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Spatio‑temporal predictive 
modeling framework for infectious 
disease spread
Sashikumaar Ganesan* & Deepak Subramani 

A novel predictive modeling framework for the spread of infectious diseases using high-dimensional 
partial differential equations is developed and implemented. A scalar function representing the 
infected population is defined on a high-dimensional space and its evolution over all the directions 
is described by a population balance equation (PBE). New infections are introduced among the 
susceptible population from a non-quarantined infected population based on their interaction, 
adherence to distancing norms, hygiene levels and any other societal interventions. Moreover, 
recovery, death, immunity and all aforementioned parameters are modeled on the high-dimensional 
space. To epitomize the capabilities and features of the above framework, prognostic estimates of 
Covid-19 spread using a six-dimensional (time, 2D space, infection severity, duration of infection, 
and population age) PBE is presented. Further, scenario analysis for different policy interventions 
and population behavior is presented, throwing more insights into the spatio-temporal spread of 
infections across duration of disease, infection severity and age of the population. These insights could 
be used for science-informed policy planning.

Epidemic modeling and forecasting has gained renewed interest since late 2019 when the world was affected 
by the novel coronavirus pandemic (named Covid-19). Several computational studies to predict the human-
to-human spread of Covid-19 have been reported1–7. Most of these efforts have been based on compartmental 
models and stochastic models (including agent-based models)8. In compartmental models (e.g., SIR, SEIR, SEIRS, 
DELPHI8,9), the population is divided into different compartments and the dynamics of the different compart-
ments are modeled by a system of coupled ordinary differential equations (ODE). Here, the interaction among 
compartments is usually deterministic, whereas random processes are used to model the spread of infections 
in stochastic models. Very recently, the ODE-based compartment models have been extended to incorporate 
spatial dynamics using Partial Differential Equations (PDEs) that describe the evolution of each compartment10. 
Agent-based models are stochastic models that undertake a bottom-up approach of modeling individual mem-
bers of a population and the dynamics of their interaction in terms of probabilities of movement and contact.

More than the total number of infections, it is essential to have more insightful predictions, e.g., infected pop-
ulation distribution across their age and level of infection severity for science-informed policy intervention and 
public health planning. The population distribution over the duration of infection is crucial for planing antiviral 
treatments, quarantine, ventilator support and contact tracing. This requirement necessitates a comprehensive 
and computationally efficient predictive modeling framework. Even though these features could be incorpo-
rated in ODE-based compartmental and stochastic agent-based models, it is very complex and computationally 
expensive. To overcome these challenges, we propose a novel partial differential equation-based spatio-temporal 
predictive modeling framework for forecasting the spread of infectious disease in heterogeneous populations in 
open geographies. The roots for our model lie in the population balance equations that are popular in chemical 
engineering and process studies11.

In the proposed model, the infected population density is defined as a scalar field on a high-dimensional 
space. Specifically for predicting the spread of Covid-19, a six-dimensional model is presented. The first three 
dimensions are the space and time, and the other three are the infection severity, duration of the infection (i.e., 
time since infection), and age of the population. New infections, impact of quarantine, testing, contact trac-
ing, immunity, intervention policy impact, health infrastructure, recovery, and death are all modeled on this 
six-dimensional space based on data-driven functions (where available), and/or simple algebraic and integral 
functions. Notably, our PDE-based model in the present paper is more compact and a versatile description of 
the spread of the disease compared to compartmental models, and computationally efficient compared to agent-
based models. To showcase the capability of our distribution-based predictive modeling framework for infectious 
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disease spread, we apply it to model and predict the spread of Covid-19 in India. Further, we present a scenario 
analysis, which could be used to draw insights for policy interventions.

