

Open Peer Review

Discuss this article

 (0)Comments

SOFTWARE TOOL ARTICLE

The Dockstore: enabling modular, community-focused sharing
 of Docker-based genomics tools and workflows [version 1;

referees: 2 approved]
Brian D. O'Connor , Denis Yuen , Vincent Chung , Andrew G. Duncan ,

 Xiang Kun Liu , Janice Patricia , Benedict Paten , Lincoln Stein , Vincent Ferretti2

UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
Ontario Institute for Cancer Research, MaRS Centre, Toronto, Canada

Abstract
As genomic datasets continue to grow, the feasibility of downloading data to a
local organization and running analysis on a traditional compute environment is
becoming increasingly problematic. Current large-scale projects, such as the
ICGC PanCancer Analysis of Whole Genomes (PCAWG), the Data Platform for
the U.S. Precision Medicine Initiative, and the NIH Big Data to Knowledge
Center for Translational Genomics, are using cloud-based infrastructure to both
host and perform analysis across large data sets. In PCAWG, over 5,800 whole
human genomes were aligned and variant called across 14 cloud and HPC
environments; the processed data was then made available on the cloud for
further analysis and sharing. If run locally, an operation at this scale would have
monopolized a typical academic data centre for many months, and would have
presented major challenges for data storage and distribution. However, this
scale is increasingly typical for genomics projects and necessitates a rethink of
how analytical tools are packaged and moved to the data. For PCAWG, we
embraced the use of highly portable Docker images for encapsulating and
sharing complex alignment and variant calling workflows across highly variable
environments. While successful, this endeavor revealed a limitation in Docker
containers, namely the lack of a standardized way to describe and execute the
tools encapsulated inside the container. As a result, we created the Dockstore (

), a project that brings together Docker images withhttps://dockstore.org
standardized, machine-readable ways of describing and running the tools
contained within. This service greatly improves the sharing and reuse of
genomics tools and promotes interoperability with similar projects through
emerging web service standards developed by the Global Alliance for
Genomics and Health (GA4GH).

This article is included in the Container

 channel.Virtualization in Bioinformatics

1 2 2 2

2 2 1 2 2

1

2

 Referee Status:

 Invited Referees

 version 1
published
18 Jan 2017

 1 2

report report

, Seven BridgesGaurav Kaushik

Genomics, Inc. USA
1

, SIB SwissHeinz Stockinger

Institute of Bioinformatics Switzerland
2

 18 Jan 2017, :52 (doi:)First published: 6 10.12688/f1000research.10137.1
 18 Jan 2017, :52 (doi:)Latest published: 6 10.12688/f1000research.10137.1

v1

Page 1 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

https://f1000research.com/articles/6-52/v1
https://f1000research.com/articles/6-52/v1
http://orcid.org/0000-0002-6130-1021
https://dockstore.org
https://f1000research.com/channels/containers
https://f1000research.com/channels/containers
https://f1000research.com/channels/containers
https://f1000research.com/articles/6-52/v1
http://orcid.org/0000-0003-4666-7719
http://dx.doi.org/10.12688/f1000research.10137.1
http://dx.doi.org/10.12688/f1000research.10137.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.10137.1&domain=pdf&date_stamp=2017-01-18

 Brian D. O'Connor ()Corresponding author: briandoconnor@ucsc.edu
 O'Connor BD, Yuen D, Chung V How to cite this article: et al. The Dockstore: enabling modular, community-focused sharing of

 2017, :52 (doi: Docker-based genomics tools and workflows [version 1; referees: 2 approved] F1000Research 6
)10.12688/f1000research.10137.1

 © 2017 O'Connor BD . This is an open access article distributed under the terms of the ,Copyright: et al Creative Commons Attribution Licence
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 The authors wish to acknowledge the funding support from the Discovery Frontiers: Advancing Big Data Science in GenomicsGrant information:
Research program (grant no. RGPGR/448167-2013, ‘The Cancer Genome Collaboratory’), which is jointly funded by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, the Canadian Institutes of Health Research (CIHR), Genome Canada, and the Canada
Foundation for Innovation (CFI), and with in-kind support from the University of Chicago and the Ontario Research Fund of the Ministry of Research
and Innovation. Research reported in this publication was also supported by the National Human Genome Research Institute of the National
Institutes of Health (award no. U54HG007990). Computing resources were contributed by Microsoft through a grant to the UC Santa Cruz
Genomics Institute.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No competing interests were disclosed.

