could be explained by higher nucleotide level
selection on certain parts of the gene.

Enrichment analysis did not identify any categories over-
represented among genes detected to be evolving under pos-
itive selection with rate variation. This might be due to the
small size of the data set.

Table 4. Positive Selection Predictions for the Vertebrate Data Set.

No Rate Variation versus Codon Gamma Rate Variation
Significance Threshold of 0.05 FDR Threshold of 0.1

A Codon variation B Codon variation
No variation 2 1 No variation 2 1
2 7,063 58 2 7,660 6
1 823 963 1 966 275

No Rate Variation versus Codon 3-Rate Variation
Significance Threshold of 0.05 FDR Threshold of 0.1

C Codon variation D Codon variation
No variation 2 1 No variation 2 1
2 7,059 62 2 7,660 6
1 777 1,009 1 951 290

No Rate Variation versus Site Rate Variation
Significance Threshold of 0.05 FDR Threshold of 0.1

E Site variation F Site variation
No variation 2 1 No variation 2 1
2 7,069 52 2 7,657 9
1 516 1,270 1 694 547

Site Rate Variation versus Codon Gamma Rate Variation
Significance Threshold of 0.05 FDR Threshold of 0.1

G Codon variation H Codon variation
Site variation 2 1 Site variation 2 1
2 7,513 72 2 8,347 4
1 373 949 1 279 277

NOTE.—Numbers in each cell indicate how many branches were detected (þ) or not detected (�) to be evolving under positive selection by different variants of the branch-site
model.
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Drosophila Data Set
The second real data set we used contains 8,606 one-to-one
orthologs from Drosophila genomes. The Drosophila data set
is 10-fold larger than the vertebrate data set. As analyses on
the simulated and vertebrate data sets show a consistent
superiority of codon gamma rate over site variation and co-
don 3-rate variation, with a much lower computational cost,
we ran only no variation and codon gamma variation on the
full data set. Therefore for the Drosophila data, we are mainly
focusing on comparing models with and without codon rate
variation. However, we did run site variation and codon 3-rate
variation on a subset of 1,000 genes selected randomly.
Drosophila has large effective population sizes on average
(Gossmann et al. 2012), thus stronger impact of natural se-
lection; the genes studied are less biased toward core func-
tions than in the vertebrate data set, and have lower
divergence: about 50 Ma for Drosophila (Russo et al. 2013)
compared with more than 450 Ma for the vertebrate data set
(Betancur-R et al. 2015).

In total, 66,656 branches were tested for positive selection.
The model with codon gamma rate variation was supported
by the data in 97% (respectively 96%) of the tests when using
AIC (respectively likelihood ratio test, LRT). On the smaller
subset, on which all the four approaches were applied, codon
gamma rate variation was supported in 48% of the tests,
codon 3-rate variation in 23%, site rate variation in 26%,
and no variation in 2%. As with the vertebrate data set,
predictions were not consistent between the models (table 5,
comparison of all models for a subset of 1,000 genes in sup-
plementary table S7, Supplementary Material online). The site
and the codon gamma rate variation models display a stron-
ger consistency in predictions of positive selection relative to
the consistency between the model without rate variation
and the model with codon gamma rate variation.

As in vertebrates, when accounting for multiple testing,
the vast majority of predictions of positive selection given by
the model without rate variation are not supported by the
model accounting for rate variation. Supplementary figure
S13, Supplementary Material online, shows the number of
genes detected by the branch-site models with codon gamma
rate variation and without rate variation, mapped to the
Drosophila species phylogeny. In addition, there were 4 and
19 genes identified with the M8 models with codon gamma
rate variation and without rate variation, respectively (for the
full lists, see Availability).

Genes identified to be under positive selection with the
model accounting for codon gamma rate variation are
enriched for molecular function GO categories associated

with dynein chain binding (GO:0045503, GO:0045505, for
both terms q-value¼ 0:016, supplementary table S8,
Supplementary Material online). Dynein plays an important
role in Wolbachia infection (Serbus and Sullivan 2007), and is
thus a likely candidate for strong positive selection (Werren
et al. 2008). Surprisingly, there are no significant molecular
function GO categories identified using the branch-site model
without rate variation (for dynein categories q-value¼ 1, sup-
plementary table S9, Supplementary Material online). Genes
associated with dynein chain binding predicted to have
evolved under positive selection, and the relevant amino
acid positions, are provided in supplementary table S10,
Supplementary Material online.

The relative support of the model with codon rate varia-
tion is mainly explained by alignment length, number of
sequences, and coding sequence length (table 6). Stronger
model support associated with increase in the amount of
information (increased coding sequence length means less
gaps for the same alignment length), expression levels, and
mean GC content is consistent with the vertebrate results
(supplementary table S5, Supplementary Material online).

We also observe a dependence on the number of exons
and on recombination rate. A larger number of exons imply
more exon–intron junctions, which might affect variation in
levels of nucleotide sequence selection (see below).
Recombination might affect GC-BGC, mutation rate, and se-
lection strength acting on synonymous sites (Campos et al.
2014).

Table 5. Positive Selection Predictions for the Drosophila Data Set.

Significance Threshold of 0.05 FDR Threshold of 0.1

A Codon variation B Codon variation
No variation 2 1 No variation 2 1

2 55,953 366 2 62,036 4
1 5,300 5,037 1 4,395 221

NOTE.—Numbers in each cell indicate how many branches were detected (þ) or not detected (�) to be evolving under positive selection by different variants of the branch-site
model. Codon gamma rate variation versus no rate variation.

Table 6. Linear Model of Relative Support of Model with the Codon
Rate Variation.

Variable Estimate SE t-Value P-Value

Number of sequences 0.189 0.009 22.128 <2310�16

Total branch length 0.106 0.011 9.788 <2310�16

Alignment length 0.574 0.030 19.138 <2310�16

Length of coding sequence 0.141 0.029 4.797 1:64310�6

GC content (mean) 0.084 0.009 9.789 <2310�16

GC content (SD) 0.011 0.007 1.445 0.1485
Total intron length 20.054 0.011 24.762 1:96310�6

Number of exons 0.159 0.016 10.184 <2310�16

Maximum expression 0.043 0.018 2.418 0.0156
Mean expression 20.023 0.018 21.291 0.1966
Recombination rate 0.059 0.007 8.578 < 2310�16

NOTE.—Drosophila data set. Significant variables (P-value< 0.05) in italics. Model P-
value is < 2:2� 10�16, adjusted R2 is 0.6478. Model formula: relative model sup-
port~number of sequencesþ total branch lengthþ alignment length þ length of
coding sequenceþGC content (mean)þGC content (SD)þ total intron lengthþ
number of exons þ maximum expression þ mean expression þ recombination
rate.
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The rate variation parameter a can be explained by several
features of genes (supplementary table S11, Supplementary
Material online). Most of the effects are not reproduced be-
tween the two data sets. Although some of them are strongly
significant, generally the effect sizes are not very large. The
most consistent effect between the two data sets is depen-
dence of the rate variation on GC content.

