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Abstract 

Background:  Glioma accounts for a large proportion of cancer, and an effective treatment for this disease is still 
lacking because of the absence of specific driver molecules. Current challenges in the treatment of glioma are the 
accurate and timely diagnosis of brain glioma and targeted treatment plans. To investigate the diagnostic biomark-
ers and prospective role of miRNAs in the tumorigenesis and progression of glioma, we analyzed the expression of 
miRNAs and key genes in glioma based on The Cancer Genome Atlas database.

Methods:  Of the 701 cases that were downloaded, five were normal and 696 were glioma. Then, 1626 differentially 
expressed genes were identified, and 173 aberrantly expressed miRNAs were calculated by edgeR. GO and KEGG 
pathway enrichment analyses were performed using Cytoscape software. A coexpression network was built by 
weighted correlation network analysis (WGCNA). A cell scratch test and transwell, cell apoptosis and cell cycle assays 
were performed to validate the function of hsa-let-7b-5p.

Results:  Based on crosstalk genes in the KEGG, PPI network, and WGCNA analyses, PLK1, CCNA2, cyclin B2 (CCNB2), 
and AURKA were screened as candidate diagnostic marker genes. The survival analysis revealed that high mRNA 
expression of PLK1, CCNA2, and AURKA was significantly associated with poor overall survival. Furthermore, hsa-
let-7b-5p was identified as a core miRNA in the regulation of candidate genes involved in glioma development. We 
confirmed that hsa-let-7b-5p could inhibit the migration, invasion, and cell cycle of glioma cells.

Conclusions:  This study provides four potential biomarkers for the diagnosis of glioma, offers a potential explanation 
of its pathogenesis, and proposes hsa-let-7b-5p as a therapeutic target.
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Background
As the most common type of intracranial primary tumor, 
glioma has a poor prognosis due to limitations to its diag-
nosis [1]. Currently, glioma therapy is often composed 
of a combination of surgery, radiotherapy, and chemo-
therapy [2, 3]. Accurate and timely diagnosis of brain 
glioma and targeted treatment plans are the current chal-
lenges in the treatment of glioma. With the continuous 
expansion and deepening of clinical research, biological 

markers and molecular pathology can facilitate the diag-
nosis and treatment of various diseases [4]. Given the 
limitations in the diagnosis of glioma, the pathological 
tumor types, tumor biological behaviors, prognosis, and 
postoperative clinical treatment of patients with glioma 
remain unknown. Therefore, the study and discovery of 
glioma biomarkers can provide important references for 
the accurate diagnosis and treatment of glioma.

Previous studies on glioma have revealed many molec-
ular markers, such as IDH, 1p19q, MGMT, sarcomar-
coma proto oncogene B, telomerase reverse transcriptase 
tert, and epidermal growth factor receptor [5–7]. Among 
these molecular markers, IDH1, 1p19q, and MGMT 
methylation are closely associated with the prognosis and 
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chemotherapy sensitivity of glioma patients [8–11]. How-
ever, these markers have limited sensitivity and accu-
racy [12]. Therefore, specific and novel early diagnostic 
markers are necessary to understand the pathogenesis of 
glioma.

At present, the study of gene expression and muta-
tion in glioma has become an essential way to explore 
the development, progression, and prognosis of glioma. 
Thus, the identification of potential therapeutic targets 
for the treatment of glioma is desirable. A large num-
ber of abnormally expressed miRNAs can be found in 
tumor tissues or cells. MiRNAs are involved in the post-
transcriptional regulation of genes, thus inhibiting the 
expression of target genes and indirectly affecting various 
molecules in the cell signaling pathway, leading to abnor-
mal tumor cell survival pathways and tumor cell death.

High-throughput sequencing and bioinformatics anal-
ysis are important tools for cancer research, including 
early diagnosis of cancer, grading of cancer, and progno-
sis prediction.

In the present study, a microarray dataset of nor-
mal brain and glioma tissues was downloaded from the 
TCGA database, and differentially expressed genes were 
analyzed using edgeR [13, 14]. Bioinformatics analysis of 
DEGs was performed to identify potential genes involved 
in glioma development. Then, GO analysis, including 
of the biological processes (BPs), molecular functions 
(MFs), cellular components (CCs), and KEGG path-
ways, of the DEGs was performed to reveal the differ-
ential functions and pathways of glioma compared with 
normal tissues [15]. Moreover, we established the PPI 
network of the DEGs and WGCNA coexpression net-
work and selected hub genes with a high degree of con-
nectivity [16–18]. The results showed that hsa-let-7b-5p 
could regulate target genes, including cell cycle protein 
A2 (CCNA2), CCNB2, PLK1, and AURKA, and further 
affect the progress of glioma. This study may provide 
novel insights into the molecular and biological processes 
and targets of glioma.