 18 Jan 2017, :52 (doi:) First published: 6 10.12688/f1000research.10137.1

Page 2 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

http://dx.doi.org/10.12688/f1000research.10137.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.10137.1

Introduction
The Dockstore project has its roots in the large-scale ICGC
PanCancer Analysis of Whole Genomes (PCAWG; https://dcc.
icgc.org/pcawg) cancer genomics project, which necessitated
the creation of highly portable and self-contained computational
tools1. PCAWG’s initial core goal was to consistently analyze
approximately 2,800 cancer donors (~5,800 whole genomes),
an effort that culminated in the re-alignment and somatic variant
calling for these donors. This effort used considerable computa-
tional resources. At its peak, 14 cloud and HPC environments were
utilized with over 16,000 cores in total, resulting in a cumulative
dataset of nearly 1 Petabyte in size.

Our initial approach for PCAWG was to utilize cloud Application
Program Interfaces (APIs) to build computational worker nodes
from scratch, rather than use the Docker virtualization technology2.
In this approach, we used API calls to create virtual machines
(VMs) and to install software on them using Linux Bash setup
scripts and, later, Ansible playbooks (https://www.ansible.com).
We found that the use of cloud APIs and scripts to be a cumber-
some and error prone way to move algorithms to the data. Over
time dependencies and software versions would change, resulting
in frequent failures of the setup scripts, or mysterious downstream
analytical failures. Docker, a relatively new lightweight virtualiza-
tion technology, mitigated these issues by providing a mechanism
to encapsulate tools and their dependencies in a highly portable
way (https://www.docker.com). This meant PCAWG workflow
authors could create and set up their environments within a Docker
image, including tools, library dependencies, reference files, and
so forth, and then copy that image from cloud to cloud for analysis
of data in place. This allowed us to very quickly create cloud-based
VMs, install Docker, pull the current version of the Docker-based
workflows, and be ready to perform analysis within a few minutes,
highly simplifying our deployment strategy. The consistent, port-
able execution environment provided within a Docker container
meant we could avoid issues caused by differences between cloud
environments. Furthermore, the inherent portability of Docker
images allowed us to leverage a multitude of computational envi-
ronments, including non-cloud environments that were previously
inaccessible to the project.

Given our positive experience using Docker to distribute analytical
tools, we began exploring a generalized method for other projects
to leverage the same approach. Our creation, the Dockstore (https://
dockstore.org), generalizes the PCAWG approach in an easy-to-use
web application that any tool developer or tool end user can utilize.
The concept extends popular services used in Information Tech-
nology (IT) fields, in particular commercial sites, such as Quay.
io (https://quay.io) and DockerHub (https://hub.docker.com), which
provide hosted Docker registries where anyone can upload images
containing tools or services.

Dockstore’s key innovation is its bridging of Docker image regis-
tries with a new, standardized approach to describing tools inside
images. Up to this point, tools inside Docker images have had no
standardized way to document how to call them, leading to the
convention of using human-readable README files to describe
tool invocation. This has made automation and integration among
Docker images and execution systems cumbersome given the

lack of machine-readable tool definitions. To solve this, we used
the Common Workflow Language (https://dx.doi.org/10.6084/
m9.figshare.3115156.v2) or Workflow Definition Language (WDL;
https://github.com/broadinstitute/wdl) tool definition syntaxes
to define the commands available inside a Docker image, how
to parameterize them, to describe their inputs/outputs and their
resource requirements. Dockstore also supports linking multiple
tools together using CWL or WDL workflows; these multi-image
workflows can then be registered on the site and used as build-
ing blocks to create more complex systems. The result is that
Dockstore-based tools and workflows can be programmatically
addressed and executed, enabling a new level of modularity,
automation and integration.