Signatures of Selection at the Nucleotide Level
Codon rate variation can be influenced by various factors
such as mutation bias, fixation bias (e.g., gene conversion),
or selection acting against synonymous substitutions.
Notably, it is well known that exon regions adjacent to splic-
ing sites are evolving under purifying selection at the nucle-
otide level (e.g., see Majewski and Ott 2002). We determined
posterior rates for positions of protein-coding gene regions
located in the proximity of exon–intron and intron–exon
junctions; first exons were excluded from the analysis.

We observe in Drosophila (fig. 3) that our codon rate var-
iation model captures these selection constraints: The codon
substitution rate is lower at the exon–intron junction than at
the intron–exon junction, and both have lower rates than the
rest of the exon. This is in agreement with splicing motif
conservation scores (e.g., see Cartegni et al. 2002), and con-
sistent with negative selection acting on splicing sites.

We also used the model M8 with codon gamma rate var-
iation to simultaneously estimate the effect of factors which

affect substitution rates of nucleotide and protein sequences,
again in Drosophila. We observed that the model is able to
recover opposing trends acting on the 50-region of the pro-
tein-coding gene (fig. 4). These trends are probably a result of
the high functional importance of the 50-nucleotide se-
quence, but low functional importance of the corresponding
amino acid sequence (see Discussion). Comparing nucleotide
and inverse protein rates (supplementary fig. S14,
Supplementary Material online) indicates that the effect is
slightly stronger at the protein level; however, the difference is
only marginal. It is worth noting that this effect cannot be
explained by a dependence between the q and the x esti-
mates, as such a dependence is not observed in other regions
(supplementary fig. S15, Supplementary Material online).

We observe that the top 25% most highly expressed genes
show both stronger conservation of the amino acid sequen-
ces (supplementary fig. S16, Supplementary Material online)
and more pronounced decrease in the substitution rate of the
50-region (supplementary fig. S17, Supplementary Material
online). Stronger purifying selection acting on highly
expressed proteins was previously observed across domains
of life (P�al et al. 2001; Rocha and Danchin 2004; Drummond
et al. 2005; Kryuchkova-Mostacci and Robinson-Rechavi
2015). As for the decrease in substitution rate, q is defined
relative to the gene-wide average substitution rate. Therefore,
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FIG. 3. Relative substitution rate as a function of proximity to the
exon–intron and intron–exon junctions in the Drosophila data set.
The rates were estimated using the model M8 with codon gamma
rate variation. The left panel depicts rates in 50-exon (prior to the
exon–intron junction, negative distances), whereas the right panel
depicts 30-exon (rates after the intron–exon junction, positive dis-
tances). A rate of 1 corresponds to the average rate of substitution
over the gene; thus values above 1 do not indicate positive selection,
but simply a rate higher than average for this gene. The blue ribbon
indicates the 98% confidence interval of mean estimate. Only align-
ment positions with <30% of gaps were used in the plot.
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FIG. 4. Posterior estimates of median x (dN/dS, top panel) and codon
substitution rate q (bottom panel) as a function of distance from the
start codon expressed in the number of nucleotides in Drosophila.
The model M8 with codon gamma rate variation was used to esti-
mate both parameters simultaneously. Smaller values of x (top
panel) indicate stronger negative selection acting on the protein se-
quence. A substitution rate of 1 (bottom panel) corresponds to the
average rate of substitution over the gene; thus values above 1 do not
indicate positive selection, but simply a rate higher than average for
this gene. The blue ribbons indicate 98% confidence intervals of me-
dian estimates. Start codons and alignment positions with less than
three sequences were excluded from the plot.
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a stronger relative selection on the 50-region can be detected
above the average increase in purifying selection on highly
expressed genes. The relation with expression levels is consis-
tent with the assumption that we are measuring natural se-
lection on gene sequences in this case, rather than mutation
rates.

Discussion

Nucleotide Level Selection in Coding Regions
There is strong evidence of selection acting on synonymous
substitutions within protein-coding sequences, and the
strength of this selection is expected to vary across coding
regions (Chamary et al. 2006). In particular, negative selection
strongly affects regulatory sequences, such as exonic splicing
enhancers or exon junction regulatory sequences (Cartegni
et al. 2002). Variation in selection over both synonymous and
nonsynonymous substitutions can affect the performance of
codon models (Rubinstein et al. 2011), and we show that
indeed it strongly impacts the results of the popular
branch-site model, as well as the simpler site model (M8).
Although there are multiple ways to account for this varia-
tion, for instance by modeling the synonymous and nonsy-
nonymous rates separately (Pond and Muse 2005), here we
focused on modeling the ratio of nonsynonymous versus
synonymous rates as a single parameter (x), while allowing
the substitution rate (q) to vary along the sequence.

Our approach succeeds in recovering a signal of splicing
motif conservation jointly with negative and positive selec-
tion acting on the protein sequence.

We also demonstrate that our model is able to disentangle
opposite trends acting on the same sequence, that is, stronger
negative selection acting on the nucleotide sequence com-
bined with weaker amino acid selection toward the beginning
of the reading frame.

Selection on the 50-nucleotide sequence is probably due to
selection for translation initiation efficiency (Bentele et al.
2013), and is perhaps related to suppression of mRNA struc-
tures at the ribosome binding site. At the same time N-ter-
minal amino acids are more likely to be unstructured, and
they are relatively less important to protein function and
stability compared with the core (Guharoy and Chakrabarti
2005).

Determinants of Rate Variation
The majority of gene alignments in the study indicated better
support for the model with codon gamma rate variation.
Moreover, the relative probability of the models incorporat-
ing codon gamma rate variation increases with the amount of
information available, be it number of sequences, alignment
length, or total number of substitutions. This indicates that
these models are better in describing the underlying evolu-
tionary process, and if we have enough data, these models are
favored. We detect a strong signal of nucleotide variation in
two quite different data sets. Flies have high effective popu-
lation size, thus natural selection is relatively strong, including
on codon usage or splicing. Vertebrates have higher sequence
divergence, which does not appear to mask the signal of

nucleotide evolution, despite lower effective population sizes
in many species (Gossmann et al. 2012; Romiguier et al. 2014).
Thus, the effect of nucleotide rate variation appears quite
general, and will probably be found in many other species.

The strongest determinant of the relative support of the
model with codon rate variation is GC content. A strong
effect of GC content on synonymous rate variation was
reported by Dimitrieva and Anisimova (2014), based on an
analysis of protein domain coding sequences with a modified
site model. It is well known (Fullerton et al. 2001; Marais et al.
2003; Chamary et al. 2006) that regions with high recombi-
nation rates have higher GC as a result of GC-BGC, notably in
the species studied here. It has also been shown that models
accounting for rate variation show significantly better perfor-
mance than simpler models in the presence of recombination
(Scheffler et al. 2006), even if the true tree topology is used.