Results
The population balance model.  Let T∞ be a given final time and � := �x ⊗�ℓ be the computa-
tional domain of interest. Here, �x ⊂ R

2 is the spatial domain defining the geographical region of interest and 
�ℓ ⊂ R

n , where n is the number of internal directions. Each of the n-internal directions represents the property 
of the population on which a distribution needs to be predicted. Suppose the properties of interest are the infec-
tion severity, duration of the infection and age of the population, then a model with three internal directions 
could be used as follows. Let �ℓ := Lv × Ld × La be the internal domain, where Lv = [0, 1] denotes the infec-
tion severity interval, Ld = [0, d∞] denotes the duration of infection, d∞ is the maximum duration of infection, 
La = [0, a∞] denotes the age interval and a∞ is the maximum age of the population. The infection index ℓv ∈ Lv 
quantifies the severity of the infection among the infected population. Specifically, the population with infection 
index ℓv = 0 is completely disease-free, with ℓv = 1 has maximum severity, with ℓv ≥ vsym shows symptoms 
and those with ℓv < vsym are asymptomatic. The duration of infection index ℓd ∈ Ld quantifies the time since a 
population has been exposed to and contracted the disease. Specifically, the population that just contracted the 
disease has ℓd = 0 . Typically, a person is asymptomatic until they reach ℓv = vsym , and the duration elapsed ℓd 
is the incubation period in which the disease is sub-clinical and that population is actively spreading the disease. 
After recovery, a population doesn’t necessarily go to ℓv = 0 , rather they reach ℓv < vreco.

Let I(t, x, ℓ) , where t ∈ (0,T∞], x ∈ �x and ℓ ∈ �ℓ , be the infected number density function of the popula-
tion. To describe the evolution of the active infected population size distribution, we propose the population 
balance equation

Here, u denotes the advection vector that quantifies the multiscale spatial movement of the population in a differ-
ential neighbourhood of �x (e.g., migrant laborers, daily commute for work, logistics-related travel, periodic gath-
ering for religious and social events), n is the outward unit normal vector to �x , ∂�− := {x ∈ ∂�x | u · n < 0 } , gn 
is the flux that quantifies the net addition of the infected population into �x from outside (the spatial movement 
of the population across the border of the domain ∂�x ), and I0 is the initial distribution of the infected popula-
tion. Further, G = (Gℓv ,Gℓd ,Gℓa )

T is the internal growth vector, where

Here, β is the immunity of the infected population, γ is the pre-medical history of the infected population and α 
is the effective treatment index. Next, we define the rate term C = CR + CID , where CR(t, x, ℓ) is a recovery rate 
function that quantifies the rate of recovery of the population from the infection, and CID(t, x, ℓ) is the infectious 
death rate. We also define a source term F = CT (t, x, ℓ) that quantifies the point-to-point movement of infected 
population (e.g., by air, train etc) within �x , which are not included in u and gn . Moreover, CT and u need to be 
defined in such a way that the net internal movement of infected population within �x is conserved. Moreover, 
Bnuc is the nucleation function that quantifies the infection transmission from the infected to the susceptible 
population and it is a function of several parameters as follows

Here X ∈ � , σ ,H and SD are the interactivity, hygiene and social distancing indices respectively. Finally, the total 
population N(t) at a given time t ∈ (0,T∞] is defined by

Here, NS , NB , NR , NI , NQ NID and ND are the number of susceptible, newborn, recovered, infected (symptomatic/
asymptomatic), quarantined, infectious death and natural death populations, respectively. The given initial and 
boundary conditions and the above defined parameters close the population balance system.

Modeling of parameters.  The proposed population balance model (1) is comprehensive and built on the 
basis of several parameters as defined above. This framework is very versatile and provides us the means to 
incorporate the effects of different parameters that describe the complex infectious disease spread dynamics into 
a singe PDE. Fitting these parameters accurately using either data-driven approaches10 or appropriate assump-
tions from literature makes the model very robust. In this section, we describe the modeling of each parameter.