In addition to providing a mechanism to bring together Docker-
based tools and their corresponding machine-readable descriptors,
the Dockstore provides a compelling and useful web-based inter-
face, an instance of which is hosted at https://dockstore.org. This
allows it to serve two communities: developers who want to register
and share their tools through Dockstore, and users wishing to find
genomics tools packaged in Docker and ready to execute in their
own systems (Figure 1). The Dockstore web application provides
a full host of capabilities for these two types of users, including
registering new Docker images and descriptors, searching for tools
others have registered, and assisting users in executing tools on
any platform that supports Docker. The Dockstore also provides a
command line interface for power users who want to script and
automate their use of Dockstore.

Finally, Dockstore is supported by the Global Alliance for Genom-
ics and Health (GA4GH) organization3. The GA4GH’s mission
is to accelerate progress in human health through establishing
common frameworks for sharing genomics data and tools. The
GA4GH Data Working Group focuses on data representation,
storage, and analysis of genomic data. It provides an emerging
standard web service API for accessing Docker-based tools and
workflows (https://github.com/ga4gh/tool-registry-schemas). This
Tool Registry API is being developed as part of a larger effort by
the GA4GH Containers and Workflows task team to create a
container registry API standard. Its implementation in Dockstore,
and other sites, is a key goal of the standards effort and will allow
for federated searches across tool registries that implement the
GA4GH API.

Methods
Implementation
The Dockstore implementation can be divided into four facets: a
tool and workflow registration process aimed at authors, a REST-
ful web API used to power the site, a web application that uses this
API, and, finally, a command line utility that interacts with, and
launches, tools and workflows present on Dockstore.

Tool registration process. The Dockstore does not itself act as a
Docker image host or provide services to build Docker images
automatically from source. These services are already provided reli-
ably and at scale by sites, such as Quay.io and DockerHub. Instead,
Dockstore provides a registry to link Docker-based tools hosted on
Quay.io or DockerHub with tool metadata described in CWL or
WDL and checked into a source control repository at GitHub or

Page 3 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

https://dcc.icgc.org/pcawg
https://dcc.icgc.org/pcawg
https://www.ansible.com
https://www.docker.com
https://dockstore.org
https://dockstore.org
https://quay.io
https://hub.docker.com
https://dx.doi.org/10.6084/m9.figshare.3115156.v2
https://dx.doi.org/10.6084/m9.figshare.3115156.v2
https://github.com/broadinstitute/wdl
https://dockstore.org
https://github.com/ga4gh/tool-registry-schemas

Bitbucket. It also acts as a workflow registry for CWL or WDL-
based workflow definitions hosted on GitHub or Bitbucket. CWL
and WDL provide the emerging standard for describing tools and
their parameterizations (Supplementary File 1) along with overall
computational workflows that string together multiple tools. This
allows Dockstore to be lightweight and focus on the utility of pre-
senting tools and workflows to the community through a searchable
web application.

For developers adding tools to Dockstore, we recommend a method
in which Docker-based tools are built automatically from public
source repositories to maximize transparency and utility to the
community. In our preferred approach, Quay.io is used to build
the Docker image while GitHub or Bitbucket is used to store the
Dockerfile and WDL/CWL descriptor (Figure 2A). This approach
provides a considerable degree of automation for the developer,
and encourages practices that result in a clear provenance for the

Figure 2. Docker images and tool descriptors or workflows in WDL/CWL are registered with Dockstore. For tools, users can either
use the fully automated approach (A) where Docker images are built using Quay.io and original source Descriptors and Dockerfile are on
BitBucket or GitHub. Alternatively, they can register pre-build Docker images (C) that have been manually pushed to Quay.io or DockerHub.
The former approach results in greater tool transparency and build reproducibility. Workflows in CWL/WDL do not require an image build
process and can be directly registered from source control on BitBucket or GitHub (B).