The effect of recombination rate as measured by Comeron
et al. (2012) on the relative support of codon rate variation is
comparable to the effect of GC content alone. In mammals,
the higher CpG dinucleotide mutation rate (Kong et al. 2012)
can increase the disparity in substitution rates and therefore
contribute to the dependence between the GC content and
the relative model support.

Yet, we observe this dependence in Drosophila, where
there are no significant neighboring base contextual effects
on the mutation rate (Keightley et al. 2009). One explanation
is that the GC content could be acting as a proxy for the
average recombination rate over time via GC-BGC.
Considering the rapid evolution of recombination hotspots
(Ptak et al. 2005), GC content probably captures historical
recombination rates, whereas the direct measurement of re-
combination rate captures only the current state.

Low and moderate levels of recombination are in general
tolerated by codon models, especially models that account
for rate variation (Anisimova et al. 2003; Scheffler et al. 2006).
However, high levels of recombination could inflate the FPR
of such models. Therefore, for genes showing the highest rates
of recombination, positive selection predictions should be
interpreted with caution. Removing the top 30% highest re-
combination rates has almost no effect on the linear model
(supplementary tables S12 and S13, Supplementary Material
online).

In both data sets, we observe a significant positive associ-
ation of rate variation with the maximal expression level.
Pressure for translational robustness increases with expression
levels (Drummond et al. 2005), and codon choice affects ex-
pression level (Bentele et al. 2013). One of the main causes of
selection on the codon sequence of highly expressed genes is
protein misfolding avoidance (Yang et al. 2010), but there is
also selection for efficient translation initiation (Pop et al.
2014). Consistent with this, Dimitrieva and Anisimova
(2014) reported more evidence for synonymous rate variation
in genes expressed in the brain. Brain-expressed genes are
known to be more sensitive to misfolding and under stronger
purifying selection (Drummond and Wilke 2008; Kryuchkova-
Mostacci and Robinson-Rechavi 2015; Roux et al. 2017). It is
reasonable to assume that only certain parts of protein-cod-
ing genes will be affected by strong nucleotide sequence
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selection, and that this selection will be stronger on more
expressed genes. Indeed our results show strong negative se-
lection acting on the coding sequence of translation initiation
regions, and the relative selection strength is higher for the
25% highest expressed genes (supplementary fig. S17,
Supplementary Material online). This can lead to an overall
increase in substitution rate variation.

Given that highly expressed genes have both stronger neg-
ative selection and stronger variation in substitution rate on
the coding sequence, it is especially important to take this
variation into account. These genes can easily have a combi-
nation of a low average dS, pulled down by strong purifying
selection on some regions of the gene, a subset of codons
evolving faster than this mean, and a low average x. This can
be mistakenly interpreted as positive selection by models
without rate variation. On the other hand, with our model
we find a positive correlation between support for rate var-
iation and positive selection in Drosophila, even after correct-
ing for confounding variables such as gene length or GC
content (linear model of relative model support with propor-
tion of branches under positive selection: supplementary ta-
ble S14, Supplementary Material online). It is possible that
these genes are evolving under very strong selection, both
positive and negative, or that strong recombination affects
the performance of the model. We did not find a significant
association in vertebrates (P-value¼ 0.24 for the term in a
linear model), which could be explained by a smaller size of
the data set. In any case, we cannot confirm a previous report
that the genes with the strongest evidence for synonymous
rate variation had the less evidence for positive selection
(Dimitrieva and Anisimova 2014).

Codon Models and Rate Variation
Widely used mechanistic codon models rely on the assump-
tion of constant synonymous substitution rates. This assump-
tion is often violated due to factors such as mutation bias or
nucleotide selection, which vary across the gene. Although
substitution rate variation can be caused by multiple factors,
we use a single compound rate parameter to model this
variation.

We demonstrate that this simple model captures such rate
variation, and that it both detects new biological signal and
substantially decreases the FPR in positive selection detection.
Not only do we observe this effect in simulations (figs. 1 and 2,
FPR: supplementary fig. S2, Supplementary Material online),
but inconsistency between models is even higher when ap-
plied to the vertebrate and fly data sets. The vast majority of
the predictions of positive selection obtained using models
without rate variation were not supported by the model with
codon gamma rate variation. The comparable power of the
two methods (sensitivity: supplementary fig. S3A,
Supplementary Material online) and the strong support for
rate variation from the data suggest that most of those pos-
itive selection predictions can be explained by nucleotide rate
variation (tables 4 and 5). Thus, they should be considered as
probable false positives. The proportion of those potential
false positives per gene alignment is positively associated
with the amount of available information, such as alignment

length (linear models: supplementary tables S15–S17,
Supplementary Material online). This confirms that loss of
power is not the main cause for the lack of detection by
the codon rate model, but rather that the issue is false positive
detection by the classical branch-site.

The effect of rate variation on the model performance is
stronger in Drosophila than in vertebrates. On the vertebrate
data set, after multiple testing correction, about 80% of the
positive predictions might be false positives (table 4B),
whereas in Drosophila it is 95% (table 5B). This might be a
consequence of the higher effective population size
(Gossmann et al. 2012) and thus stronger selection at the
nucleotide level in Drosophila.

Incorporating rate variation into the model allowed us to
identify a strong signal of positive selection acting on the
inner dynein arm, which could be a result of selection against
Wolbachia infection in Drosophila. With the model without
rate variation, this signal is masked by other, presumably false
positive, genes. Although there have already been several
large-scale analyses of positive selection in Drosophila (Clark
et al. 2007; Markova-Raina and Petrov 2011; Cicconardi et al.
2017), none of them reported positive selection affecting in-
ner dynein arm. An association between positive selection on
dynein and Wolbachia needs more evidence before it can be
confirmed; however, it is promising that this association is
better supported with a more stringent and realistic model.
Although the gene list obtained with rate variation is shorter
and thus provides less signal for anatomical enrichment, testis
notably remains highly significant, as expected for selection
on sexual conflict in flies (supplementary table S18,
Supplementary Material online). Indeed, sexual selection
has been repeatedly demonstrated using various approaches
(e.g., Lupold et al. 2016).

Both versions of the branch-site test detect a small number
of genes under positive selection, relative to expectations
from some other approaches (Bierne and Eyre-Walker
2004). It has been suggested that the presence of positive
selection on background branches can cause a decrease in
power of the branch-site models (Kosakovsky Pond et al.
2011). However, we observe only a marginal decrease of
power in our simulations (see Supplementary Material,
“Branch-Site Model and Background Positive Selection”).
This decrease is small both under the classical branch-site
model and under rate variation. Thus, this background selec-
tion effect does not seem to explain the small number of
genes detected.

An important question is why accounting for rate varia-
tion changes the statistical properties of the test. For models
with a single x ¼ dN=dS value per alignment, comparison
between dN and dS can be viewed as a contrast between the
rates before and after the action of selection on the protein,
and should not be significantly biased by nucleotide rate var-
iation (Yang 2014). However, when x is allowed to vary, dN

=dS overestimation could be caused not only by the variation
in dN but also by codon-specific substitution rates. Indeed,
having a small percentage of rapidly evolving codons in the
gene would not be captured by an overall rate for dS, and
therefore would be interpreted as positive selection by
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models with protein level but without nucleotide level rate
variation. Conversely, fully accounting for rate variation allows
detecting these codons as rapidly evolving by the signatures
of both synonymous and nonsynonymous substitutions.