(1)

∂I

∂t
+∇ · (uI)+∇ℓ · (GI)+ CI = F in (0,T∞] ×�x ×�ℓ,

I(t, x, ℓ) = gn in (0,T∞] × ∂�−
x ×�ℓ,

I(t, x, (ℓv , 0, ℓa)) = Bnuc in (0,T∞] ×�x × Lv × La,

I(t, x, (0, ℓd > 0, ℓa)) = 0 in (0,T∞] ×�x × Ld × La,

I(0, x, ℓ) = I0 in �x ×�ℓ.

Gℓv =
dℓv

dt
= Gℓv (ℓa,β , γ (ℓa), Gℓd =

dℓd

dt
= 1, Gℓa =

dℓa

dt
= 1.

(2)Bnuc = Bnuc
(

t,X, σ ,H , SD ,NS ,NQ, I
)

.

N(t) = NS(t)+ NR(t)+ NI (t)+ NQ(t)− NID(t)+ NB(t)− ND(t), NQ(t) =
∫

�

γQ(t, x, ℓ)I(t, x, ℓ) dX,

NI (t) =
∫

�

I(t, x, ℓ) dX, NR(t) =
∫

�

CRI(t, x, ℓ) dX, NID(t) =
∫

�

CIDI(t, x, ℓ) dX.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6741  | https://doi.org/10.1038/s41598-021-86084-7

www.nature.com/scientificreports/

Nucleation term.  The nucleation term Bnuc quantifies the new infection number density that is added to the 
system at ℓd = 0 for all t, x , ℓv , and ℓa . Depending on how the susceptible population interacts with the infected 
population, new infections are added to the system. We call this addition as nucleation (borrowing the terminol-
ogy from process engineering), which is modelled as

Here, γQ ∈ [0, 1] in (3) determines the fraction of the infected population in quarantine and it can be modeled 
as in equation (5). Further, the factor γQ is dependent on the level of screening including testing, strictness of 
enforcing isolation and compliance of susceptible general public. Suppose γQ = 1 , i.e., if the entire infected 
population is kept under strict isolation, newly infected population will be zero and eventually there will be no 
spread of disease. However, due to economic, social and democratic reasons, implementing such a strategy is 
nearly impossible and there is bound to be spread, i.e., γQ < 1 . Moreover, the integral on the right-hand side of 
equation (3) is the total non-quarantined number density of the infected population at (t, x) , and R is the rate at 
which the non-quarantined population infects the susceptible population. The factor R is modelled as in equa-
tion (4), where R0 is the basic reproduction rate,

Here, the interactivity index σ ∈ [0, 1] , hygiene index H ∈ [0, 1] , and social distancing index SD ∈ [0, 1] . Sup-
pose σ = 0 then everything is under perfect lockdown and R → 0 . In case SD = 1 , everyone is following perfect 
social distancing and R → 0 . Moreover, the newly infected population has to be added at different age ( ℓa ) and 
infection (ℓv) levels for which the factors f4 and f5 are introduced. We propose to use logistic functions fitted to 
data from literature for f1, f2, f3 ; the normalized demography at (t, x) for f4(t, x, ℓa) , and a Gaussian mixture 
with two components so that maxima is at vsym and tails are proportional to the interval length over [0, vsym] and 
[vsym, 1] for f5(ℓv) . In addition, the constant in f5 is chosen such that the integral of f5 over its support is one. 
This condition is imposed to ensure that R0 can be interpreted as the basic reproduction rate used in standard 
epidemiological models12. The parameters vsym , dsym , arisk , bv , bd , ba , bσ , bH , bSD , σc , Hc , SDc can be estimated 
from experimental and clinical evidence. Furthermore, in light of new evidence, the functional forms of f1 to f5 
can easily be modified. Finally, σ(t) , SD(t) and H(t) change over time due to increased awareness, government 
measures and compliance by people.