Figure 1. Use cases for Dockstore. Developers can use Dockstore to register Docker images built by, or uploaded to, Quay.io and
DockerHub with CWL/WDL machine- and human-readable descriptors from GitHub or Bitbucket. Users can then query and find tools of
interest, parameterize them, and run them at a small scale locally or at large scale on commercial or open source execution engines
supporting Docker and CWL/WDL. Execution takes place on cloud or HPC environments supported by the execution engine of choice.

Page 4 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

tools during and after development. For example, this approach
encourages developers to check in a Dockerfile, the key script
used to make reproducible Docker images; the Dockerfile then
provides a resource for other users who wish to extend the tool.
Multiple releases of a Docker-based tool and its descriptors are sup-
ported and clearly associated with each other; the Dockstore web
API allows tool developers to register one or more releases of a
particular tool with a simple click in the web application. The
Dockstore web API gathers descriptors and Dockerfiles via
delegated OAuth authorization4. Similarly, the command line tool
supports a highly streamlined registration process for Docker
images that are built following this automated process. While it is
possible to use DockerHub in place of Quay.io, the lack of a public
DockerHub API makes integration into Dockstore less streamlined
and introduces manual steps.

In addition to the recommended automated build process,
Dockstore offers alternative manual processes that give developers
greater control over how their tools are registered. For example,
Dockstore supports tools built outside of the normal DockerHub/
Quay.io automated build process (Figure 2C). This allows develop-
ers to build Docker-based tools themselves, possibly for perform-
ance reasons, and then push the finished image to DockerHub or
Quay.io for inclusion in Dockstore. The drawback of this for devel-
opers is that the series of manual steps cannot necessarily be easily
reproduced, while for end users these approaches can obscure
how the Docker-based tool image was created. For these reasons
we recommend the fully automated approach to developers
sharing tools on Dockstore.

Workflow registration process. Workflows are not directly asso-
ciated with Docker images. Instead, they reference multiple tools
(ideally registered using the Dockstore process). For that reason,
registering workflows in either CWL or WDL format is simpler,
and only requires the workflow document to be checked into
source control in BitBucket or GitHub. It can then be found and
registered in the Dockstore (Figure 2B).

RESTful application programming interface (API). The Dock-
store web and command line interfaces are driven by a REST-
ful web API (DOI: 10.5281/zenodo.154185). This API includes
endpoints that conform to the emerging GA4GH Tool Registry API

standard (Figure 3), allowing for multiple tools to interoperate with
Dockstore and other sites that implement the standard. The API,
currently in its 1.0.0 release, allows for read only access to list and
retrieve details of registered Docker images on the site, for more
information see https://github.com/ga4gh/tool-registry-schemas.
The standard defines the JSON schema used to describe a par-
ticular tool registration and includes items such as name, descrip-
tion, author information, tool versions, and test data, in addition to
endpoints that allow for listing and filtering tools. In addition, the
Dockstore API includes extended, non-standard endpoints that are
used for additional features implemented on the site, such as user
authentication, integration with third-party services, like Github,
and tool labelling.

Web application interface. The Dockstore provides a simple-to-use
web application that allows developers to register and manage tools
and workflows while enabling end users to find and execute them.
The site prominently displays search capabilities on the home page
along with recently registered tools (Figure 4A). The search capa-
bility indexes names, descriptions, and versions and presents a list
of matching tools. Once a user selects a given tool, the details are
displayed, including links out to the Docker hosting service (Quay.
io or DockerHub) for tools and the source repository (Bitbucket or
GitHub) for tools and workflows (Figure 4C). The site also includes
the ability for authors to tag their registered tools with labels that
provide additional searchable annotations (Figure 4B). Together
these features allow a user to quickly search for and identify tools
and workflows that are available in Docker and are ready for
execution in a variety of environments. The Dockstore web
application also provides social features. Each entry incorporates
Disqus (https://disqus.com), a comments system, and links to
share entries via various social media sites.

