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Recent studies have analyzed large-scale data sets of gene expression to identify genes associated with interindividual var-

iation in phenotypes ranging from cancer subtypes to drug sensitivity, promising new avenues of research in personalized

medicine. However, gene expression data alone is limited in its ability to reveal cis-regulatory mechanisms underlying phe-

notypic differences. In this study, we develop a new probabilistic model, called pGENMi, that integrates multi-omic data to

investigate the transcriptional regulatory mechanisms underlying interindividual variation of a specific phenotype—that of

cell line response to cytotoxic treatment. In particular, pGENMi simultaneously analyzes genotype, DNAmethylation, gene

expression, and transcription factor (TF)-DNA binding data, along with phenotypic measurements, to identify TFs regulat-

ing the phenotype. It does so by combining statistical information about expression quantitative trait loci (eQTLs) and ex-

pression-correlated methylation marks (eQTMs) located within TF binding sites, as well as observed correlations between

gene expression and phenotype variation. Application of pGENMi to data from a panel of lymphoblastoid cell lines treated

with 24 drugs, in conjunction with ENCODE TF ChIP data, yielded a number of known as well as novel (TF, Drug) associ-

ations. Experimental validations by TF knockdown confirmed 41% of the predicted and tested associations, compared to a

12% confirmation rate of tested nonassociations (controls). An extensive literature survey also corroborated 62% of the

predicted associations above a stringent threshold. Moreover, associations predicted only when combining eQTL and

eQTM data showed higher precision compared to an eQTL-only or eQTM-only analysis using pGENMi, further demon-

strating the value of multi-omic integrative analysis.

[Supplemental material is available for this article.]

There is great interest today in understanding why certain drugs
are effective in some individuals but less so in others.Many studies
have sought to identify mechanisms of action of specific drugs
(Iorio et al. 2010; Gregori-Puigjane et al. 2012; Schenone et al.
2013) as well as genotypic variations that are predictive of an indi-
vidual’s drug response (Madian et al. 2012; Moen et al. 2012;
Nelson et al. 2016). A major class of drugs of interest today are cy-
totoxic drugs that may be used in cancer treatment. Large-scale
data generation efforts, including genotypic and molecular profil-
ing of panels of cell lines (Barretina et al. 2012; Forbes et al. 2015)
along with drug response (cytotoxicity) measurement on those
cell lines (Barretina et al. 2012; Yang et al. 2013; Rees et al.
2016), are expected to facilitate future advances in cancer pharma-
cogenomics. As the diversity of such data sets increases, it is impor-
tant to devise rigorous computational methods that can combine
these diverse data in a principledmanner to help scientists answer
mechanistic as well as therapeutic questions pertaining to drug re-
sponse. For instance, correlating gene expression and drug re-
sponse in a panel of cell lines helps identify cytotoxicity-related
genes (Rees et al. 2016), but it is not clear how one might extend
the approach to additionally exploit genotype (SNP) and epigeno-
type data (e.g., CpG methylation marks) to maximum effect. We
need a statistically sound approach capable of modeling pheno-

typic variation while integrating several heterogeneous genomic
and epigenomic data types.

One of the key mechanistic questions related to drug res-
ponse variation, or indeed for any phenotypic variation under
study, is the role of gene regulatory networks (GRNs) in shaping
such variation. A major step in characterizing GRNs mediating
drug response variation is to identify functionally important tran-
scription factors (TFs), as TFs are the main actors in any GRN
(Gariboldi et al. 2007; Gomes et al. 2013). Identified TFs may
then be experimentally validated by showing that their knock-
down leads to a change in chemosensitivity (Hanson et al. 2015;
Long et al. 2015; Faiao-Flores et al. 2017). Mechanistically speak-
ing, a TF may influence drug response by regulating one or more
target genes whose expression levels are in turn linked to the
strength of cytotoxic response, e.g., if the target genes are involved
in apoptotic pathways. In such a case, one expects evidence of the
TF’s regulatory influence on the target gene(s) in the form of bind-
ing sites revealed as ChIP peaks (Hanson et al. 2015). Thus, if one
finds substantial evidence that TF binding sites harbor genotype or
epigenotype variations that are, in turn, correlated with gene ex-
pression and the phenotype, it should be possible to statistically
implicate that TF in drug response variation. This is the key insight
pursued in this work, to identify major transcriptional regulators
of drug response variation across individuals.

There have been a number of studies linking specific pheno-
types such as disease status to elements of the noncoding genome
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(Schaub et al. 2012; Ward and Kellis 2012; Corradin and Scacheri
2014), many utilizing the NHGRI Genome-Wide Association
(GWA) Catalog SNPs (Welter et al. 2014). These studies have been
facilitated by large-scale efforts such as the ENCODE Project (The
ENCODE Project Consortium 2012) and the Epigenomics
Roadmap Project (Bernstein et al. 2010) that provide a guide to
identifying noncoding elements of the genome, which can then
be used as a regulatory context to interpret GWA SNPs. Addition-
ally, there have been studies that quantify the impact of noncod-
ing genetic variation on molecular profiles such as TF-DNA
binding or DNA accessibility (Lee et al. 2015; Zhou and Troyan-
skaya 2015), often utilizing the NHGRI GWA catalog to assess
the phenotypic consequences of variants. Despite numerous ef-
forts to connect phenotype with genotype and regulatory ele-
ments, there has not been a systematic effort to aggregate such
connections to learn major regulatory mechanisms underlying
the genotype-phenotype relationship and its variation across indi-
viduals. Furthermore, the regulatory impact of epigenetic sources
of variation (for instance, CpG methylation) are usually assessed
in isolation from genetic variants (SNPs). Recent studies have
shown that theremay be a complex interplay between genetic, epi-
genetic, and transcriptional variation in relation to disease (Jones
et al. 2013), arguing for a more integrative approach to their
analysis.