Growth factor.  The growth factor Gℓv quantifies how the infected number density is advected along the direc-
tion of lv , that is, how the infection becomes mild to severe/critical and vice-versa in the infected population. We 
can model it as a function of the medical history, immunity of the population, which in turn are functions of the 
age la , treatment and socio-economic status. Nevertheless, as a simple first order model, we propose a nonlinear 
function of the age,

where Kg is a non-dimensionalization factor, p is a power of nonlinearity and arisk is the age offset.

Recovery rate and infectious death rate.  In general, the recovery rate CR and infectious death rate CID depend 
on ℓv , and in turn are functions of hospital facilities, age, and health state of the population. These rates can be 
modeled directly from clinical data for all ordinates ℓv , ℓd , ℓa . For the exact functional forms refer to the Sup-
plementary Information.

Initial infection number density.  The initial number density I0(x, ℓ) can be estimated directly from available 
official data on the day of starting the simulation. However, the data is available only in terms of total number of 
tested and confirmed cases at a x-location and the dependence on ℓ needs to be estimated via appropriate data-
driven and analytical functions. As such, first we utilize data from a period of 14 days, along with the log-normal 
distribution of incubation period13 to calculate the initial number density ND(x) at all the spatial points x , but 
integrated over the three internal ordinates ( ℓv , ℓd , ℓa ), i.e.,

(3)Bnuc = R

∫

�ℓ

[1− γQ]I(t, x, ℓ) dℓ,

(4)R = R0f1(t, σ)f2(t,H)f3(t, SD)f4(t, x, ℓa)f5(ℓv) ,

(5)γQ =
1

1+ exp
(

−(ℓv − vsym)/bv
)

1

1+ exp
(

−(ℓd − dsym)/bd
)

1

1+ exp (−(ℓa − arisk)/ba)
.

f1(t, σ) =
�

1

1+ exp (−(σ (t)− σc)/bσ )

�

, f2(t,H) =
�

1−
1

1+ exp (−(H(t)−Hc)/bH )

�

f3(t, SD) =

�

1−
1

1+ exp
�

−(SD(t)− SDc )/bSD
�

�

,

f4(t, x, ℓa) = a4 exp

�

−
(ℓa − b4)

2

c24

�

, f5(ℓv) =







3
�

2
π
exp

�

−(ℓv−vsym)
2

2(vsym/3)2

�

0 ≤ v < vsym ,

3
�

2
π
exp

�

−(ℓv−vsym)
2

2((1−vsym)/3)2

�

vsym ≤ v ≤ 1.

(6)Gℓv (ℓa) = Kg (ℓa − arisk)
p ,
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where Ni(x) is the data of tested and positive. For the distribution along the internal ordinates, we propose to 
use the following initial infection number density distribution

Here the first term in the square brackets is the normalized demography function (same as f4 ), second term is 
the log-normal incubation period function with fitted13 a2 = 0.42 and b2 = 1.62 , and f5 is same as before.

Covid‑19 epidemic spread predictions.  To exhibit the capabilities of the proposed model, the fore-
cast of Covid-19 spread in India is presented here. The numerical scheme and the fitted model parameters are 
given in the Supplementary Information. The proposed model and numerical schemes are implemented in our 
in-house finite element package14,15 and have been verified in our earlier studies with applications to process 
engineering16,17.

With the spread of Covid-19 in India, the federal government imposed a nation-wide lockdown from March 
25, 2020. To simulate the spread of infections starting from March 23, 2020, the initial distribution of infected 
population is estimated using the data of active cases from March 23 to April 5 according to equations (7) and 
(8). Then the infection spread forecast for one year is computed by solving the PBE system (1). Further, data 
until June 21, 2020 is utilized to select the parameters (e.g., SD , CR , CID , γQ ) that best explains the actual data. 
Thereafter, the control parameter SD is varied to perform scenario analyses as presented next.