Developers wishing to share their tools on Dockstore can log in
using GitHub as an identity provider. Upon first login, they are
presented with an onboarding wizard that assists in linking third
party services that provide source code hosting (in order to host
CWL and WDL descriptors) and Docker registries (in order to host
Docker images). For source code, GitHub is linked to by default
while Bitbucket is also supported. For Docker images, Quay.io is
supported (DockerHub linking is not required since an API is not
offered). Once linked, the developer is prompted to download and

Figure 3. The GA4GH Tool Registry API standard showing the available endpoints. These let systems find all tools in a given repository
and get details on a particular tool, including versions, descriptors, and the original Dockerfile if available.

Page 5 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

http://dx.doi.org/10.5281/zenodo.154185
https://github.com/ga4gh/tool-registry-schemas
https://disqus.com

Figure 4. The web interface for the https://dockstore.org site. (A) The main page lists the most recent additions to Dockstore and allows
for users to search and login. (B) A developer can easily publish their tools in Dockstore after logging in and linking to accounts. (C) Users
can see details about each tool, discuss the tool, share with social media, and navigate back to source.

configure the Dockstore command line tool and is presented with
an API token to be used with the underlying Dockstore web service.
Developers wishing to build on top of Dockstore can use this token
to authenticate against the Dockstore API and use it to make secure
requests to GitHub, Bitbucket, and Quay.io.

Following login through GitHub and the onboarding process to set
up linked accounts and obtain the command line and API token,
the developer is presented with a listing of the Docker images they
have previously built with Quay.io. In the recommended build
process, we link to the source code repository for the automated
build in order to locate tool descriptors. By default the developers’
images are “unpublished” and not publicly visible in Dockstore.
Valid images (images that can be linked to a WDL/CWL descrip-
tor) can be toggled to “published”, making them visible to any
Dockstore user (Figure 4B). The developer can use this interface
to customize the WDL/CWL paths used, hide or show particular
Docker image versions, and add labels to the tool. They can also
“refresh” the particular Docker tool, causing Dockstore to re-query
Quay.io and GithHub/Bitbucket to ensure the latest build image and
associated descriptors are present in the system. For Docker images

hosted in DockerHub, a more labor intensive process is needed to
manually register in Dockstore given the current lack of publically
available DockerHub API. Workflows are registered via a simpler
process, since only the path to a CWL or WDL workflow document
in GitHub or BitBucket is required.

Command line interface. The Dockstore command line utility
provides the registration and search functionality offered by the
web interface, and additionally provides assistance for file pro-
visioning and local execution of tools and workflows registered
within the system. This functionality allows Dockstore users to find
workflows and tools of interest and quickly execute them using a
completely standardized approach. Since every tool and workflow
in Dockstore is described with CWL or WDL, the local execution
of these tools is always done using the same command line and
same parameterization process, greatly simplifying the learning
curve for using any particular tool or workflow from Dockstore.

Local execution functionality proceeds through three distinct
steps: 1) input files are staged; 2) cwl-runner (for CWL descrip-
tors; https://github.com/common-workflow-language/cwltool) or

Page 6 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

https://dockstore.org
https://github.com/common-workflow-language/cwltool

Cromwell (for WDL descriptors; https://github.com/broadinstitute/
cromwell) is called to invoke the tool in Docker or the workflow
on the local host; and 3) output files are collected and staged to
a final location. The parameterization of the Docker-based tool or
workflow is encoded in a JSON document, a template of which can
be created with the Dockstore command line. The command line
launcher supports file downloads from HTTP/HTTPS, Amazon S3,
FTP/SFTP, and local file paths, while file uploads are supported for
Amazon S3, FTP/SFTP, and local file paths. The Dockstore com-
mand line supports file provisioning, since provisioning of files is
beyond the scope of the specifications for CWL and WDL. The
ability to execute tools from Dockstore is of particular value for
development and user evaluation purposes and the command line
supports a batch processing mode as well. We anticipate that other
systems, both open source and commercial, and through a standard
API, will ultimately enable larger-scale concurrent analysis with
Dockstore-registered workflows and tools.