We present here a novel, statistically principled approach to
aggregating data on genetic as well as epigenetic variations, along
with genome-wide profiles of regulatory function, to derive associ-
ations between a transcription factor and individual variation in
cytotoxic response to a drug; this permits amechanistic interpreta-
tion of the impact of molecular variants on drug response. There
have been new insights into how TFs may be regulated by small
molecules (Fontaine et al. 2015; Papavassiliou and Papavassiliou
2016), and there is no doubt as to their significance in human dis-
eases such as cancer (Redell and Tweardy 2006; Redmond and
Carroll 2009; Yeh et al. 2013). Our aim therefore is to push the
frontier of knowledge regarding the relationship of TFs and drug
response for putative therapeutic benefit. Our new computational
method is based on a statistical formalism called probabilistic
graphical models (Koller and Friedman 2009), which are among
themost flexible and principled ways available today for inference
from heterogeneous and noisy data. Using a rigorous data prepro-
cessing pipeline in conjunction with this powerful framework, we
demonstrate that the (TF, Drug) associations predicted by the
method are accurate by showing that knockdown of the TF affects
sensitivity to the drug. The newmethod is also applicable to other
studies where one seeks mechanistic factors underlying individual
variation in a quantitative phenotype in the presence of genotype
and epigenotype information.

Results

A new probabilistic model to integrate genotype,

gene expression, and phenotype data

In our previous work, we presented a proof-of-principle method
that identifies TFs associated with individual variation in drug re-
sponse or any other quantitative phenotype (Hanson et al. 2015).
We searched for cases where a SNP in the cis-regulatory region of a
gene is correlated with the gene’s expression (cis-eQTL analysis)
and the gene’s expression is correlated with phenotype—the latter
being referred to as a transcriptome-wide association study (TWAS)
(Cloney 2016); if significantly many cases like this were identified

involving SNPs within ChIP peaks of a TF, then the TF was consid-
ered associated with individual variation in phenotype. Here, we
constructed a rigorous probabilistic model that builds upon this
idea to identify phenotype-related TFs. The new method is called
“pGENMi” (the previous tool was named “GENMi” for “gene ex-
pression in the middle” and the “p” denotes a probabilistic mod-
el). It integrates information from many genes whose expression
correlates with the phenotype and for which it can find evidence
supporting regulatory influence of a specific TF. The probabilistic
formulation of pGENMi offers the following important features:

1. It integrates gene expression-phenotype associationwithout re-
lying on strict thresholds.

2. As evidence for a TF’s role in gene expression variation, it can
utilize information about different types of expression-linked
cis-variants (genetic as well as epigenetic) located in the TF’s
binding sites near the gene.

3. In incorporating multiple sources of evidence for a TF’s regula-
tory role, it can weight the contribution of each type of evi-
dence differently, learning these relativeweights automatically.

The probabilistic model of pGENMi is described in Figure 1
and in Methods, but we present the main ideas here. The model
is evaluated separately for each TF and provides a log-likelihood ra-
tio score to quantify the TFs’ role in regulating phenotypic varia-
tion, considering all available data. It assigns to each gene g a
“hidden” variable zg that takes a value of 1 if the gene g is a medi-
ator of the TF’s influence on the phenotype, and 0 otherwise. The
case of zg = 1 is supported if the gene’s expression is correlated
with the phenotype (TWAS P-value close to 0), and one or more
lines of evidence support the TF’s role in regulating that gene.
Such “regulatory evidence” may include the existence of a signifi-
cant cis-eQTL within the TF’s ChIP peak located near the gene.
Specifically, the probability of zg = 1 is determined by a linear com-
bination of one or more regulatory evidences, using a single free
parameter as the relative weight of each type of evidence.

Figure 1. Plate diagram of pGENMi model. A latent variable zg repre-
sents whether a gene g mediates the influence of a TF on phenotype,
and its enclosing rectangle denotes G such genes. pg denotes the TWAS
P-value between the gene’s expression and phenotype variation for each
of the G genes. If zg = 1, we expect an enrichment for significant TWAS
P-values, and pg is modeled by a Beta distribution parameterized by α; oth-
erwise, pg is modeled as being distributed uniformly in [0,1]. We also ob-
serve one or more lines of evidence supporting the TF’s influence on the
expression of each gene g, such as the existence of a cis-eQTL within a
ChIP peak of the TF near that gene. These “regulatory evidences” are de-
noted by the binary variables rgm, and there existM such types of evidence
(m = 1 … M ), with relative weights wm. These evidences combine in a lo-
gistic function to determine Pr(zg = 1). The weights wm are learned over
all genes, and as such, are shown outside of the rectangle enclosing G.
The H variable indicates whether wm is free or restricted to zero (null mod-
el) for hypothesis testing (see “Probabilistic graphical model” section in
Methods).
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Intuitively, a TF is considered as a potential regulator of the pheno-
type if the data supports the existence of several genes mediating
its influence on the phenotype, as reflected in their zg variables.

pGENMi integrates multiple types of regulatory evidence to

elucidate the role of TFs in drug response variation

We applied the pGENMi algorithm to identify TFs that putatively
regulate individual variation in drug response.We considered drug
response data of 24 cytotoxic drugs (or treatments) assayed on 284
lymphoblastoid cell lines (LCLs). This phenotypic data was ana-
lyzed in conjunction with genotype (SNP), CpG methylation,
and gene expression data (see Methods) on the same panel of
284 LCLs, alongwith ENCODEChIP-seq data on TF-DNA binding.
To assess the regulatory evidence for a TF’s role on a gene’s expres-
sion variation, we first identified the strongest cis-eQTL SNP locat-
ed near the gene (50 kb upstreamof the transcription start site) and
within the TF’s ChIP peaks; an eQTL P-value≤ 0.05was considered
as evidence for the TF’s role in regulating the gene. We similarly
tallied “eQTM” evidence, i.e., a methylation mark significantly
correlated with gene expression (see Methods), located near the
gene (cis-eQTM) and within the TF’s ChIP peaks. The eQTL and
eQTM evidences for the TF’s regulatory influence on genes were
then integrated with gene expression-phenotype associations
(TWAS) using the pGENMi model. The result of this analysis is a
ranking (by LLR score) of all TFs by their predicted role in regulat-
ing each drug response phenotype. We refer to this mode of anal-
ysis as “eQTL +M” analysis; we also repeated the entire procedure
using eQTL-only evidence and eQTM-only evidence.