Methods
Reagents
The hsa-let-7b-5p mimic was purchased from Biom-
ics Bitotechnologies Co., Ltd. (Jiangsu, China). Negative 
control nucleotides were purchased from GenePharm, 
Inc. (Sunnyvale, CA, USA). The reagents used for cell 
culture were purchased from Gibco-BRL (Carlsbad, CA, 
USA).

TCGA data information
The glioma data set was downloaded from the Broad 
GDAC Firehouse website (http://gdac.broad​insti​tute.
org/). The database contained 5 normal samples and 

696 glioma samples. The edgeR packages of Bioconduc-
tor analysis tools were applied to detect the DEGs, using 
FDR < 0.05 and |logFC| ≥ 2 as cut-off criteria. A total of 
1626 DEGs were calculated, including 601 upregulated 
genes and 1025 downregulated genes.

GO function and KEGG pathway enrichment analysis 
of DEGs
Candidate DEG functions were analyzed using the 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID, https​://david​.ncifc​rf.gov/) and the 
ClueGO plug-in of Cytoscape. KEGG pathway enrich-
ment analysis was carried out and visualized using 
ClueGO and CluePedia with P < 0.05 as the cut-off 
criterion.

Integration of the protein–protein interaction (PPI) 
network
A DEG-encoded PPI network was developed by using the 
online database STRING (http://strin​g-db.org). A protein 
interaction relationship network table was downloaded 
and visualized using Cytoscape software.

Module selection from the PPI network
The CentiScape plug-in was used to calculate the node 
degree. The molecular complex detection (MCODE) 
plug-in was employed to find clusters in the whole PPI 
network with a node score cut-off = 0.2, k-core = 2, and 
maximum depth = 100 as cut-off criteria. Proteins in the 
central nodes might have important physiological regu-
latory functions and might be key candidate genes. Sub-
sequently, the genes in the most significant module were 
extracted and subjected to GO function and KEGG path-
way enrichment analysis at a significance of P < 0.05.

WGCNA
WGCNA was used for the scale-free network topology 
analysis of microarray expression data of glioma samples. 
Standard WGCNA parameters were used for analysis, 
with the exceptions of soft-thresholding power and the 
deep split. By using WGCNA, a coexpression module 
of genes related to sample characteristics was quickly 
extracted from the glioma data for subsequent analysis. 
In brief, genes with expression correlation were clus-
tered into a module by calculating the expression correla-
tion between genes. To broadly identify the coexpressed 
genes, all genes were used for analysis. The purpose of 
the module cluster analysis was to integrate the genes 
obtained by WGCNA with the key genes previously ana-
lyzed to further narrow the scope of key genes. The black 
cluster module is the most suitable for narrowing the 
range of key genes. A bridge between sample character-
istics and changes in gene expression was constructed. A 
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total of 109 genes in the black model were extracted and 
further subjected to Venn analysis with crosstalk genes of 
KEGG pathways and hub genes of PPI. The file content 
interaction relationships of 109 genes was exported and 
visualized by Cytoscape.

miRNA–mRNA regulatory interaction networks
A miRNA–mRNA regulatory network was constructed 
using CyTargetLinker of Cytoscape. Briefly, a file was cre-
ated containing the name of the miRNA and the name of 
the key genes and was imported into CytoScape. Then, an 
experimentally validated microRNA–target interaction 
relationship was downloaded from miRTarBase (http://
proje​cts.bigca​t.unima​as.nl/cytar​getli​nker/regin​s/) with 
410,602 interactions, 2645 microRNAs, and 14,797 tar-
get genes. Then, the downloaded miRNA database was 
imported into the extend network of CyTargetLinker. 
According to the constructed miRNA–mRNA network, 
large amounts of prediction information can be acquired 
when predicting miRNA target genes. Here, miRNAs 
that could bind to most target genes were selected as 
key miRNAs. Other redundant information was further 
removed to construct the final miRNA–mRNA network.

Comparison of the expression level and correlation 
coefficient of candidate genes
The mRNA expression levels of PLK1, CCNA2, CCNB2, 
and AURKA were analyzed using the GEPIA (http://
gepia​.cance​r-pku.cn/index​.html) web server. A boxplot 
was created to visualize the expression level.

Expression level of candidate genes in normal brain tissues 
and glioma specimens
The protein expression levels of PLK1, CCNA2, CCNB2, 
and AURKA in normal brain tissues and glioma speci-
mens were investigated, and images were obtained from 
the Human Protein Atlas (http://www.prote​inatl​as.org) 
online database.