Scenario analysis.  Different future scenarios are predicted by varying SD(t) based on the anticipated individual 
behavior (social distancing, hygiene practice, compliance to government rules etc.) and government policies 
(quarantine rules, lockdown rules etc.). The first scenario, named Current Trend follows business as usual assum-
ing further relaxation to lockdown rules. A second variant named Better Scenario assumes better compliance in 
the social distancing and other measures to control the spread of the disease. Sunday, and Sunday & Wednesday 
lockdowns are imposed on the Current Trend scenario to formulate the third and fourth scenarios respectively. 
These lockdown scenarios are introduced to measure the impact of periodic lockdowns on the effectiveness of 
these strategies to control the disease spread. The active ( NI ), recovered (cumulative NR ), deaths (cumulative 
NID ) and total (sum of active, recovered and deaths) predicted by the four scenarios for the duration between 
March 23, 2020 and March 22, 2021 are shown as time-series plots in Fig. 1. In the Current Trend, a peak of 0.975 
million ‘Active Cases’ is predicted in the last week of October 2020, and there will be around 21 million ‘Active 
Cases’, 450,000 deaths and 9.1 million total cases at the end of March 2021. The peak of the Better Scenario is 
predicted in the second week of September 2020 with 0.478 million ’Active Cases’, which is lower than the Cur-
rent Trend. Further, there will be around 14,200 ‘Active Cases’, 0.188 million deaths and 3.74 million total cases 
at the end of March 2021. The weekly lockdown scenarios assume that a complete lockdown is imposed on 
Sunday or Sunday and Wednesday. During this lockdown, there is a complete restriction of people’s movement 
similar to the nationwide lockdown imposed between Mar 25 and April 14 in India. With Sunday Lockdown, a 
peak of 0.365 million ‘Active Cases’ is sustained for about two weeks during 5–20 September 2020, and there will 
be around 30,200 thousand ‘Active Cases’, 0.167 million deaths and 3.32 million total cases at the end of March 

(7)ND(x) =
i=14
∑

i=1

Ni
1

ia2
√
2π

exp

(

−
(log i − b2)

2

2a22

)

,

(8)I0 = ND(x)[f5(ℓv)]
[

a1 exp

(

−
(ℓa − b1)

2

c21

)] [

1

ℓda2
√
2π

exp

(

−
(log(ℓd)− b2)

2

2a22

)]

.

Figure 1.   Time series forecast of active, total infections, recovered and deceased cases of Covid-19 in India 
from Mar 23, 2020 to Mar 22, 2021. The inset shows a zoom with comparison of the model forecast with the 
data until July 14, 2020.
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2021. With Sunday and Wednesday lockdown, a peak of 0.197 million ‘Active Cases’ is sustained for the period 
27 June to 15 July 2020, and there will around 2800 ‘Active Cases’, 70,300 deaths and 1.39 million total cases at the 
end of March 2021. The insets in each panel of Fig. 1 show the comparison with actual data and thereby validate 
the model. In addition, the time series plots for other scenarios including a worse-case scenario can be found at 
IISc-Model website18.

A key insight needed for the central government in India was to identify which states needed additional 
assistance in containing the spread of the virus. For this purpose, we first fit the parameters of the model to 
match the reported national data. Thereafter, the estimates are computed for individual states with the above 
tuned parameters. Figure 2 shows the actual data (until July 14, 2020) and the computed estimates for the states 
of Karnataka (KA) and Maharashtra (MH). The data of KA follows the computed estimate closely, whereas the 
actual data indicates more infections and active cases in MH than the estimate. This observation indicates that 
MH needs further assistance than KA (as of July 14, 2020) to contain covid-19 spread. Such insights can be used 
by the authorities to introduce state-wise lockdown policies and to plan infrastructure for quarantine, treatments 
etc. The estimates computed with the above tuned parameters for other states (as of July 14, 2020) can be seen at 
our IISc-Model website18. Further, to capture the recent dynamics of the spread in the individual states following 
the graded re-opening of the economy, we have re-started the simulation with the updated initial condition on 
Aug 1, 2020. These updated predictions can also be seen at our website18.