In computing the various correlations (TWAS, eQTL, and
eQTM) used in pGENMi analyses, we included as covariates all in-
formation for which we had data per individual, i.e., sex, age, and
batch, as well as subpopulation axes of variation inferred from eth-
nic labels and genotype information using EIGENSTRAT (Price
et al. 2006); see Supplemental Note S3. Also, we relied on clusters
of TF ChIP peaks from many different cell lines, as computed by
the ENCODE project, rather than peaks from LCLs exclusively.
We believed this would make the regulatory inferences more gen-

eralizable across cell lines and the ChIP peaks themselves more
likely to be functional. (See Supplemental Note S3; Supplemental
Tables S4–S7; and Supplemental Fig. S14 for a comparison to the
alternative strategy of using TF peaks exclusively from LCLs).

Literature evidence in support of pGENMi predicted

(TF, Drug) associations

In the absence of a gold standard benchmark, we performed an ex-
tensive literature search for experimental results corroborating
pGENMi-predicted (TF, Drug) associations, using two criteria.
The first, and most convincing, is “direct” experimental evidence
demonstrating that knockdown of the TF affects chemosensitivity
to the corresponding drug. The second is “indirect” experimental
evidence demonstrating differential expression or DNA binding of
the TF induced by the drug.

Initially, we restricted our literature search to eQTL +M asso-
ciations with LLR≥ 4.5, roughly corresponding to a P-value of 0.05
(χ2 test). Of the 19 reported associations at this stringent criterion,
14 were validated by the literature (eight directly and six indirect-
ly), as shown in Table 1 (see detailed survey in Supplemental Note
S1). For example, pGENMi reported FOXM1 as a top scoring asso-
ciation for the drug temozolomide; this prediction was validated
by a study where siRNA knockdown of FOXM1 was shown to sen-
sitize recurrent glioblastoma multiforme (GBM) tumors to this
drug (Zhang et al. 2012). pGENMi also predicted STAT3 as being
associated with response to oxaliplatin. Indeed, siRNA silencing
of STAT3 combined with oxaliplatin therapy, in mouse models
of metastatic colorectal cancer (HCT116), was previously found
to reduce tumor size better than either drug separately (Shahzad
et al. 2011). An example of indirect validation is that of the pre-
dicted association between GATA1 and rapamycin. Treatment of
hexamethylene bisacetamide (HMBA), which commits cells to ces-
sation of growth and differentiation, to Friend erythroleukemia
cells increased DNA binding of GATA1, an important TF for ery-
throid-specific genes. When treated with the S6-kinase inhibitor,
rapamycin, HMBA cells induced at 18 h showed markedly lower
binding of GATA1 to the DNA (Bavelloni et al. 2000).

Table 1. Literature support for the (TF, Drug) associations from pGENMi eQTL +M analysis with LLR ≥ 4.5

# TF Drug LLR Literature evidence PMID(s)

1 FOXM1 Temozolomide 7.40 siRNA 22977194
2 STAT3 Oxaliplatin 6.95 siRNA 22193989, 21472135, 24098947, 23969971
3 RELA Temozolomide 6.52 siRNA 23259744, 17638900
4 HNF4G Epirubicin 6.20 siRNA 26503816
5 HNF4G Doxorubicin 5.48 siRNA 26503816
6 BATF Docetaxel 5.57 siRNA 26503816
7 NANOG Cisplatin 4.62 siRNA 22714588
8 EZH2 Radiation 4.82 siRNA 25460508, 25601206
9 NFIC NAPQI 7.08 Diff. expr. 17562736, 21420995, 17585979
10 GATA1 Rapamycin 5.78 Diff. binding 10713726, 21304100
11 CCNT2 NAPQI 5.67 Diff. expr. 21420995, 22230336
12 NANOG Oxaliplatin 5.46 Diff. expr. 25979230, 26136074, 24462001, 24098947, 23585460
13 ZNF274 Ara-C 5.00 Diff. expr. 17039268
14 UBTF NAPQI 4.80 Diff. expr. 17562736
15 MEF2C NAPQI 7.17 None
16 CTCFL NAPQI 6.90 None
17 WRNIP1 6-MP 6.68 None
18 USF1 Temozolomide 4.69 None
19 NANOG 6-MP 4.51 None

There are three kinds of literature evidence: desensitization of the cell to the drug as a result of a TF knockdown (“siRNA”); significant change in TF ex-
pression (“Diff. exp.”); or binding of the TF to the DNA (“Diff. binding”) upon drug treatment. “None” indicates that we failed to find evidence of
these three kinds in the literature.

Multi-omic gene regulatory mechanisms of phenotype

Genome Research 1209
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.227066.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.227066.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.227066.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.227066.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.227066.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.227066.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.227066.117/-/DC1


Some drug responses may be easier to model using gene ex-
pression than others, due to variation in the quality of experi-
ments and different mechanisms of action. As such, we sought
to examine how literature-based validations of pGENMi associa-
tions segregate by drug. To do this, we relaxed the LLR threshold
to 3, which resulted in 90 (TF, Drug) associations (Fig. 2). We fur-
ther restricted our literature survey to, at most, the top seven asso-
ciations for each drug (to limit the burden of manual validation),
amounting to 73 associations. The precision (fraction of positive
predictions supported by literature evidence) of these top associa-
tions varies widely across drugs (Table 2). For certain drugs, such as
cisplatin, all seven predictions were confirmed by direct or indirect
literature evidence. We also observed 100% precision for the fol-
lowing drugs forwhich a single TFwas predicted: arsenic, carbopla-
tin, docetaxel, and hypoxia. On the other hand, TFs associated

with certain drugs, e.g., 6-MP and 6-TG, were rarely supported by
the literature. Overall, our literature survey (detailed in Supple-
mental Note S2) resulted in validation of 45 of 73 (62%) predic-
tions made at the modest threshold of LLR≥ 3 but pointed to
substantial interdrug variability in pGENMi’s ability to identify
TF determinants of cytotoxicity.