Survival analysis of PLK1, CCNA2 and AURKA
The clinical data were downloaded from the TCGA data-
base. Cases were divided into two groups according to 
gene expression. Survival analyses were performed using 
GraphPad Prism 6.

Cell culture and transfection
U118MG cells were cultured in Dulbecco’s Modified 
Eagle’s Medium supplemented with 10% fetal bovine 
serum, penicillin (100 IU/mL), and streptomycin (0.1 mg/
mL) in a humidified incubator at 37  °C in a 5% CO2 
atmosphere.

Cells were plated in 6-well plates (3 × 105 cells per 
plate) overnight prior to transfection. Transfection was 

performed using Lipofectamine 2000 reagent (Invitro-
gen, Carlsbad, USA) in accordance with the manufactur-
er’s protocol.

RNA isolation and quantitative real‑time polymerase chain 
reaction analysis
At 48  h after transfection with hsa-let-7b-5p mimic or 
negative control nucleotides, cells were collected and 
washed with PBS. Then, total RNA was isolated using 
the RNAprep pure cell/Bacteria kit (Tiangen Biotech Co., 
Ltd, Beijing, China) in accordance with the manufactur-
er’s instructions.

For miRNA expression detection, miRNA was reverse 
transcribed with miScript II RT Kit (Qiagen). The rela-
tive expression levels of hsa-let-7b-5p were determined 
with the miScript SYBR Green PCR Kit (Qiagen) using 
a QuantStudio TM6 Flex real-time PCR system (Life 
Technologies), and hsa-let-7b-5p (MS00003122). RNU6 
(MS00029204) was used as an internal control miRNA.

For mRNA expression detection, the GoScript™ 
Reverse Transcription System (Promega Corporation, 
Madison, USA) was used to reverse transcribe RNA tem-
plates, and the relative expression levels of mRNAs were 
determined with GoTaq qPCR Master mix (Promega 
Corporation) using a QuantStudio TM6 Flex real-time 
PCR system. GAPDH was used as an endogenous control 
for mRNA expression. The primer sequences used in the 
current study are shown in Additional file 1: Table S1.

A comparative threshold cycle method (2−ΔΔCT) was 
used to calculate the relative expression of miRNAs and 
mRNAs.

Wound healing assay
Wound healing (scratch) assays were performed to detect 
cell migration. U118MG cells were seeded in 6-well 
plates and incubated to generate confluent cultures. At 
24 h after transfection with hsa-let-7b-5p mimic or nega-
tive control nucleotides, scratches were made in the cell 
monolayer using a 200-μL sterile pipette tip. Then, the 
cells were washed with PBS buffer. Images of cell migra-
tion at the edge of the scratch were obtained at 0, 24, and 
48 h.

Cell invasion assay
The invasion assay was carried out with a transwell cham-
ber inserted with a PET filter membrane (8  μM pores, 
Corning, America) in 24-well plates (Corning, Amer-
ica). The top side of the filter was coated with Matrigel. 
At 24  h after transfection with hsa-let-7b-5p mimic or 
negative control nucleotides, the cells were collected and 
resuspended in serum-free medium (1 × 105/mL). Then, 
200 μL was added to the top well. The lower chamber was 
filled with 600 μL of medium containing 10% fetal bovine 
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serum. After incubation at 37  °C for 24 h, the cells that 
crossed to the underside of the PET filter membrane were 
fixed with cold methanol for 30  min, stained with 0.1% 
crystal violet, and then counted under a microscope.

Flow cytometry analysis
Flow cytometry analysis was performed using a BD LSR-
Fortessa flow cytometer (BD Biosciences, San Jose, CA, 
USA) to determine the distribution of cells in the cell 
cycle and the proportion of apoptotic cells at 48 h after 
transfection with hsa-let-7b-5p mimic or negative control 
nucleotides. In brief, cells were collected and then fixed 
in 70% ethanol at 4 °C for 2 h. Then, the cells were treated 
with a 500 μL PI/RNase a working dyeing solution for 1 h 
at room temperature. Detailed information can be found 
in the cell cycle detection kit protocol (KeyGEN biotech, 
Nanjing, China). For examination of apoptosis, cells were 
stained using an Annexin V-FITC/PI apoptosis detection 
kit in accordance with the manufacturer’s protocol. All 
samples were analyzed with the FACScalibur flow cytom-
eter, and data were analyzed with Flowjo 7.6.1 software.