Open source operation
Dockstore follows best practices for software development, includ-
ing using source control through GitHub, continuous integration
testing with Travis CI (https://travis-ci.org/), testing coverage
prediction with Coveralls (https://coveralls.io/), and community
engagement with Gitter (https://gitter.im/ga4gh/dockstore). The
Dockstore web application, https://dockstore.org, will remain an
open and free site for users to register their public tool images and
workflows. As an open source project5, we also encourage oth-
ers to customize and install instances of Dockstore (both the UI
and RESTful web API) at their own sites. Modifications to
the source should be submitted back to the project via the
standard GitHub “pull request” mechanism. We hope sites with
sharable content participate in our federated network of GA4GH
Tool Registry API compliant services, see https://github.com/
ga4gh/tool-registry-schemas.

Since Dockstore is designed to use Quay.io and Dockerhub as a
backend, the server resources necessary for running it are mod-
est. We recommend a Linux server or VM with 1–4 cores, 8GB of
RAM, and 20GB of available disk space. Dockstore has been suc-
cessfully installed on Ubuntu 14.04 and, while other distributions
are possible, we currently only recommend this one.

Use cases
Dockstore is a general platform for sharing tools and workflows, so
the potential use cases the site supports are quite varied. However,
we had three primary use cases in mind as the site was built: devel-
opers, individual users, and distributed projects performing large-
scale computations (Figure 1).

Developers
The developer use case focuses on providing a standardized,
best-practice development process for building portable tools
and workflows. Using Dockstore necessitates that a tool or work-
flow author uses source control, leverages a Docker build/hosting
service, and provides a standardized description of how to invoke
the tool/workflow. This development process ensures a given
tool or workflow is ready for distribution in a transparent and
portable way. Standardized descriptor formats (in WDL or CWL)
mean that the tool or workflow is self-documenting, easing the

documentation burden on developers. Example Dockerfile,
CWL-descriptor, and JSON parameterization files for the
BAMStats (http://bamstats.sourceforge.net) tool can be found
in the Supplementary materials (Supplementary Files 1–3). As
an outcome of registering their tools/workflows on Dockstore,
developers can take advantage of the underlying GA4GH Tool
Registry API standard. This means a growing number of services
can find and launch tools from Dockstore, providing additional
motivation for developers to redistribute tools and workflows
using the site.

Individual users
For individual users, Dockstore is a catalogue of available tools
and workflows that all work in a consistent and reliable way. A
user can use Dockstore to find tools and workflows of interest to
their research and leverage the standard descriptor format, in either
WDL or CWL, to provide clear documentation on how to execute
the tool/workflow. Furthermore, the inclusion of known-good test
JSON documents on Dockstore provide key examples of inputs and
expected outputs, something of importance in the bioinformatics
community given the variability in file standards (Supplementary
File 3). In addition to providing clear usage information and exam-
ple inputs/outputs, individual users can leverage Dockstore-based
tools and workflows in a growing collection of execution environ-
ments that understand the GA4GH Tool Registry API standard sup-
ported by Dockstore. Users will also be able to find and use tools
from other sites in a standardized way as more tool and workflow
repositories support this API.

