

CORRECTION

Correction: Arabidopsis thaliana Contains Both Ni²⁺ and Zn²⁺ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in *E. coli*

The PLOS ONE Staff

The affiliation for the second author is incorrect. Rituraj Batth is not affiliated with #2 but with #1 Faculty of Life Sciences and Biotechnology, Plant Molecular Biology Laboratory, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi 110021, India. The publisher apologizes for the error.

Reference

Jain M, Batth R, Kumari S, Mustafiz A (2016) Arabidopsis thaliana Contains Both Ni²⁺ and Zn²⁺ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli. PLoS ONE 11(7): e0159348. doi:10.1371/journal.pone.0159348 PMID: 27415831

GOPEN ACCESS

Citation: The *PLOS ONE* Staff (2016) Correction: *Arabidopsis thaliana* Contains Both Ni²⁺ and Zn²⁺ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in *E. coli.* PLoS ONE 11(8): e0162119. doi:10.1371/journal.pone.0162119

Published: August 29, 2016

Copyright: © 2016 The PLOS ONE Staff. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.