We also assessed the benefit of modeling multiple types of
regulatory evidence simultaneously (i.e., eQTL +M) rather than
simply taking the union of associations reported by running
pGENMi for each evidence (eQTL or eQTM) separately. To answer
this question, we ran eQTL-only and eQTM-only analyses and ap-
plied an LLR threshold of 1.74 (roughly corresponding to χ2 P-val-
ue of 0.05) for their reported associations.We then categorized the
90 eQTL +M associations with LLR≥ 3 (Fig. 2) based on their reca-
pitulation in eQTL- and eQTM-only analysis (Table 3). The eQTL +
M associations were rarely supported by both analyses. Despite
this, 11 associations were identified by the eQTL +M model that
a simple intersection would not produce; we further investigated
these associations in our experimental validation. In looking at
the top 500 (TF, drug) associations reported by each analysis, we
noted that the eQTL +M analysis and eQTL-only analysis showed
strong concordance (309 common associations), while the eQTM-
only analysis showedmuch less concordancewith results from the
other two analyses (Supplemental Tables S1–S3).

Experimental validation

We sought to experimentally verify whether TFs associated with
drug response variation (by pGENMi) could be linked in vivo to
significant changes in drug-induced cytotoxicity. We selected pre-
dicted (TF, Drug) pairs that reflect a diversity of regulatory support,

Figure 2. The 90 (TF, Drug) associations predicted by eQTL +M with LLR≥ 3, colored by LLR. Labels indicate whether eQTL-only or eQTM-only analysis
corroborated the prediction at LLR≥ 1.74 (labels “S” and “M,” respectively). An “X” indicates both eQTL and eQTM analysis supported the prediction,
while “–” indicates the prediction is unique to eQTL +M.

Table 2. Literature support for predicted (TF, Drug) associations,
separated by drug

Drug P

TP

PrecisionDirect Indirect

6-MP 7 0 1 1/7 14%
6-TG 4 0 0 0/4 0%
Ara-C 6 3 2 5/6 83%
Arsenic 1 1 0 1/1 100%
Carboplatin 1 1 0 1/1 100%
Cisplatin 7 5 2 7/7 100%
Docetaxel 1 1 0 1/1 100%
Doxorubicin 3 2 1 3/3 100%
Epirubicin 4 3 0 3/4 75%
Gemcitabine 5 0 1 1/5 20%
Hypoxia 1 1 0 1/1 100%
NAPQI 7 0 4 4/7 57%
Oxaliplatin 7 2 4 6/7 86%
Paclitaxel 3 1 1 2/3 67%
Radiation 4 4 0 4/4 100%
Rapamycin 3 3 0 3/3 100%
TCN 2 0 0 0/2 0%
Temozolomide 7 3 0 3/7 43%

Shown are the number of predictions (P), true positives (TP), and preci-
sion of up to the top seven associated TFs with LLR ≥ 3 for each drug.
We call a predicted (TF, Drug) pair true if there is direct or indirect litera-
ture evidence (see text) for it.

Table 3. Decompositionof the90(TF,Drug)associationswithLLR≥ 3
from eQTL +M analysis by their significance in eQTL- and eQTM-only
analyses

eQTM-only

No Yes

eQTL-only No 11 31
Yes 45 3
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shown in Table 4, A and B. For instance, we selected 10 of the
11 (TF, Drug) pairs identified uniquely by eQTL +M analysis (we
omitted GTF2F1) and two of the three (TF, Drug) pairs predicted
by all three analyses: eQTL +M, eQTL, and eQTM. Additionally,
we selected the top four pairs by LLR in the eQTL +M analysis
that were also supported by eQTM-only analysis.We also included
a high-scoring association from eQTM-only analysis that scored
poorly in the eQTL +M analysis (i.e., LLR < 3). We did not experi-
mentally pursue eQTL-only predictions, as such validations were
reported in our previous work (Hanson et al. 2015) and our focus
here was primarily on the eQTL +M mode.

The 17 selected (TF, Drug) pairs were found by pGENMi using
learned parameters consistent with our expectation, i.e., where
presence of regulatory evidence relating a TF to a gene makes the
gene more likely to be associated with the drug (parameters wi >
0, for i≠ 0) (seeMethods). For some (TF, Drug) pairs, themaximum
likelihood estimation assigned negative values to both of thewi pa-
rameters, while yielding a high LLR score, marking a departure
from the null model. However, such negative weights indicate
that the absence of regulatory evidence relating the TF to the
gene is a better marker for linking genes to phenotype, meaning
that the TF is unlikely to be a regulator of the phenotype. We in-

cluded eight such (TF, Drug) associations as a negative control
group, pushing the total number of experimental pairs to 25. We
expected these eight predictions to prove false, since pGENMi con-
sidered them as statistically interesting but in a manner inconsis-
tent with its mechanistic underpinnings.