There is recent evidence that double mutations in coding
sequences increase the branch-site model FPR from 1.1% to
8.6% in similar data sets to those investigated here (Venkat
et al. 2018). The interaction between this effect and rate var-
iation along the gene is worth investigating.

We compared three different models accounting for rate
variation: the site variation model of Rubinstein et al. (2011),
the codon 3-rate variation of Scheffler et al. (2006), and our
new codon gamma variation model which extends Scheffler
et al. (2006). The codon rate variation model can be infor-
mally thought of as a special case of the site rate variation
model. Despite that, the codon gamma rate variation per-
forms better both in the simulations (M8: table 2, branch-site
AUC: supplementary table S2, Supplementary Material on-
line) and on the vertebrate data set (positive selection pre-
dictions: supplementary table S4, Supplementary Material
online). There are probably two reasons for that. First, the
fact that we can assign a rate to a particular nucleotide po-
sition does not necessary mean that we can reliably estimate
it. Only two amino acids allow single nucleotide synonymous
substitution associated with the first or second codon posi-
tions. This means that individual position rates can be esti-
mated mostly through nonsynonymous substitutions, which
are typically rare compared with synonymous ones.
Moreover, the branch-site and M8 models allow variation
in the nonsynonymous rate over codon positions, which
means estimates of x and site rates are not independent.
However, there is no visible dependency between codon rate
variation (fig. 3) and x variation (supplementary fig. S15,
Supplementary Material online).

Secondly, we expect site rates to be autocorrelated along
the sequence, because many factors, such as GC content,
recombination rate, or chromatin state change slowly over
the gene. Indeed, we see a signal of such autocorrelation in
our data (effect size 0.018, P-value < 0.0001). Therefore, hav-
ing an independent rate for every site is probably redundant.

Statistical performance of codon gamma rate variation
and codon 3-rate variation by Scheffler et al. (2006) is com-
parable (M8 based models: table 2, branch-site based models:
supplementary table S2, Supplementary Material online).
Also, they are similar in terms of the model support provided
by the data. However, codon gamma rate variation provides
two important advantages. First, it is up to two times
faster than codon 3-rate variation implemented using the
same optimizations in Godon (table 3). This is probably
caused by a larger dimensionality of parameter space and
by nonindependence between model parameters, which
can slow down the likelihood optimization. Second, compar-
ison of positive selection predictions between codon gamma
variation and the model with the highest support suggests
(supplementary table S4, Supplementary Material online)
that the codon gamma rate variation model provides a
better detection of positive selection even in case of model
misspecification.

One of the key advantages of codon variation relative to
site variation is computational performance. Having a distinct
rate for every position increases the number of site classes for
which likelihood computations have to be performed by a
factor of K3, where K is the number of discrete categories for
gamma distribution. Having a rate only for each codon
increases the number of site classes by a factor of K. This
means that even for four discrete categories, the slowdown
of likelihood computation for site rate gamma model will be
about 64 times versus only 4 times for codon rate variation
model. In practice, this ratio between the two models was
respected in simulated and in vertebrate data. This makes
codon rate variation models usable in large phylogenomics
data sets, as we demonstrate by analyzing 12 Drosophila
genomes.

Unlike traditional mechanistic codon models, our new
models allow independent estimations of substitution rate
at the nucleotide level and of selective pressure on amino acid
sequences. It should be noted that individual site rate esti-
mates may be still noisy because of the amount of data avail-
able. But given enough data it is possible to have accurate
estimates of selection acting on specific regions, for example,
splicing motifs, within coding sequences (fig. 3).

Conclusions
We have performed a large-scale comparison of different
approaches to model rate variation. Failure to account for
rate variation leads to both type I and type II errors. We also
propose an extension to the model of Scheffler et al. (2006),
which has a good statistical performance both in the presence
and in the absence of rate variation. We also provide a soft-
ware implementation of the new models. Rate variation is
strongly supported by homologous genes both from species
with larger (flies) and smaller (vertebrates) effective popula-
tion sizes. We are able to capture differences in substitution
rates caused by nucleotide selection. Importantly, while being
more complex these models remain computationally tracta-
ble and therefore can be applied to large-scale data sets. These
models and their efficient implementation open the oppor-
tunity of simultaneous analysis of different layers of selection
in phylogenomics.

Materials and Methods

Sequence Simulations
We simulated eight data sets (table 1) that include either no
rate variation across sites (corresponding to the GY94 model),
variation between sites (corresponding to the Rubinstein
et al. [2011] model), 3-rate variation between codons (corre-
sponding to Scheffler et al. [2006] parametrization), or
gamma variation between codons (corresponding to our
new approach). Each data set contains 1,000 alignments sim-
ulated under the null hypothesis H0 with no positive selection
(all x � 1) as well as 1,000 alignments under the alternative
hypothesis H1 with positive selection (some x > 1). Models
used in the study are mainly focusing on detecting alignments
(i.e., genes) under positive selection, rather than individual
sites. As our data set is balanced in terms of alignments, we
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used ROC and AUC as our main performance metrics. All the
data sets had between 8 and 12 sequences composed of 100–
400 codons and were simulated using our software named
cosim (see Availability). The parameters of each simulation,
including the alignment length and the number of species,
were generated at random from their respective distribution
(supplementary tables S19 and fig. S18, Supplementary
Material online). Maximum values of x > 1 for H1 were 79
and 15 for the branch-site and M8 models, respectively.
Values of a were within the range of values estimated from
the real data (supplementary fig. S19, Supplementary Material
online), with an emphasis on smaller values where the vari-
ation is stronger. For the simulations including rate variation,
we used four discrete gamma categories that we assigned
either to sites or to codons. The M8 model assumes that
the neutral sites and those under purifying selection have
an x drawn from a beta distribution and we represented
this distribution using five discrete categories. Finally, to sim-
ulate evolution under the branch-site model, we randomly
selected one “foreground” branch of the phylogenetic tree
(either internal or terminal) for every simulated alignment.

Vertebrate and Drosophila Data Sets
We analyzed two biological data sets. Our goals were to com-
pare the fit of the different models on real data, and to study
which gene features are contributing to the variation of the
substitution rate. First, we used a vertebrate one-to-one
orthologs data set (Studer et al. 2008, available at http://bio-
info.unil.ch/supdata/positiveselection/Singleton.html) con-
sisting of 767 genes (singleton data set). This data set was
already used in previous studies of codon models (Fletcher
and Yang 2010; Gharib and Robinson-Rechavi 2013; Davydov
et al. 2017).