Statistical analysis
Statistical analyses were performed using GraphPad 
Prism 6. Statistically significant differences were calcu-
lated using the Student’s t-test, Pearson’s correlation, and 
Kaplan–Meier analysis, as appropriate. Statistical signifi-
cance was considered at P < 0.05. For all data, *P < 0.05, 
**P < 0.01, ***P < 0.001.

Results
Identification of DEGs based on TCGA data in glioma
A total of 17,746 genes from 5 normal samples and 696 
glioma samples were obtained. By using edgeR, the 
expression level of each gene was log2 transformed. 
Following the calculation criteria, 1626 DEGs (601 
upregulated and 1025 downregulated) were identified 
(Additional file  1: Table  S2). As shown in the volcano 
plot, red dots indicate upregulated genes, and green dots 
indicate downregulated genes. Black dots show genes 
with expression of |log2FC| < 2 (Fig.  1a). We performed 
hierarchical cluster analysis to obtain an overview of the 
expression profile for the DEGs in the normal and glioma 
cases (Fig. 1b).

GO function and KEGG pathway enrichment analysis 
and crosstalk gene screening
For a more in-depth understanding of the selected DEGs, 
GO functional enrichment analysis was applied using 
DAVID [19, 20], and KEGG pathway enrichment analysis 
was performed using ClueGo of Cytoscape [21, 22]. The 
upregulated DEGs were particularly enriched in cell divi-
sion, mitotic nuclear division, sister chromatid cohesion, 

and chromosome segregation (Fig.  2). Moreover, the 
downregulated genes were mainly involved in chemical 
synaptic transmission, neurotransmitter secretion, the 
G-protein coupled receptor signaling pathway, coupling 
to cyclic nucleotide secondary messenger, and the regu-
lation of ion transmembrane transport. The top five GO 
pathways for the upregulated and downregulated DEGs 
are shown in Additional file 1: Table S3.

Based on the KEGG pathway enrichment analysis, 
the upregulated DEGs were enriched in the p53 signal-
ing pathway, cellular senescence, transcriptional mis-
regulation in cancer, progesterone-mediated oocyte 

Fig. 1  a Volcano plot of the genes between normal brain and 
glioma samples. Red dots indicate upregulated genes, and green 
dots indicate downregulated genes. Black dots show the genes with 
expression of |log2FC| < 2. The Y axis represents an FDR, and the X axis 
represents the value of log2FC. b Hierarchical clustering based on 
the expression profiles of significantly differentially expressed genes 
(DEGs)
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maturation, and the cell cycle (Fig.  3a). The downregu-
lated DEGs were associated with the synaptic vesicle 
cycle, GABAergic synapse, calcium signaling pathway, 
cAMP signaling pathway, and neuroactive ligand–recep-
tor interactions (Fig.  3b). The top KEGG pathways for 
the upregulated and downregulated DEGs are shown in 
Additional file 1: Table S4. Furthermore, the relationship 
between genes and pathways could be clearly observed in 
pathways, and all the crosstalk genes are shown in Addi-
tional file 1: Table S5. Crosstalk genes are associated with 
more than two pathways and serve as a bridge. Thus, they 
warrant further study.

Key candidate genes and pathway identification with DEG 
PPI and modular analyses
PPI relationships of the 1626 DEGs were established 
using STRING. A combined score of > 0.4 was selected 
in the PPI networks. Finally, 10,806 PPI relationships and 
1310 nodes were obtained. The degree of connectivity of 
the DEGs was calculated using the CentiScape 2.2 plug-
in module of Cytoscape. DEGs with degree of connectiv-
ity > 100 were selected as the hub genes, which possibly 
play an important role in glioma progression and can 
be used as diagnostic markers. The hub genes, of which 

there were > 100 in the PPI network according to their 
degrees, are shown in Additional file 1: Table S6.

The most significant submodules of the DEGs were 
selected using the MCODE plug-in module to under-
stand further the biological significance of the PPI net-
work. As shown in Fig. 4a, the most significant module 
(MCODE score = 67.370) was constructed with 74 
nodes and 2459 edges (Fig.  4a). Further GO pathway 
enrichment analysis of the biological processes showed 
that the genes in the most significant module were 
mainly associated with mitotic nuclear division, cell 
division, sister chromatid cohesion, chromosome segre-
gation, cell proliferation, and DNA replication (Fig. 4b). 
Cell component analysis indicated that the genes were 
strongly enriched in the nucleoplasm, chromosome, 
centromeric region, condensed chromosome kine-
tochore, spindle, and kinetochore. Molecular function 
analysis showed that the genes were mainly involved 
in protein binding, ATP binding, microtubule bind-
ing, microtubule motor activity, and chromatin bind-
ing. KEGG analysis showed that the genes were mainly 
enriched in the p53 signaling pathway, cell cycle, oocyte 
meiosis, and progesterone-mediated oocyte maturation 
(Fig. 4c).