Though we largely utilized lymphoblastoid cell lines data for
our association analysis, we performed siRNA knockdown experi-
ments in several different cell lines to demonstrate the generaliz-
ability of our results beyond LCLs. Based on clinical relevance,
the human triple negative breast cancer MDA-MB-231 cells were
chosen to test anthracyclines, taxanes, platinums, gemcitabine, ra-
diation, and rapamycin cytotoxicity, because these drugs are typi-
cally administered as first-line therapy for triple negative breast
cancer. We used a human leukemia Jurkat cell line to test 6-MP,
6-TG, and Ara-C since these drugs are used to treat leukemia.
Temozolomide is the first-line therapy for glioblastoma multi-
forme; we therefore used human glioma U251 cells to validate
the TFs associated with temozolomide response. The siRNA knock-
downswere performed for the 25 (TF, Drug) pairs shown inTable 4,
A and B for the eQTL +M predicted and negative control associa-
tions, respectively. Cytotoxicity graphs of all knockdowns are
shown in Figure 3, while those separated by drug are shown in
Supplemental Figures S1–S13. Overall, seven of 17 (∼41%) predict-
ed associations (Table 4A) were validated in this way, compared to
one of eight (∼12%) negative control associations (Table 4B). This
overall precision of 41% in our own validations is similar to the
corresponding precision observed across all drugs (Table 2,
“Direct” evidence). Additionally, the precision on the 10 unique
eQTL +M predicted associations was 50% (five of 10), compared to
0% (zero of two) of negative control associations unique to eQTL
+M mode; this indicates that pGENMi is able to combine multiple
lines of regulatory evidence to make novel regulatory predictions
that may be unreported when considering each line of evidence in
isolation. With respect to the (TF, Drug) pair predicted uniquely
from eQTM analysis (and not predicted eQTL- or eQTLM-only),
we failed to validate it in our experiments. Nevertheless, we believe
that our experimental validation demonstrates the utility of
pGENMi predictions overall and especially when combining mul-
tiple sources of regulatory information to learn novel associations.

pGENMi produces associations distinct from

simple baseline methods

The pGENMi eQTL +M analysis, with results restricted to those
with an LLR≥ 3, produced 90 (TF, Drug) associations. As no such
algorithm other than GENMi (Hanson et al. 2015) exists for asso-
ciating TF cis-regulatory influence with drug response, and even
GENMi is incapable of handling both genotype and methylation
information simultaneously, there were no obvious reported
baselinemethods towhichwe could compare pGENMi, sowe con-
structed two simple baselines. In the first, a TF is considered asso-
ciated with a drug if the TF’s expression correlates significantly
with cytotoxicity, an approach recently used for identifying genes
associated with drug response (Rees et al. 2016). This baseline ap-
proach reported 121 associations at FDR 0.1 (chosen so that the
number of reported associations is similar to that of pGENMi).
However, these associations were mostly distinct from those re-
ported by pGENMi; between these 121 associations and the 90
associations reported by pGENMi, only five associations (hyper-
geometric P-value = 0.19) were shared. Similar observations of
complementarity between results were made when using other
thresholds of significance (see Supplemental Note S3).

Table 4. Experimentally tested (TF, Drug) pairs (A) in the predicted
group, organized by support from eQTL, eQTM, and eQTL +M analy-
ses, and (B) in the negative control group of associations, where pa-
rameter values suggest lack of evidence for TF association, despite a
high LLR score

Drug TF LLR eQTL eQTM eQTL +M Validated

A
Epirubicin TCF7L2 8.70 x x x No
Temozolomide FOXM1 14.81 x x x No
6-MP WRNIP1 13.03 x x No
Temozolomide SMARCC2 8.45 x x No
Rapamycin GATA1 10.00 x x Yes
Temozolomide ELF1 8.53 x x Yes
6-MP RCOR1 8.46 x No
6-MP PAX5 6.13 x No
Ara-C UBTF 6.06 x No
Gemcitabine USF1 6.48 x No
Radiation PML 6.37 x No
Ara-C RAD21 7.17 x Yes
Cisplatin CEBPD 6.14 x Yes
Docetaxel BATF 11.14 x Yes
Rapamycin STAT2 6.41 x Yes
Rapamycin PHF8 6.16 x Yes
Temozolomide ZNF263 5.55 x No
B
6-MP EZH2 19.98 x x x Yes
6-TG EZH2 23.88 x x x No
6-TG FOXP2 11.30 x x x No
Carboplatin TBL1XR1 9.27 x x x No
Paclitaxel CHD1 8.21 x x x No
6-MP FOXP2 6.44 x No
Oxaliplatin NR3C1 6.64 x No
Cisplatin EZH2 8.87 x x No

Both parts of the table show experimentally tested (TF, Drug) pairs, se-
lected based on their high LLR scores, and with trained parameter values
either suggesting an effect of the TF on drug (A) or no effect (B). For
each predicted pair, shown is the LLR from the eQTL +M analysis and
whether there was support (marked as “x”) from eQTL, eQTM, and
eQTL +M analyses. The “Validated” column and gray shading shows
whether the experimental test found a significant effect on cytotoxicity
upon knockdown of TF. Part B reveals experimental validation of only
one of eight tested pairs, consistent with our expectation that these
pairs should prove false despite a high LLR, based on parameter values.
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In a second baseline method, a TF is associated with a drug if
the top drug response genes are enriched for strong nearby ChIP
peaks of that TF. Performing a hypergeometric test between the
top 500 target genes of a TF, based on the maximum ChIP score
in the 50-kb upstream region of each gene, and the top 500 drug
response genes from a TWAS analysis yielded 126 (TF, Drug) pairs
at an FDRof 0.1 (correction performed per drug). Similar to the first
baseline, only twowere sharedwith the pGENMi approach. The re-
sults of both baseline analyses demonstrate that pGENMi reveals
novel insights into regulatorymechanisms of drug response, based
on cis-regulatory analysis, that may not be obtained from the
current approach of expression-phenotype correlations or from
analyses that identify gene targets purely on the basis of the distri-
bution of strong ChIP peaks.

Top associations of pGENMi significantly overlap with GENMi,

but the majority are novel

pGENMi formalizes the statistical procedure of GENMi (Hanson
et al. 2015) and extends it to handlemultiple regulatory evidences.

As such, it is fair to ask to what extent these two related procedures
produce similar results.We therefore ranGENMi to test the enrich-
ment between genes ranked by their TWAS P-value pertaining to a
given drug and genes with either cis-eQTL or cis-eQTM evidence
for that TF. Comparing the top 90 (TF, Drug) pairs by P-value pro-
duced by GENMi and the top 90 (TF, Drug) pairs produced by
pGENMi using both eQTL and eQTM evidence reveals an overlap
of 24 (TF, Drug) pairs (hypergeometric test P-value 1.1 × 10−17),
corresponding to a Jaccard coefficient of 15.4%, shown in
Table 5. Of these 24 pairs, 10 showed direct validation either
through our experiments or in the literature. While a strong over-
lap between the top associations from these two relatedmethods is
expected, it also underscores that pGENMi finds several associa-
tions—66 of the top 90—that were not reported by GENMi using
the same rank threshold (47 were ranked below 300, out of 3000,
by GENMi) and of which 21 were validated via siRNA. This com-
plementarity arises due to the difference of models used in the
two analyses, since the same data were utilized.