We also used a subset of one-to-one orthologs from 12
Drosophila species from the Selectome database (release 6,
http://selectome.unil.ch/). This data set consists of 8,606
genes, and the alignments were filtered to remove unreliably
aligned codons; the Selectome filtering procedure is based
notably on GUIDANCE (Penn et al. 2010) and is described
on the Selectome website and the corresponding publication
(Moretti et al. 2014). Phylogenetic trees for Drosophila and
vertebrates were acquired from TimeTree (Hedges et al.
2006).

Model Parameters Inference
For all the tests on simulated data we used the correct (i.e.,
simulated) tree topology, but starting branch lengths were
estimated using PhyML v. 20131022 (Guindon et al. 2010)
with the model HKY85 (Hasegawa et al. 1985). We did not
start the optimization from the true branch lengths, by sim-
ilarity to a real use-case, when only gene sequences are avail-
able, and the true branch lengths are unknown. Additionally,
we also show results of estimations when true branch lengths
were used. Although tree topology is also inferred in real use-
cases, and wrong topology could impact the inference of
positive selection (Diekmann and Pereira-Leal 2015), investi-
gating this is outside the scope of our study.

Optimization of all model parameters jointly with branch
lengths is not practical and substantially increases the com-
putational load. We instead first estimated branch lengths
using the simpler M0 model, which assumes a constant x
across branches and sites, and optimized in a second step the
model parameters of the M8 or branch-site models with or
without rate variation, while fixing branch lengths. A similar
approach was used in previous studies (Scheffler et al. 2006;
Moretti et al. 2014).

We show that this approach at least in the case of the
absence of variation does not decrease significantly the sta-
tistical properties of the positive selection inference (supple-
mentary fig. S20, Supplementary Material online).

All model optimizations with the exception of BUSTED
were performed in Godon, followed by model selection (see
below).

For BUSTED, we used an implementation available in
HyPhy v. 2.2.6 (Pond et al. 2005). When running BUSTED
on M8 simulations, positive selection was tested on all the
branches jointly. In the case of branch-site model simulations,
only the foreground branch (x 	 1) was tested for positive
selection.

For the biological data sets, all the internal branches were
tested using the branch-site model for positive selection. Tip
branches were not tested to reduce the potential effect of
sequencing errors. The M8 model was applied to estimate
substitution rates and x for individual sites.

Model Selection
During model selection we had eight models to choose from:
four rate variation approaches and, for each, the absence or
presence of positive selection. Although LRT can be used to
test for positive selection, it is not possible to use it to com-
pare across all eight models that we tested (i.e., any pair of
codon rate variation and site rate variation models cannot be
represented as a nested pair).

We thus first used the AIC on the alternative model to
select one of the four approaches to model rate variation: no
rate variation, site rate variation, codon 3-rate variation, or
codon gamma rate variation. For the Drosophila data set,
when only the no rate variation and codon gamma rate var-
iation models were compared, we used both AIC and LRT.
Figure 5 shows the scheme of model selection.

Once the rate variation model was selected, we performed
LRT to detect positive selection on the corresponding pair of
models, that is, model with x � 1 and model without this
constraint. A 50:50 mix of a v2 distribution with one degree of
freedom and of a point mass of 0 was used as a null distri-
bution (Yang and dos Reis 2011). False discovery rate was
computed using the qvalue package (Storey et al. 2004).

Posterior Rates Inference
In order to estimate substitution rates for individual codons,
we used an approach similar to Mayrose et al. (2007)
and Rubinstein et al. (2011). First, we estimated the prob-
ability of a codon belonging to each rate as
P ¼ Prðqðm;�Þ ¼ qkjxm; gÞ, where qðm;�Þ is the rate of codon
m, qk is the kth discrete gamma rate, xm is the data observed
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at codon m, and g are the parameters of the model (e.g., for
M8 g ¼ fp0; p; q;xg). In this approach, g is replaced with
the maximum likelihood estimate of model parameters ĝ.
Thus, codon rates can be estimated as a weighted sum

bqðm;�Þ ¼XK

k

Prðqðm;�Þ ¼ qkjxm;bgÞqk.

An alternative would be to use Bayes empirical Bayes (BEB;
Yang et al. 2005), instead. However, BEB was developed and
tested for site detection in particular codon models, and we
do not know how well it is applicable to rate variation. On top
of that given the increased parametric space of the model,
BEB would be computationally intensive. As we are averaging
rates over multiple sites, random noise should not introduce
a substantial bias.

Codon site dN=dS ratios in the M8 model can be estimated
using a similar approach, while replacing codon rate catego-
ries with the x categories.

Posterior codon rate and dN=dS estimation are imple-
mented in Godon. In all cases, we used an alternative model
for posterior estimation. As the null model for every pair is a
special case of the alternative, we can use the later for param-
eter estimation without any significant loss of precision.

To test for autocorrelation, we used the average absolute
difference between the posterior rates of the neighboring
codon positions as a statistic:

s ¼
XM�1

m¼1

jq̂ðm;�Þ � q̂ðmþ1;�Þj:

The null distribution was computed by shuffling the rates
within all the genes 10,000 times.

Enrichment Analysis
GO-enrichment analysis was performed using the topGO
package (Alexa and Rahnenfuhrer 2016). We used Fisher’s
exact test and the graph decorrelation technique named
weight01. We used TopAnat (https://bgee.org/?page=top_
anat#/) from Bgee 14.0 (Komljenovic et al. 2018) for expres-
sion enrichment analysis.

Regression Analysis
To estimate dependencies between various parameters (var-
iables), we used linear models (lm function, R version 3.5.1).

Variables were transformed to have a bell-shaped distribution
if possible (see supplementary tables S20 and fig. S21,
Supplementary Material online). Subsequently, parameters
were centered at zero and scaled so that standard deviation
was equal to 1. This transformation allowed us to compare
the estimates of the effects. Because in some cases residuals
showed strong heteroskedasticity (supplementary figs. S22
and S23, Supplementary Material online, for vertebrates
and Drosophila), we used White standard errors (White
1980) implemented in the sandwich R package.

We used expression data for H. sapiens from Fagerberg
et al. (2014), acquired from Kryuchkova-Mostacci and
Robinson-Rechavi (2015). For Drosophila melanogaster we
used data from Li et al. (2014), available at http://www.stat.
ucla.edu/�jingyi.li/software-and-data.html Recombination
rates for genes were computed using Recombination Rate
Calculator (ver. 2.3, Fiston-Lavier et al. 2010) using data set
from Comeron et al. (2012).

The relative support of codon gamma rate model was
computed as a log ratio between Akaike weights
(Wagenmakers and Farrell 2004) of the model with codon
gamma rate variation and the model without rate variation.

Availability
All the code and the full lists of detected genes are available
from https://bitbucket.org/Davydov/codon.rate.variation.
Sequence simulator cosim is available from http://bitbucket.
org/Davydov/cosim. Codon model parameter estimator
Godon is available from https://bitbucket.org/Davydov/
godon. We provide source code as well as precompiled bina-
ries for GNU/Linux (64 bit).