Fig. 2  GO functional enrichment analysis of upregulated DEGs
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Gene–network modules identified by WGCNAs
Gene coexpression networks were collected by obtaining 
pathological information and relative gene expression. 
The experimental results demonstrated that all genes 
were clustered into 34 modules (Fig.  5a, b). Different 

gene coexpression modules and the patient’s age, sex, 
survival status, recurrence, and survival time were fur-
ther selected to draw a clustering heat map (Fig. 5c). To 
further narrowing the range of key genes, the black mod-
ule genes were extracted and performed Venn analysis to 

Fig. 3  a KEGG pathway enrichment analysis of upregulated genes. b KEGG pathway enrichment analysis of downregulated genes
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select hub key genes in glioma. Finally, the genes CDK1, 
PLK1, CCNA2, CCNB2, and AURKA were selected. 
Hub gene network analysis of the black module was 

performed, and those five candidate genes are presented 
in Fig. 5f (pink nodes). Then, the key controlling (candi-
date) genes in the modular network were identified.

Fig. 4  Protein–protein interaction network of the most significant module. a Most significant module and hub genes of the PPI network. b 
Enriched biological processes in the most significant DEG module. c Enriched pathways of the most significant module
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hsa‑let‑7b‑5p regulated the biomolecular network
Target microRNAs were searched using Cytoscape soft-
ware to analyze the interplay between CDK1, PLK1, 
CCNA2, CCNB2, and AURKA and microRNAs. miRNA 
expression data were downloaded from the TCGA data-
base. The expression level of each miRNA was calcu-
lated and log2 transformed using DESeq R. A total of 173 
aberrantly expressed miRNAs (84 upregulated and 89 
downregulated) in glioma tissues compared with normal 
brain tissues were achieved (Additional file 1: Table S7). 
In the volcano plot, red dots indicate upregulated genes, 
and green dots indicate downregulated genes. Black dots 
show genes with an expression of |log2FC| < 1 (Fig.  6a). 
Hierarchical cluster analysis was further performed to 
obtain an overview of the expression profile for differ-
entially expressed miRNAs in normal and glioma cases 
(Fig. 6b). Using the CyTargetLinker plug-in of Cytoscape, 
we constructed the miRNA–mRNA expression regula-
tory network. The miRNA data were downloaded from 
miRTarBase (http://mirta​rbase​.mbc.nctu.edu.tw/), a 
database that curates experimentally validated micro-
RNA–target interactions. The mirtarbase-hsa-6.1 data-
base was selected, including 2645 microRNAs, 14,797 
target genes, and 410,602 interactions. The final regu-
latory relationship is shown in Fig.  6c, and the results 
showed that hsa-let-7b-5p could modulate the expression 
of CCNB2, CCNA2, PLK1, and AURKA simultaneously 
(Fig. 6c).

Validation of the DEGs in the human atlas dataset
The mRNA expression levels of PLK1, CCNA2, CCNB2, 
and AURKA in normal brain tissues and glioma cancer 
specimens were investigated by GEPIA (Fig. 7a). Immu-
nohistochemical and staining index analyses showed 
that the protein expression levels of PLK1, CCNA2, 
CCNB2, and AURKA were higher in glioma cancer tis-
sues than in nontumor tissues. Images were obtained 
from the Human Protein Atlas (http://www.prote​inatl​
as.org) online database (Fig.  7b). Interestingly, glioma 
cases with high PLK1 expression demonstrated a poorer 

survival compared with those with low PLK1 expression 
(P = 0.0029, Fig. 7c). Similarly, high expression of CCNA2 
and AURKA was associated with a worse overall survival 
(OS) of glioma patients (Fig. 7d, e). The expression level 
of CCNB2 was not associated with the OS of patients 
with glioma.