Comparison of GENMi and pGENMi results (top 90 pairs) ob-
tained from eQTL-only or eQTL +Mdata, in all four combinations,

Figure 3. All 25 experimentally tested (TF, Drug) dosage-response curves. Red outlines indicate significant shifts in cytotoxicity between siRNA negative
and siRNA TF conditions. Curves with a gray background are eQTL +M predictions, while those with a black background are negative controls. We con-
firmed seven out of 17 predictions and only one out of eight negative controls.
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revealed an overlap of 22–29 pairs (Table 5), and substantial com-
plementarity. The commonalities were much greater when results
from eQTL +M analysis were compared to those from eQTL-only
analysis, using the same method, than when pGENMi and
GENMiwere compared using the same data (Table 5). For example,
the top 90 predictions by pGENMi with eQTL + eQTM data and
by pGENMi with eQTL data share 48 associations, while the top
90 predictions by pGENMi with eQTL data and by GENMi with
eQTL data share only 29 associations. Thus, roughly speaking,
a greater difference in predicted associations arises in changing
the model (from GENMi to pGENMi) than in adding eQTM
data to pGENMi analysis (from pGENMi eQTL-only to pGENMi
eQTL +M).

In the absence of a reliable benchmark of true associations
and given the impracticality of extensive literature-based assess-
ment of each of the analyses reported in Table 5, it is difficult to
argue empirically if one analysis is more accurate than another.
However, it is fair to conclude that the majority of the top associ-
ations reported by pGENMi are exclusive to it in comparison with
results from GENMi, regardless of the mode of analysis.

Database of (TF, Drug) associations

Wemade available as an online resource all (TF, Drug) associations
validated using siRNA or overexpression experiments in this study
as well as those found to be similarly validated in our survey of the
literature (Supplemental Note S1–S2), the GENMi study (Hanson
et al. 2015), and a related work that performs the same experimen-
tal validations (Emad et al. 2017). This resource is available at veda.
cs.uiuc.edu/pgenmi. We believe this to be the first such catalog of
experimentally validated (TF, Drug) pairs.

Discussion

In this work, we developed a principled probabilistic graphical
model for inferring TFs that regulate drug response variation
among individuals. We demonstrated a high rate of success in val-
idating our associations through a comprehensive literature survey
and in vivo experimental validation and have collated the valida-
tions from our and other studies into a (TF, Drug) association
database.

While we view the pGENMi model as a major improvement
over our previous proof-of-principle approach, GENMi (Hanson
et al. 2015), the significance of the performance differences be-
tween the models on this data are difficult to assess objectively.
While there is a strong concordance between the two algorithms
(24 out of the top 90 pairs from pGENMi and GENMi eQTL +M
models) and a high percentage validate (10/24,∼ 42%), the com-
plementary pairs exclusive to pGENMi also validate similarly

(21/66,∼ 31%). Additionally, it is difficult to ascertain estimates
of the validation rate of the complementaryGENMipairs as the da-
tabase was predominantly curated using the top 90 pairs from
pGENMi eQTL +M models. Those entries in the database corre-
sponding to GENMi were cultivated from a literature analysis of
only the top 20 GENMi pairs and experimental data exclusive to
only four drugs. As a result, quantifying the difference in overall ef-
fectiveness of these two approaches will require further experi-
mentation, which we leave to future analyses.

Though pGENMi is similar to its predecessor, it also bears
similarity to existing models for data integration. pGENMi some-
what resembles the GPA model (Chung et al. 2014), except that
GPA, bymodeling SNPs instead of genes as latent variables, applies
primarily to GWAS data analysis (see Supplemental Note S3).
Furthermore,weuse an empirical Bayesian approach similarly used
to prioritize SNPs using annotations (Gaffney et al. 2012) and
Battle and coworkers’ latent regulatory variant model (LRVM)
(Battle et al. 2014). The pGENMi model, although unique in the
way that it combines cis-regulatory information with interindivid-
ual covariation in gene expression and drug response, is not whol-
ly unique in identifying TFs relevant to phenotype. There exist
categories of algorithms dedicated to implicating transcriptional
mechanisms or regulatory networks specific to certain phenotypes
(Geeven et al. 2012; Qi and Michoel 2012; Maier et al. 2015). The
main distinction of the pGENMi approach is that it uses data on
population-level variations in genotype, epigenotype, gene ex-
pression, and phenotype to uncover those mechanisms. Its find-
ings are thus expected to be more relevant to what underlies
individual differences in phenotype, as opposed to a more general
catalog that includes TFs that may be relevant to the phenotype
but not so much to its individual-level variations. On a relatively
minor note, the abovemethods for reconstructing context-specific
transcriptional regulatory networks require data on discrete cellu-
lar conditions (disease versus nondisease state, for instance) and
are thus distinct from pGENMi, which focuses on interindividual
continuous variation in cellular phenotype. TF associations with
drugs can also be inferred fromgeneral studies that prioritize genes
related to drug response based on prior functional networks
(Morrison et al. 2005; Chen et al. 2012; Emad et al. 2017) or based
on observed or imputed gene expression alone (Barretina et al.
2012; Basu et al. 2013; Gusev et al. 2016; Rees et al. 2016). These
approaches are not focused on identifying regulators of phenotype
based on cis-regulatory evidence.