To the best of our knowledge, Godon provides the first
implementation of branch-site models (Zhang et al. 2005)
incorporating codon rate variation using approaches of
Scheffler et al. (2006), Rubinstein et al. (2011), and our own
gamma rates extension.

Godon Usage
Godon provides an easy way to perform an analysis given a
FASTA-file and a newick-file, for example, the following com-
mand will perform branch-site test for positive selection with
gamma distributed codon rates on every branch of a tree:

FIG. 5. Model selection scheme. Red arrows correspond to LRT and blue arrows correspond to AIC. Rate variation selection (A) was performed only
on the full Drosophila data set, whereas (B) was used on all three data sets: the vertebrate data set, the Drosophila data set, and a subset of 1,000
genes from the Drosophila data set.
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godon test BSG ––all––branches ––ncat––
codon––rate 4 input.fst input.nwk

Often branch length optimization is performed once using
a simpler model and then for every test the branch length
parameters are fixed. In Godon, there is an easy way to
achieve this behavior:
godon test BSG ––m0––tree ––all-branches–

ncat-codon-rate 4 input.fst input.nwk
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Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
We would like to thank Peer Community in Evolutionary
Biology (https://evolbiol.peercommunityin.org/), Julien Yann
Dutheil, and David Enard for useful comments. We also thank
Evgeniy Riabenko for helpful suggestions regarding linear
modeling. This work was supported by the Swiss National
Science Foundation (Grant No. IZLRZ3_163872). The com-
putations were performed at the Vital-IT (http://www.vital-it.
ch) center for high-performance computing of the Swiss
Institute of Bioinformatics.

References
Alexa A, Rahnenfuhrer J. 2016. topGO: enrichment analysis for gene

ontology. R Package Version 2(28.0).
Anisimova M, Nielsen R, Yang Z. 2003. Effect of recombination on the

accuracy of the likelihood method for detecting positive selection at
amino acid sites. Genetics 164(3): 1229–1236.

Baele G, Lemey P. 2013. Bayesian evolutionary model testing in the
phylogenomics era: matching model complexity with computa-
tional efficiency. Bioinformatics 29(16): 1970–1979.

Bentele K, Saffert P, Rauscher R, Ignatova Z, Bluthgen N. 2013. Efficient
translation initiation dictates codon usage at gene start. Mol Syst
Biol. 9(1): 675.

Betancur-R R, Orti G, Pyron RA. 2015. Fossil-based comparative analyses
reveal ancient marine ancestry erased by extinction in ray-finned
fishes. Ecol Lett. 18(5): 441–450.

Bierne N, Eyre-Walker A. 2004. The genomic rate of adaptive amino acid
substitution in Drosophila. Mol Biol Evol. 21(7): 1350–1360.

Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD,
Lohmueller KE, Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR, et al.
2008. Assessing the evolutionary impact of amino acid mutations in
the human genome. PLoS Genet. 4(5): e1000083.

Bulmer M. 1991. The selection-mutation-drift theory of synonymous
codon usage. Genetics 129(3): 897–907.

Campos JL, Halligan DL, Haddrill PR, Charlesworth B. 2014. The relation
between recombination rate and patterns of molecular evolution
and variation in Drosophila melanogaster. Mol Biol Evol. 31(4):
1010–1028.

Carlini DB, Stephan W. 2003. In vivo introduction of unpreferred syn-
onymous codons into the Drosophila Adh gene results in reduced
levels of ADH protein. Genetics 163(1): 239–243.

Cartegni L, Chew SL, Krainer AR. 2002. Listening to silence and under-
standing nonsense: exonic mutations that affect splicing. Nat Rev
Genet. 3(4): 285–298.

Castellano D, James J, Eyre-Walker A. 2018. Nearly neutral evolution
across the Drosophila melanogaster genome. Mol Biol Evol. 35(11):
2685–2694.

Chamary JV, Parmley JL, Hurst LD. 2006. Hearing silence: non-neutral
evolution at synonymous sites in mammals. Nat Rev Genet. 7(2):
98–108.

Cicconardi F, Marcatili P, Arthofer W, Schlick-Steiner BC, Steiner FM.
2017. Positive diversifying selection is a pervasive adaptive force
throughout the Drosophila radiation. Mol Phylogenet Evol.
112:230–243.

Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA,
Kaufman TC, Kellis M, Gelbart W, Iyer VN, et al. 2007. Evolution of
genes and genomes on the Drosophila phylogeny. Nature 450(7167):
203–218.

Comeron JM. 2004. Selective and mutational patterns associated with
gene expression in humans: influences on synonymous composition
and intron presence. Genetics 167(3): 1293–1304.

Comeron JM, Ratnappan R, Bailin S. 2012. The many landscapes of
recombination in Drosophila melanogaster. PLoS Genet. 8(10):
e1002905.

Daub JT, Moretti S, Davydov II, Excoffier L, Robinson-Rechavi M.
2017. Detection of pathways affected by positive selection in
primate lineages ancestral to humans. Mol Biol Evol. 34(6):
1391–1402.

Davydov II, Robinson-Rechavi M, Salamin N. 2017. State aggregation for
fast likelihood computations in molecular evolution. Bioinformatics
33(3): 354–362.

Diekmann Y, Pereira-Leal JB. 2015. Gene tree affects inference of sites
under selection by the branch-site test of positive selection. Evol
Bioinform Online. 11(Suppl 2): 11–17.

Dimitrieva S, Anisimova M. 2014. Unraveling patterns of site-to-site
synonymous rates variation and associated gene properties of pro-
tein domains and families. PLoS One 9(6): e95034.

Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. 2005. Why
highly expressed proteins evolve slowly. Proc Natl Acad Sci U S A.
102(40): 14338–14343.

Drummond DA, Wilke CO. 2008. Mistranslation-induced protein mis-
folding as a dominant constraint on coding-sequence evolution. Cell
134(2): 341–352.

Duret L, Galtier N. 2009. Biased gene conversion and the evolution of
mammalian genomic landscapes. Annu Rev Genomics Hum Genet.
10:285–311.

Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg
J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al. 2014.
Analysis of the human tissue-specific expression by genome-wide
integration of transcriptomics and antibody-based proteomics. Mol
Cell Proteomics. 13(2): 397–406.

Fiston-Lavier AS, Singh ND, Lipatov M, Petrov DA. 2010. Drosophila
melanogaster recombination rate calculator. Gene 463(1–2):
18–20.

Fletcher W, Yang Z. 2010. The effect of insertions, deletions, and align-
ment errors on the branch-site test of positive selection. Mol Biol
Evol. 27(10): 2257–2267.

Fryxell KJ, Zuckerkandl E. 2000. Cytosine deamination plays a primary
role in the evolution of mammalian isochores. Mol Biol Evol. 17(9):
1371–1383.

Fullerton SM, Bernardo Carvalho A, Clark AG. 2001. Local rates of re-
combination are positively correlated with GC content in the hu-
man genome. Mol Biol Evol. 18(6): 1139–1142.