hsa‑let‑7b‑5p negatively regulated PLK1, CCNA2, CCNB2, 
and AURKA; inhibited the migration and invasion 
of U118MG cells; and induced apoptosis and altered cell 
cycle dynamics of U118MG cells
We transfected U118MG cells with negative control 
nucleotides or hsa-let-7b-5p mimic to study the role of 
hsa-let-7b-5p in regulating PLK1, CCNA2, CCNB2, and 
AURKA. Forty-eight hours after transfection with con-
trol nucleotides or mimic, the expression levels of hsa-
let-b-5p, PLK1, CCNA2, CCNB2, and AURKA were 
determined by qRT-PCR analysis. The level of hsa-let-
7b-5p increased in the cells transfected with hsa-let-
7b-5p mimic (12.30 ± 0.55) compared with that in the 
negative control group (0.98 ± 0.13) (P < 0.001) (Fig.  8a). 
The mRNA expression levels of PLK1, CCNA2, CCNB2, 
and AURKA were significantly lower in the cells trans-
fected with hsa-let-7b-5p mimic (0.60 ± 0.06, 0.81 ± 0.03, 
0.83 ± 0.07, and 0.69 ± 0.04, respectively) than in the 
negative control group (1.00 ± 0.01) (P < 0.001, P < 0.01, 
P < 0.05, and P < 0.001, respectively). These results indi-
cated that hsa-let-7b-5p negatively regulated the expres-
sion of PLK1, CCNA2, CCNB2, and AURKA (Fig. 8b).

To assess the effect of hsa-let-7b-5p on the migration 
of U118MG cells in  vitro, we transfected the U118MG 
cells with negative control nucleotides or hsa-let-7b-5p 
mimic. After 0, 24, and 48 h, images were obtained of cell 
migration at the edge of the scratch (Fig. 8c). After 24 and 
48 h, the wound gap was markedly wider in the hsa-let-
7b-5p mimic group than in the negative control group. 
This result showed that hsa-let-7b-5p inhibited the motil-
ity of the U118MG cells in  vitro. Then, we investigated 
the effect of hsa-let-7b-5p on the invasion of U118MG 
cells by using Matrigel-coated transwell chambers. The 

(See figure on previous page.)
Fig. 5  a WGCNA dendrogram indicating the expression of different gene modules in all glioma samples. b Network heatmap plot to visualize 
the genetic correlation within the modules. c Module-sample feature correlation analysis. Sample features include age, gender, status, recurrence, 
and survival time. d Correlation analysis between 23 coexpression modules. e Venn analysis of the crosstalk genes of pathways and hub genes in 
the PPI network and coexpression genes in WGCNA. Five candidate genes were calculated, including CDK1, PLK1, CCNA2, CCNB2, and AURKA. f 
Coexpression network of 105 WGCNA genes. Five candidate genes are displayed in pink

Fig. 6  a Volcano plot of the miRNAs between normal brain and glioma samples. Red dots indicate upregulated genes, and green dots indicate 
downregulated genes. Black dots show the genes with expression of |log2FC| < 1. The Y axis represents an FDR, and the X axis represents the value 
of log2FC. b Hierarchical clustering based on the expression profiles of significantly differentially expressed miRNAs. c miRNA–mRNA regulatory 
interaction networks. The results show that hsa-let-7b-5p targets PLK1, CCNA2, CCNB2, and AURKA directly

(See figure on next page.)
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Fig. 7  a Expression levels of PLK1, CCNA2, CCNB2, and AURKA in normal and glioma samples. b PLK1, CCNA2, CCNB2, and AURKA expression 
levels and staining index in normal brain tissues and glioma cancer specimens. Images were obtained from the Human Protein Atlas (http://
www.prote​inatl​as.org) online database. c Survival curve between groups with low and high PLK1 expression. The red line represents cases with 
high PLK1 expression, and the green line represents cases with low PLK1 expression. d Survival curve between groups with low and high CCNA2 
expression. The red line represents cases with high CCNA2 expression, and the green line represents cases with low CCNA2 expression. e Survival 
curve between groups with low and high AURKA expression groups. The red line represents cases with high AURKA expression, and the green line 
represents cases with low AURKA expression. The X axis indicates overall survival time (days), and the Y axis indicates the present survival (%). The 
clinical data were downloaded from TCGA​

http://www.proteinatlas.org
http://www.proteinatlas.org
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number of cells that crossed to the Matrigel-coated filter 
membrane was significantly reduced in the hsa-let-7b-5p 
mimic group compared to that in the negative control 
group after 24 h (Fig. 8d).

U118MG cells were transfected with negative control 
nucleotides or hsa-let-7b-5p mimic to investigate the role 
of hsa-let-7b-5p in apoptosis by flow cytometry analysis 
with an Annexin V-FITC/PI apoptosis detection kit. At 
48 h posttransfection, cells were collected and analyzed in 
accordance with the manufacturer’s protocol. As shown 
in Fig.  8e, the total apoptosis rate of the U118MG cells 
transfected with hsa-let-7b-5p mimic (23.83% ± 2.51%) 
was significantly higher than that of the cells transfected 
with negative control nucleotides (15.84% ± 0.67%) 
(P < 0.05). The result indicated that overexpression of hsa-
let-7b-5p increased the apoptosis of U118MG cells. Then, 
we determined the effect of hsa-let-7b-5p overexpression 
on the U118MG cell cycle. Compared with the control 
group, overexpression of hsa-let-7b-5p increased the pro-
portion of cells in S phase and decreased the proportion 
of cells in G2 phase (Fig. 8f ). The results showed that hsa-
let-7b-5p could alter cell cycle dynamics in vitro.