Validation rates of pGENMi predictions, based on a literature
search or our own experiments, were around 40% overall, which is
far from perfect, and highly variable across drugs. Exploring possi-
ble reasons for false positives, we noted great disparity among
drugs in terms of the number of significant TWAS genes (i.e.,
whose expression is associated with phenotypic variation) and

Table 5. Concordance between pGENMi and GENMi eQTL+M and eQTL-only models

Top 90 (TF, Drug) pairs

pGENMi GENMi

eQTL +M eQTL-only eQTL +M eQTL-only

pGENMi eQTL +M – – – –

eQTL-only 48/132 (36%) – – –

GENMi eQTL +M 24/156 (15%) 24/156 (15%) – –
eQTL-only 22/158 (14%) 29/151 (19%) 44/136 (32%) –

Intersection/union (Jaccard coefficient) of top 90 (TF, Drug) associations from various pairs of analyses that differ in model (pGENMi versus GENMi) or
data (eQTL +M versus eQTL-only).
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that pGENMi predicts more associations, with lower validation
rates, for drugs with more TWAS genes (Supplemental Note S3;
Supplemental Tables S6, S7). In some cases, extensive cobinding
of a pair of TFs may also have led to false positives, with peaks of
the true regulator mistakenly providing evidence in favor of the
cobinding TF’s influence on several TWAS genes (Supplemental
Note S3). With regard to experimental validation, some (TF,
Drug) pairs did not validate in vivo because of the assay design;
(FOXM1, temozolomide) and (PML, radiation) were validated
directly in tissues according to the literature, but both failed to
validate in vivo in cell lines. Because (TF, Drug) pairs may be con-
text (cell line)-specific, failure to validate in certain cell lines can-
not be interpreted necessarily as a rejection of the relationship
altogether.

pGENMi can be improved in a number of ways; for instance,
our model makes the implicit assumption that a latent variable zg
representing a gene’s involvement inmediating the TF’s influence
on phenotype is independent across genes; however, coregulated
gene sets break this assumption, and it would be more reflective
of the underlying biology to model a network of latent variables
zg instead of treating each gene independently. Our choice ofmod-
eling the P-values of gene expression-phenotype correlation as
arising from a Beta distribution avoids the use of arbitrary thresh-
olds on the strength of this relationship, but we believe there may
be less restrictive ways to explicitly model phenotype-expression
relationships. Although we integrated more types of data in this
work than typical studies that directly relate gene expression to
drug response data (Gusev et al. 2016; Rees et al. 2016), the model
allows further extensions. For instance, incorporating the impact
of various histone modifications and other epigenetic marks will
be an interesting endeavor if such variants are profiled in the cell
line panel. Additionally, it may be wise to consider in vivo assays
to validate the mediators of drug response, in addition to the TFs
themselves, in the future. Despite these various areas of improve-
ment, the pGENMi methodology was successful in integrating
both genetic and epigenetic variation to elucidate the regulatory
association between a TF and drug, as evidenced by our 50% preci-
sion in validating those predictions only eQTL +M reported. We
hope this methodology can serve as a blueprint for future endeav-
ors that aim to elucidate the regulatory basis of disease etiology us-
ing multiple molecular profiles of variation.

The pGENMi framework need not be restricted to the analysis
of the variation of drug response. Itmaybe easily adapted for use in
other situations where one seeks to link a phenotype to a set of
gene properties, e.g., regulation by a TF,membership in a pathway,
involvement in a biological process, etc., while using gene expres-
sion as an intermediate variable. The relationship between gene
expression and phenotype may be quantified by differential ex-
pression P-values if, for instance, the phenotype is binary, as in
case versus control studies or in before versus after treatment
studies.

Methods

Data acquisition

We obtained data on single nucleotide polymorphisms (SNPs), 3′

mRNA probe expression, and CpG methylation status across 284
Epstein-Barr Virus (EBV)-transformed lymphoblastoid cell lines
(LCL) from the Coriell Cell Repository. The ethnicities of the
cohort decomposed along the following three broad ethnic lines:
95 Han-Chinese American (HCA), 96 Caucasian American (CA),

and 93 African American (AA). The sequenced genotype data
resulted in 1,362,404 germ line SNPs, each with minor allele
frequency (MAF) < 5%, genotype rate > 95%, and in Hardy-Wein-
berg equilibrium. Imputation analysis (see Supplemental Note
S4) of this initial set of genotyped SNPs resulted in 11,256,504
SNPs. Gene expression data consisted of 54,613 Affymetrix U133
Plus 2.0 GeneChip probes, transformed using log2 GC RobustMul-
ti-Array Averaging (GC-RMA). Genotyped SNP and gene expres-
sion data are available in the NCBI Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo) under SuperSeries ac-
cession no. GSE24277 and were originally published in a study
by Niu et al. (2010).

We used data on 444,797 methylation marks, originally pub-
lished by Heyn et al. (2013), available in NCBI GEO under
SuperSeries accession no. GSE36369. As a representation of meth-
ylation status, we used the “beta” value, which encodes methyla-
tion status within [0, 1], where 0 and 1 correspond to total
absence and presence of the mark, respectively. Information on
preprocessing and analysis of this data, including SNP imputation,
population stratification, gene expression processing, and regres-
sion design, among others, resides in Supplemental Note S4.

Drug response data was derived from dosage-response curves
of 24 cytotoxic drugs: 6-MP, 6-TG, Ara-C, arsenic, carboplatin, cis-
platin, cladribine, docetaxel, doxorubicin, epirubicin, everolimus,
fludarabine, gemcitabine, hypoxia, metformin, MPA, methotrex-
ate, NAPQI, oxaliplatin, paclitaxel, radiation, rapamycin, triciri-
bine, and temozolomide. Each response curve was summarized
by an EC50 value (drug concentration at which half the original
LCL population survived treatment). These data were most recent-
ly analyzed by Hanson et al. (2015) and are available at the follow-
ing location: veda.cs.uiuc.edu/cytotoxicity. Full information
regarding the experimental validation design, data, methodology,
and statistical analysis is in Supplemental Note S5.