Population distribution.  Our PBE model in fact predicts the distribution of the infected population over all 
the internal ordinates ℓv , ℓd , ℓa . In the previous section, we have shown only the total number of infected, 
recovered and deceased populations. Now, to showcase one of the unique features of the model, we present and 
discuss the predicted population distribution for the Sunday lockdown scenario.

Figure 3 shows the predicted distribution of active Covid-19 infected population over the ordinates ℓv , ℓd and 
ℓa at different time instances (day 60, 120, 180, 240, 300 and 365) with their corresponding dates.

Predicting the severity of the infected population is crucial to plan the hospital requirements including anti-
viral treatments, quarantine, hospitalisation, ventilator support, and oxygen support. In particular, the informa-
tion of asymptomatic and symptomatic infected population helps the policymakers to plan quarantine rules. 
Moreover, the death rate is a function of the severity of infection and is crucial to predict the causalities arising 
from the infection spread. The duration of infection plays a key role in epidemic modeling. Classical models 
usually assume a constant duration. However, the recovery and the death of the patient depend on the immunity, 
age and health of the patient, medical treatments etc and thus the duration of infection need not be a constant. 
In the proposed model, the duration of infection is considered as an independent internal ordinate. The recov-
ered population distribution over the duration of infection and other internal ordinates for days 60, 120, 180, 
240, 300 and 365 is shown in Fig. 4 along with their corresponding dates. Crucially, the predicted distribution 
with duration of infection, especially at initial stages, is key to plan for testing and to make effective decisions 
on quarantine, hospitalization and discharging from hospitals. Finally, the age of the population is pivotal in 
epidemics like Covid-19 since it affects children and aged population severely. Therefore, it is incorporated into 
the proposed model as another independent ordinate. In fact, the newly infected population is added from the 
susceptible population across the age distribution through the nucleation term. Moreover, the response to the 
antiviral treatment, death and recovery rates depend on age-specific health complications such as diabetics, 
cardiovascular disease, can also be incorporated in the PBE model with appropriate functions that depend on 
the age of the population.

Discussion
Our spatio-temporal modeling framework is the first comprehensive partial differential equation model for 
predicting infectious disease spread. Computationally, our model is efficient compared to agent-based stochas-
tic models. Mathematically, our PDE system is more compact and comprehensive compared to ODE-based 
compartmental models. Specifically, the PDE is a continuum description of the infected population whereas the 
compartmental models are a discrete representation. Crucially, in contrast to the existing models, our model 

Figure 2.   The actual data of KA (green) and MH (red), until July 14, 2020 compared to the estimates computed 
with the parameters fitted for the reported national data.
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provides an insight into the distribution of infected population (presented in previous sections). This information 
is important to plan policy interventions, especially in Covid-19 like pandemics. Not only prognostic estimates, 
but also diagnostic estimates for more detailed analysis using distribution can be performed with the proposed 
framework.

With more data and employing data-driven and machine learning approaches, we could further refine the 
parameters and functional forms of different model components to derive more insightful predictions. For 
example, to derive insights into the reopening of the workplace and educational institutions, the nucleation and 

Figure 3.   Distributions of active Covid-19 population along the internal ordinates at different time instances. 
The population has been integrated over �x.

Figure 4.   Distributions of recovered Covid-19 population along the internal ordinates at different time 
instances. The population has been integrated over �x.
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advection vector could be modeled to account for interactions between different age groups and movement of 
people between homes and these places. The potential options for refining the model are virtually endless. In 
particular, there is no restriction on the choice of number of internal coordinates. For example, in addition to 
ℓv , ℓd , ℓa , profession, mobility history, etc can also be added as internal coordinates.

Even though we have emphasized Covid-19 pandemic in the present paper, the proposed model can readily 
be used for forecasting any other infectious disease spread. In future, a data assimilative framework for a real-
time update of forecasts can also be implemented.
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