Discussion
Glioma is the most common primary intracranial tumor 
[23–25]. Radical surgery combined with radiotherapy 
and chemotherapy is the basic means to treat glioma, 
but the treatment effect is not optimistic due to its easy 
recurrence and high mortality [25]. With continuous 
research and improved understanding of glioma in recent 
years, various treatment methods, such as gene therapy, 
immunotherapy, and molecular targeted therapy, have 
been proposed [26–30]. However, a method to cure gli-
oma is currently lacking. Early diagnosis of glioma and 
timely surgical treatment or intervention with medicine 
is an important means to prolong the life of patients with 
this disease [31, 32].

In this study, expression profile chip data of 696 gli-
oma samples and five normal samples were downloaded 
from the TCGA database. A total of 1626 DEGs were 
calculated. GO function and KEGG pathway analyses 
were performed to acquire an in-depth understanding of 
these DEGs. The GO analysis showed that the upregu-
lated DEGs were mainly involved in cell division, mitotic 
nuclear division, sister chromatid cohesion, embryonic 

skeletal system morphogenesis, anterior/posterior pat-
tern specification, chromosome segregation, and cell 
proliferation. The downregulated genes were involved in 
chemical synaptic transmission, neurotransmitter secre-
tion, G-protein coupled receptor signaling pathway, cou-
pling to cyclic nucleotide second messenger, regulation of 
ion transmembrane transport, potassium ion transport, 
and calcium ion transmembrane transport. Further-
more, the KEGG pathways of the upregulated genes were 
included in the cell cycle, transcriptional misregulation 
in cancer, bladder cancer, small cell lung cancer, the p53 
signaling pathway, and cellular senescence. Moreover, the 
downregulated DEGs were enriched in the calcium sign-
aling pathway, serotonergic synapse, taste transduction, 
neuroactive ligand–receptor interaction, synaptic vesicle 
cycle, and retrograde endocannabinoid signaling.

Analysis of the most significant module of the PPI net-
work showed that glioma was associated with the bio-
logical processes of mitotic nuclear division, cell division, 
sister chromatid cohesion, chromosome segregation, cell 
proliferation, DNA replication, and microtubule-based 
movement. KEGG pathway enrichment analysis for the 
most significant module was mainly involved in the cell 
cycle, oocyte meiosis, progesterone-mediated oocyte 
maturation, and the p53 signaling pathway.

Studies have shown that molecular target pathways, 
such as the growth factor pathway, Ras pathway, PI3K 
pathway, p53 pathway, and tumor metastasis invasion 
pathway, have great potential for the development of 
meaningful treatment strategies for glioma [33, 34]. The 
p53 pathway is one of the important pathways for the 
molecular pathogenesis of glioma. P53 can be divided 
into wild-type p53 and mutant p53. Wild-type p53 is an 
anti-oncogene that rapidly induces apoptosis in damaged 
cells, prevents cells with potentially cancerous poten-
tial, and exerts anticancer effects. Once wild-type p53 
is mutated, it no longer has a tumor suppressing effect 
but can accelerate the proliferation and growth of cancer 
cells. When wild-type p53 is transformed to mutant p53, 
the mutant p53 acts as a proto-oncogene, which is pre-
sent for a long time in tumor cells and eventually leads to 
tumorigenesis. The KEGG pathway analysis enriches the 
p53 pathway, which may be due to increased p53 muta-
tions in gliomas (Additional file 1: Figures S1, S2).

Fig. 8  PLK1, CCNA2, CCNB2 and AURKA were targets of hsa-let-7b-5p and hsa-let-7b-5p could inhibit migration and invasion, induce apoptosis and 
alter the cell cycle dynamics of U118MG cells. a Expression of hsa-let-7b-5p was measured using real-time PCR in U118MG cells after transfection for 
48 h. b Relative expression level of PLK1, CCNA2, CCNB2, and AURKA after transfection of hsa-let-7b-5p in U118MG cells. c hsa-let-7b-5p treatment 
could significantly inhibit the migration of U118MG cells. Scale bars, 100 μm. d hsa-let-7b-5p treatment could significantly inhibit the invasion of 
U118MG cells. Scale bars, 50 μm. e hsa-let-7b-5p could significantly induce the apoptosis of U118MG cells. f hsa-let-7b-5p could effectively inhibit 
the cycle progression of U118MG cells