Experimental data on TF binding were obtained from the
ENCODE project (The ENCODE Project Consortium 2011). The
union of clustered ChIP (v3) tracks of 161 TFs across 91 cell lines
formed a single track for each TF, representing a TF composite reg-
ulatory profile reflective of activity across a wide variety of cellular
contexts. The data for these clustered ENCODE cell lines are
located at the following URL: http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/encodeDCC/wgEncodeRegTfbsClustered. We re-
move clustered peaks that were likely the artifact of high occupan-
cy target (HOT) regions, as in the GENMi analysis (Hanson et al.
2015). Contrary to that work, we exempted the following 13 TFs
from the full 161: general TFs (POLR2A, POLR3A, POLR3G, TBP)
and those for which no eQTL or eQTM SNPs (P < 0.05) were detect-
ed within ChIP peaks (BDP1, BRCA1, BRF1, ELK1, ELK4, ESRRA,
HSF1, KDM5A, NELFE). Further processing of this data, including
the removal of high occupancy target (HOT) regions, is described
in Supplemental Note S4.

TWAS, eQTL, and eQTM analysis

Each of the following regression analyses controlled for the fol-
lowing covariates: sex, age, batch, and population axes of varia-
tion derived from EIGENSTRAT. Transcript-wide association
analysis, or TWAS (Cloney 2016), and eQTL analysis were per-
formed following Hanson et al. (2015) (Supplemental Note S4).
To perform TWAS, we computed partial regression coefficient
P-values between gene expression and drug EC50 values across
the 284 LCLs, for each (gene, drug) pair. For eQTL analysis, we cal-
culated partial regression coefficient P-values between each gene’s
expression and the genotype (measured by allelic dosing of 0,1,2)
of each SNP in its cis-regulatory (50-kb upstream) region. To avoid
the statistical artifacts of linkage disequilibrium, we preserved
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only the most significant eQTL-SNP in each gene’s cis-regulatory
region. For eQTM analysis, we repeated the eQTL analysis while
substituting SNP genotypes with methylation status, a continu-
ous variable between 0 and 1 representing the probability of the
presence of a CpGmethylation, and thus computed eQTM (meth-
ylation to gene expression regression) P-values, again retaining
only the most significant eQTM in the cis-regulatory region of
a gene.

Model structure and learning

Probabilistic graphical model

The pGENMi “plate diagram” is shown in Figure 1, which models
the association between a specific TF and a phenotype. There are
four variable types (p,zg,rgm,H) and two parameter types (α,wm).
The variable rgm is a binary indicator variable representingwhether
a gene g has a particular kind of evidence (e.g., cis-eQTL, cis-eQTM,
etc.) of regulation by the TF. Here, a cis-eQTL evidence is defined,
followingHanson et al. (2015), as the presence of an eQTLwithin a
ChIP peak of the TF, in the 50-kb upstream region of the gene.
Likewise, a cis-eQTM evidence is the presence of an eQTM within
a TF ChIP peak in the gene’s 50-kb upstream region. Thus, if rgm = 1
for some gene g and “m” represents cis-eQTM evidence, we inter-
pret this as evidence that a change of TF binding at the ChIP
peak is brought about by or related to the observed individual var-
iation in methylation status at the eQTM, which in turn explains
the latter’s correlation with gene expression.

A rectangle labeled with an M engulfs r, indicating that there
areM such kinds of regulatory evidence for each gene g: rg1, rg2,… ,
rgM. Each rgm variable in a plate connects to the same zg variable.
This latter variable is binary and latent (unshaded) and indicates
whether expression of a gene g is related to the phenotype. A rect-
angle labeled G encapsulates zg and rgm, indicating that there is a
latent variable zg and regulatory evidence vector rgm for each of G
genes. The state of zg is determined probabilistically as

P(Zg = 1|rg1 . . . rgM ,w0 . . .wM )

= 1
1+ exp(−(w0 +w1rg1 +w2rg2 + · · · +wMrgM )) .

Here, the various evidences rgm for the regulation of gene g by the
TF are combined in a logistic function, each weighted by a
coefficient wm. Thus, a weighting of separate regulatory evidences
determines whether a gene g is related to the phenotype. The var-
iable p is a continuous variable in the range [0,1], representing the
observed TWAS P-value (details above) of the association between
gene expression and phenotype. If a gene is related to the pheno-
type (zg = 1), then we model p to follow a Beta(α,1) distribution bi-
ased toward small (significant) P-values; α is a shape parameter
indicating the strength of the bias, constrained to the range
(0,1], with α = 1 equivalent to a uniform distribution over P-values.
However, if a gene is unrelated to phenotype (zg = 0), we expect
its expression-phenotype correlation P-value to be uniformly dis-
tributed over [0,1]. These modeling assumptions are summarized
below:

pg � Unif (0,1) if zg = 0
b(a,1) if zg = 1

{
.

The binary variable H indicates the hypothesis to be tested.
When H = 1, the model tries to find the best assignments to w
and α; this is the alternative hypothesis or H1. When H = 0, the
model only trains parameters w0 and α, and the weights w1,…,
wM are removed from the model entirely. In this case, the model
tries to explain the observed TWAS P-values without any regulato-

ry evidences at all; this is the null hypothesis, or H0. We derive a
score for how much better the alternative hypothesis explains
the data y:

LLR = log2 P(y
∣∣A,H = 1) − log2 P(y

∣∣A,H = 0).
The pGENMi method uses the log likelihood ratio (LLR),
computed for each TF separately, to rank TFs by their predicted as-
sociation with the phenotype.

Parameter estimation

The model uses the expectation maximization algorithm to find
assignments to the parameters, W = [w0, w1,…,wM] and α, such
that the likelihood of the observed TWAS P-values, p = [p1,…,
pG], is maximized (Supplemental Note S6). The optimization im-
poses no constraints on the parameters, and thus the weights of
regulatory evidences (w) may be trained to negative values, in ef-
fect rewarding genes that have regulatory evidence but no expres-
sion-phenotype correlation. As this is not consistent with our
goals, pGENMi invokes a post-processing step to disregard such
spurious TF-phenotype associations.

Software availability

Source code for pGENMi is available in Supplemental Code S1 and
at the following: https://github.com/knoweng/pgenmi.
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