Gharib WH, Robinson-Rechavi M. 2013. The branch-site test of positive
selection is surprisingly robust but lacks power under synonymous
substitution saturation and variation in GC. Mol Biol Evol. 30(7):
1675–1686.

Gil M, Zanetti MS, Zoller S, Anisimova M. 2013. CodonPhyML: fast
maximum likelihood phylogeny estimation under codon substitu-
tion models. Mol Biol Evol. 30(6): 1270–1280.

Glemin S, Arndt PF, Messer PW, Petrov D, Galtier N, Duret L. 2015.
Quantification of GC-biased gene conversion in the human genome.
Genome Res. 25(8): 1215–1228.

Goldman N, Yang Z. 1994. A codon-based model of nucleotide substi-
tution for protein-coding DNA sequences. Mol Biol Evol. 11(5):
725–736.

Gossmann TI, Keightley PD, Eyre-Walker A. 2012. The effect of variation
in the effective population size on the rate of adaptive molecular
evolution in eukaryotes. Genome Biol Evol. 4(5): 658–667.

Davydov et al. . doi:10.1093/molbev/msz048 MBE

1330

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz048#supplementary-data
https://evolbiol.peercommunityin.org/
http://www.vital-it.ch
http://www.vital-it.ch


Guharoy M, Chakrabarti P. 2005. Conservation and relative importance
of residues across protein-protein interfaces. Proc Natl Acad Sci U S
A. 102(43): 15447–15452.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O.
2010. New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0.
Syst Biol. 59(3): 307–321.

Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting
by a molecular clock of mitochondrial DNA. J Mol Evol. 22(2):
160–174.

Hedges SB, Dudley J, Kumar S. 2006. TimeTree: a public knowledge-base
of divergence times among organisms. Bioinformatics 22(23):
2971–2972.

Hellmann I, Ebersberger I, Ptak SE, Paabo S, Przeworski M. 2003. A neutral
explanation for the correlation of diversity with recombination rates
in humans. Am J Hum Genet. 72(6): 1527–1535.

Hellmann I, Mang Y, Gu Z, Li P, de la Vega FM, Clark AG, Nielsen R. 2008.
Population genetic analysis of shotgun assemblies of genomic
sequences from multiple individuals. Genome Res. 18(7): 1020–1029.

Hodgkinson A, Eyre-Walker A. 2011. Variation in the mutation rate
across mammalian genomes. Nat Rev Genet. 12(11): 756–766.

Hwang DG, Green P. 2004. Bayesian Markov chain Monte Carlo se-
quence analysis reveals varying neutral substitution patterns in
mammalian evolution. Proc Natl Acad Sci U S A. 101(39):
13994–14001.

Jørgensen FG, Schierup MH. 2009. Increased rate of human mutations
where DNA and RNA polymerases collide. Trends Genet. 25(12):
523–527.

Keightley PD, Lercher MJ, Eyre-Walker A. 2005. Evidence for widespread
degradation of gene control regions in hominid genomes. PLoS Biol.
3(2): e42.

Keightley PD, Trivedi U, Thomson M, Oliver F, Kumar S, Blaxter ML.
2009. Analysis of the genome sequences of three Drosophila mela-
nogaster spontaneous mutation accumulation lines. Genome Res.
19(7): 1195–1201.

Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E. 2010.
Genome-wide measurement of RNA secondary structure in yeast.
Nature 467(7311): 103–107.

Komljenovic A, Roux J, Wollbrett J, Robinson-Rechavi M, Bastian FB.
2018. BgeeDB, an R package for retrieval of curated expression
datasets and for gene list expression localization enrichment tests
[version 2; peer review: 2 approved, 1 approved with reservations].
F1000Research 2018, 5:2748.

Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G,
Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, et al.
2012. Rate of de novo mutations and the importance of father’s
age to disease risk. Nature 488(7412): 471–475.

Koonin EV, Wolf YI. 2010. Constraints and plasticity in genome and
molecular-phenome evolution. Nat Rev Genet. 11(7): 487–498.

Kosakovsky Pond SL, Murrell B, Fourment M, Frost SD, Delport W,
Scheffler K. 2011. A random effects branch-site model for detecting
episodic diversifying selection. Mol Biol Evol. 28(11): 3033–3043.

Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R,
Siepel A. 2008. Patterns of positive selection in six Mammalian
genomes. PLoS Genet. 4(8): e1000144.

Kryuchkova-Mostacci N, Robinson-Rechavi M. 2015. Tissue-specific evo-
lution of protein coding genes in human and mouse. PLoS One 10(6):
e0131673.

Kudla G, Murray AW, Tollervey D, Plotkin JB. 2009. Coding-sequence
determinants of gene expression in Escherichia coli. Science
324(5924): 255–258.

Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site
heterogeneities in the amino-acid replacement process. Mol Biol
Evol. 21(6): 1095–1109.

Leffler EM, Gao Z, Pfeifer S, Segurel L, Auton A, Venn O, Bowden R,
Bontrop R, Wall JD, Sella G, et al. 2013. Multiple instances of ancient
balancing selection shared between humans and chimpanzees.
Science 339(6127): 1578–1582.

Lercher MJ, Hurst LD. 2002. Human SNP variability and mutation rate
are higher in regions of high recombination. Trends Genet. 18(7):
337–340.

Li JJ, Huang H, Bickel PJ, Brenner SE. 2014. Comparison of D. melanogaster
and C. elegans developmental stages, tissues, and cells by
modENCODE RNA-seq data. Genome Res. 24(7): 1086–1101.

Lupold S, Manier MK, Puniamoorthy N, Schoff C, Starmer WT, Luepold
SH, Belote JM, Pitnick S. 2016. How sexual selection can drive the
evolution of costly sperm ornamentation. Nature 533(7604):
535–538.

Majewski J, Ott J. 2002. Distribution and characterization of regulatory
elements in the human genome. Genome Res. 12(12): 1827–1836.

Marais G, Mouchiroud D, Duret L. 2003. Neutral effect of recombination
on base composition in Drosophila. Genet Res. 81(2): 79–87.

Markova-Raina P, Petrov D. 2011. High sensitivity to aligner and high rate
of false positives in the estimates of positive selection in the 12
Drosophila genomes. Genome Res. 21(6): 863–874.

Mattick JS, Makunin IV. 2006. Non-coding RNA. Hum Mol Genet. 15 Spec
No 1:17–29.

Mayrose I, Doron-Faigenboim A, Bacharach E, Pupko T. 2007. Towards
realistic codon models: among site variability and dependency of
synonymous and non-synonymous rates. Bioinformatics 23(13):
i319–i327.

Moretti S, Laurenczy B, Gharib WH, Castella B, Kuzniar A, Schabauer H,
Studer RA, Valle M, Salamin N, Stockinger H, et al. 2014. Selectome
update: quality control and computational improvements to a data-
base of positive selection. Nucleic Acids Res. 42(D1): D917–D921.

Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, Eren
K, Pollner T, Martin DP, Smith DM, et al. 2015. Gene-wide identifi-
cation of episodic selection. Mol Biol Evol. 32(5): 1365–1371.

Muse SV, Gaut BS. 1994. A likelihood approach for comparing synony-
mous and nonsynonymous nucleotide substitution rates, with ap-
plication to the chloroplast genome. Mol Biol Evol. 11(5): 715–724.

P�al C, Papp B, Hurst LD. 2001. Highly expressed genes in yeast evolve
slowly. Genetics 158(2): 927–931.

Pal C, Papp B, Lercher MJ. 2006. An integrated view of protein evolution.
Nat Rev Genet. 7(5): 337–348.

Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. 2010.
GUIDANCE: a web server for assessing alignment confidence scores.
Nucleic Acids Res. 38(Web Server): W23–W28.

Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and
consequences of codon bias. Nat Rev Genet. 12(1): 32–42.

Pond SK, Muse SV. 2005. Site-to-site variation of synonymous substitu-
tion rates. Mol Biol Evol. 22(12): 2375–2385.

Pond SL, Frost SD, Muse SV. 2005. HyPhy: hypothesis testing using phy-
logenies. Bioinformatics 21(5): 676–679.

Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM, Weissman JS,
Koller D. 2014. Causal signals between codon bias, mRNA struc-
ture, and the efficiency of translation and elongation. Mol Syst
Biol. 10:770.

Ptak SE, Hinds DA, Koehler K, Nickel B, Patil N, Ballinger DG, Przeworski
M, Frazer KA, Paabo S. 2005. Fine-scale recombination patterns differ
between chimpanzees and humans. Nat Genet. 37(4): 429–434.

Ratnakumar A, Mousset S, Glemin S, Berglund J, Galtier N, Duret L,
Webster MT. 2010. Detecting positive selection within genomes:
the problem of biased gene conversion. Philos Trans R Soc Lond B
Biol Sci. 365(1552): 2571–2580.

Rocha EP, Danchin A. 2004. An analysis of determinants of amino
acids substitution rates in bacterial proteins. Mol Biol Evol.
21(1): 108–116.

Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A,
Chiari Y, Dernat R, Duret L, Faivre N, et al. 2014. Comparative pop-
ulation genomics in animals uncovers the determinants of genetic
diversity. Nature 515(7526): 261–263.

Roux J, Liu J, Robinson-Rechavi M. 2017. Selective constraints on coding
sequences of nervous system genes are a major determinant of
duplicate gene retention in vertebrates. Mol Biol Evol. 34(11):
2773–2791.

Comparative Analysis of Codon Models . doi:10.1093/molbev/msz048 MBE

1331



Rubinstein ND, Doron-Faigenboim A, Mayrose I, Pupko T. 2011.
Evolutionary models accounting for layers of selection in
protein-coding genes and their impact on the inference of positive
selection. Mol Biol Evol. 28(12): 3297–3308.

Rubinstein ND, Pupko T. 2012. Detection and analysis of conservation at
synonymous sites. In: Codon evolution: mechanisms and models. New
York: Oxford University Press Inc., p. 218–228.

Rudolph KL, Schmitt BM, Villar D, White RJ, Marioni JC, Kutter C,
Odom DT. 2016. Codon-driven translational efficiency is stable
across diverse mammalian cell states. PLoS Genet. 12(5):
e1006024.

Russo CA, Mello B, Fraz~ao A, Voloch CM. 2013. Phylogenetic analysis and
a time tree for a large drosophilid data set (Diptera: Drosophilidae).
Zool J Linn Soc. 169(4): 765–775.

Scheffler K, Martin DP, Seoighe C. 2006. Robust inference of positive
selection from recombining coding sequences. Bioinformatics 22(20):
2493–2499.

Segurel L, Wyman MJ, Przeworski M. 2014. Determinants of mutation
rate variation in the human germline. Annu Rev Genomics Hum
Genet. 15:47–70.

Serbus LR, Sullivan W. 2007. A cellular basis for Wolbachia recruitment to
the host germline. PLoS Pathog. 3(12): e190.

Spielman SJ, Wan S, Wilke CO. 2016. A comparison of one-rate and two-
rate inference frameworks for site-specific dN/dS estimation.
Genetics 204(2): 499–511.

Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin
SM, Sunyaev SR. 2009. Human mutation rate associated with DNA
replication timing. Nat Genet. 41(4): 393–395.

Storey JD, Taylor JE, Siegmund D. 2004. Strong control, conservative
point estimation and simultaneous conservative consistency of false
discovery rates: a unified approach. J R Stat Soc Series B Stat
Methodol. 66(1): 187–205.

Studer RA, Penel S, Duret L, Robinson-Rechavi M. 2008. Pervasive pos-
itive selection on duplicated and nonduplicated vertebrate protein
coding genes. Genome Res. 18(9): 1393–1402.

Supek F, Lehner B. 2015. Differential DNA mismatch repair underlies
mutation rate variation across the human genome. Nature
521(7550): 81–84.

Venkat A, Hahn MW, Thornton JW. 2018. Multinucleotide mutations
cause false inferences of lineage-specific positive selection. Nat Ecol
Evol. 2(8): 1280–1288.

Wagenmakers E-J, Farrell S. 2004. AIC model selection using Akaike
weights. Psychon Bull Rev. 11(1): 192–196.

Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of
invertebrate biology. Nat Rev Microbiol. 6(10): 741–751.

White H. 1980. A heteroskedasticity-consistent covariance matrix esti-
mator and a direct test for heteroskedasticity. Econometrica 48(4):
817–838.

Yang JR, Zhuang SM, Zhang J. 2010. Impact of translational error-
induced and error-free misfolding on the rate of protein evolution.
Mol Syst Biol. 6:421.

Yang Z. 2014. Molecular evolution: a statistical approach. New
York:Oxford University Press. p. 61.

Yang Z, Bielawski JP. 2000. Statistical methods for detecting molecular
adaptation. Trends Ecol Evol (Amst.). 15(12): 496–503.

Yang Z, dos Reis M. 2011. Statistical properties of the branch-site test of
positive selection. Mol Biol Evol. 28(3): 1217–1228.

Yang Z, Nielsen R, Goldman N, Pedersen AM. 2000. Codon-substitution
models for heterogeneous selection pressure at amino acid sites.
Genetics 155(1): 431–449.

Yang Z, Wong WS, Nielsen R. 2005. Bayes empirical Bayes inference of
amino acid sites under positive selection. Mol Biol Evol. 22(4):
1107–1118.

Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A,
Greenwold MJ, Meredith RW, et al. 2014. Comparative genomics
reveals insights into avian genome evolution and adaptation. Science
346(6215): 1311–1320.

Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an improved branch-site
likelihood method for detecting positive selection at the molecular
level. Mol Biol Evol. 22(12): 2472–2479.

Davydov et al. . doi:10.1093/molbev/msz048 MBE

1332


	msz048-TF1
	msz048-TF2
	msz048-TF3
	msz048-TF4
	msz048-TF5
	msz048-TF6