(See figure on next page.)
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Among these DEGs, five candidate genes with a high 
degree of connectivity and coexpression and crosstalk 
in pathways were selected, including CDK1, CCNA2, 
CCNB2, PLK1, and AURKA. miRNAs can change the 
expression of target proteins. MiRNAs have important 
clinical significance in the diagnosis of glioma, evaluation 
of the efficacy of chemotherapy drugs, anti-angiogenesis, 
treatment, and prognosis judgment. In the present study, 
the expression levels of CCAN2, CCNB2, PLK1, and 
AURKA in glioma were upregulated, and hsa-let-7b-5p 
binding sites were found in four gene sequences. Let-7b 
is a cancer suppressor gene that can inhibit the occur-
rence of cancer [35, 36].

As the most significant candidate gene, polo-like 
kinase 1 (PLK1), is a highly conserved serine/threonine 
protein kinase. PLK1 is highly expressed in most malig-
nant tumor cells and is closely related to the occurrence 
and development of tumors [37–40]. PLK1 is mainly 
expressed in the late G2 phase and M phase of cell mito-
sis and plays a crucial role in mitosis, such as mitotic 
initiation, centrosome maturation, spindle assembly, 
chromosome segregation, and cytokinesis. Clinical data 
show that inhibition of PLK1 can prevent the prolifera-
tion and promote the apoptosis of tumor cells. Therefore, 
PLK1 is an effective target for the treatment of gliomas. 
Cell cycle protein A2 (CCNA2) is encoded by the CCNA2 
gene in humans. CCNA2 is expressed in cell division and 
interacts with CDK kinase to regulate cell cycle progres-
sion [41]. The CCNA2–CDK complex may promote 
tumorigenesis by phosphorylation of cancer proteins or 
tumor suppressor genes, such as p53. CCNA2 is highly 
expressed in a variety of tumor types, such as lung can-
cer, breast cancer, cervical cancer, and liver cancer [42–
45]. In normal tissues, CCNA2 is expressed at low levels 
or is not expressed. Some studies have confirmed that 
CCNA2 has oncogene activity, and its high expression or 
overexpression is closely related to the malignant trans-
formation of tumor cells. Therefore, CCNA2 may be a 
potential diagnostic marker and an important drug target 
for glioma. CCNB2 plays a role in the cell cycle. CCNB2 
is highly expressed in a variety of human tumor tissues 
and peripheral blood, and it is associated with the clinical 
stage and metastasis of the tumor [46–48]. CCNB2 over-
expression is negatively correlated with the prognosis of 
breast cancer patients and is an independent prognostic 
marker. In addition, CCNB2 mRNA is overexpressed in 
the tumor tissue of patients with lung adenocarcinoma, 
and its expression is closely related to the overall dis-
ease survival rate. High expression of CCNB2 in tumor 
tissues is closely related to the poor prognosis of glio-
mas. AURKA, a member of the Aurora kinase family, is 
an oncogene that plays an important role in cancer stem 
cell development, epithelial–mesenchymal transition, 

and distant metastasis [49–51]. AURKA protein kinase 
plays an important role in the development of malignant 
tumors. AURKA has been highly expressed in various 
malignant tumors, such as esophageal cancer, laryngeal 
cancer, liver cancer, and ovarian cancer [52–54]. AURKA 
may participate in the formation of tumors through two 
functions. One function is the suppression of cytoki-
nesis during mitosis, which leads to an unstable tumor 
genome. The other function is the inhibition of cell cycle 
checkpoints, helping cells with unstable genomes con-
tinue to replicate and to enter mitosis, leading to the 
malignant proliferation of cells. AURKA protein kinase 
can also promote the formation of blood vessel mimicry 
in triple-negative breast cancer stem cells, and inhibiting 
its expression can weaken the formation of blood vessel 
mimicry capacity.

In the present study, the RT-PCR assay confirmed that 
CCNA2, CCNB2, PLK1, and AURKA are targets of hsa-
let-7b-5p. Hsa-let-7b-5p could inhibit the migration, 
invasion, and cell cycle of glioma cells.

Conclusions
In summary, PLK1, CCNA2, CCNB2, and AURKA were 
screened as candidate diagnostic marker genes of glioma, 
and hsa-let-7b-5p could inhibit the invasion and metas-
tasis of glioma cells. The underlying mechanism may 
be achieved by targeting the downregulation of PLK1, 
CCNA2, CCNB2, and AURKA protein expression. This 
discovery is expected to provide new therapeutic targets 
and biomarkers for the future treatment of gliomas.
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