Distributed projects
Large-scale, distributed computational projects are a special
form of the developer and user use cases above. Since Dockstore
was inspired directly from the lessons learned in the highly-
distributed PCAWG project, we feel other large-scale, distributed
analysis efforts, such as the upcoming ICGCmed (https://icgcmed.
org) project, will be able to benefit from Dockstore infrastruc-
ture. In these projects, Dockstore, or sites supporting the GA4GH
Tool Registry standard, provide a standardized way to develop
and share portable tools and workflows. Developers and research-
ers creating analytical tools and workflows for these projects can
build, test, and distribute these tools/workflows using Dockstore.
This is decoupled from the environments that run the tools and
workflows, allowing tool and workflow authors to focus on their
scientific content rather than compatibility with execution sites.
For those tasked with executing Dockstore-based tools and
workflows at scale, their inherent consistency means execution
environments shown to run a given Dockstore-based tool or
workflow are very likely to be able to run any other Dockstore-
based tool or workflow. This separation of concerns, through
the consistency provided by Dockstore and portability provided
by Docker and standards like CWL and WDL, mean large-scale
projects are much more likely to be successful in their distributed
computing goals than a model where every tool and workflow
needs to be validated across all compute environments used by the
distributed project. This is particularly important when environ-
ments are changed, added, or removed over the life of the distrib-
uted project, or there are a large and dynamic number of tools and
workflows being employed, such as in the Dream challenges (http://
dreamchallenges.org/).

Page 7 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

https://github.com/broadinstitute/cromwell
https://github.com/broadinstitute/cromwell
https://travis-ci.org/
https://coveralls.io/
https://gitter.im/ga4gh/dockstore
https://dockstore.org
https://github.com/ga4gh/tool-registry-schemas
https://github.com/ga4gh/tool-registry-schemas
http://bamstats.sourceforge.net
https://icgcmed.org
https://icgcmed.org
http://dreamchallenges.org/
http://dreamchallenges.org/

Discussion
The Dockstore is unique in its synthesis of programmatically
friendly tool descriptors (WDL or CWL) with Docker images
hosted on high-quality commercial services. Together these two
features allow tools to be utilized in a variety of automated sys-
tems, programmatically discovered, built into larger workflows,
and shared with the community. These features are key to sup-
porting the next generation of large-scale genomics analysis
projects, such as ICGCmed which require a robust mechanism to
encapsulate and move algorithms to data, integrate the efforts of
multiple developers, and handle change management in a dynamic
environment.

In contrast with generic Docker repositories, such as DockerHub,
the Dockstore provides mechanisms to interpret the contents of one
or more Docker images, link them together, and execute them on
a variety of HPC and cloud environments without modification.
Projects like Galaxy Toolshed6 and Bioconda (https://bioconda.
github.io) provide methods for describing and linking tools, but
do not use Docker to abstract the execution environments. Hence,
the Dockstore approach combines the cloud-based flexibility and
elasticity of Docker with the modularity of tool repositories like
Galaxy Toolshed.

A number of existing projects, such as BioShaDock7, Bioboxes8,
and BioDocker (http://biodocker.org), focus on encapsulating bio-
informatics tools in Docker images in a way similar to Dockstore.
BioDocker encourages the use of bioinformatics tools in Docker
images by curating them in a single GitHub repository that col-
laborators can contribute to. Bioboxes defines guidelines (https://
github.com/bioboxes/rfc) for particular types of software, such as
assemblers or binning applications, allowing for easy benchmark-
ing and interoperability between tools in bioinformatics pipeline.
BioShaDock is the most similar to Dockstore and provides a
fully controlled environment to build and publish bioinformatics
software. It also hosts Docker images locally. Dockstore, like these
existing efforts, encourages the use of Docker as a technology for
packaging and distributing bioinformatics tools. However, unlike
Bioboxes and BioDocker, Dockstore has a heavy focus on CWL/
WDL in order to collect Docker images that can be used as part of
larger workflows. Unlike BioShaDock, Dockstore is a lightweight
registry that focuses on deep integration with commercial source
code providers and the Quay.io Docker image registry. We believe
that the combination of a standardized descriptor for bioinformatics
tools and integration with third party services allows for a great deal
of flexibility by allowing for a robust software development expe-
rience, which will enable execution of tools in any CWL/WDL-
compatible cloud environment. Furthermore, integration with
commercial providers allows for a convenient registration experi-
ence that mimics popular services focused on the general software
development community, such as Coveralls (https://coveralls.io/)
and Travis CI (https://travis-ci.org/).

In the future, it should be possible to leverage multiple open source
user interfaces (such as Galaxy) and commercial platforms (such
as Seven Bridges Genomics, DNAnexus, DNAstack, and others) to
provide a friendly environment for finding, combining, and execut-
ing Dockstore-based tools and workflows. To further this goal, the

creation of the Tool Registry API standard through the GA4GH
will be key for future interoperability between tool registries and
the systems that scale the execution of tools they contain. The
Dockstore is the first implementation of this emerging standard.
We hope that other tool repositories will implement the standard,
allowing the creation of a tool sharing network of registries. Mul-
tiple sites that have different models of how Docker-based tools
should be built, shared, and secured, such as BioShaDock,
Bioboxes, and BioDocker (http://biodocker.org) can flourish inde-
pendently, but benefit from supporting the emerging GA4GH API
standard. Such a network stands a good chance of gaining the
critical mass to make scientific tool sharing a popular reality

Future features of Dockstore will include the support of testing
frameworks and execution environments. The ability to specify
test datasets for each tool and workflow will be extended pro-
viding users with “known good” sample inputs for testing and
instructional purposes. We will also add support for signed Docker
images, providing a mechanism to support “verified” Dockstore
entries that are validated to come from trusted sources. This will
complement private registry support in Dockstore in order to
facilitate sharing Docker-based tools and workflows with a select
set of collaborators. A long term evolution of the Dockstore site
will include a central registry index, complete with faceted search,
for querying across the network of GA4GH-compliant tool regis-
tries described previously. Dockstore will also integrate with the
related and complementary GA4GH Workflow and Task Execu-
tion API standards currently in development, enabling the use of
compute resources to run Dockstore-based tools and workflows
through standardized APIs. Dockstore’s support of these features,
and emerging standards, will support future successors to large
scale, distributed analysis projects such as PCAWG. This may
include efforts, such as the ICGCmed (https://icgcmed.org/) and
future DREAM challenges (http://dreamchallenges.org/), where
Dockstore can enable the seamless interchange and execution of
software tools across a variety of computer environments.

Software availability
Software available at: https://dockstore.org/

Dockstore source code available from the Global Alliance for
Genomics and Health (GitHub): https://github.com/ga4gh/dock-
store (web UI: https://github.com/ga4gh/dockstore-ui)

Archived source code for Dockstore 1.0 release: https://zenodo.org/
record/154185, DOI: 10.5281/zenodo.1541859

License: Apache 2.0

Author contributions
BO conceived of and provided functional requirements and imple-
mentation guidance. DY provided architectural and software devel-
opment supervision. VC, AD, XL, JP implemented the software.
BP, VF and LS provided strategic guidance for the project.

Competing interests
No competing interests were disclosed.

Page 8 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

https://bioconda.github.io
https://bioconda.github.io
http://biodocker.org
https://github.com/bioboxes/rfc
https://github.com/bioboxes/rfc
https://coveralls.io/
https://travis-ci.org/
http://biodocker.org
https://icgcmed.org/
http://dreamchallenges.org/
https://dockstore.org/
https://github.com/ga4gh/dockstore
https://github.com/ga4gh/dockstore
https://github.com/ga4gh/dockstore-ui
https://zenodo.org/record/154185
https://zenodo.org/record/154185
http://dx.doi.org/10.5281/zenodo.154185

Grant information
The authors wish to acknowledge the funding support from the
Discovery Frontiers: Advancing Big Data Science in Genom-
ics Research program (grant no. RGPGR/448167-2013, ‘The
Cancer Genome Collaboratory’), which is jointly funded by the
Natural Sciences and Engineering Research Council (NSERC)
of Canada, the Canadian Institutes of Health Research (CIHR),
Genome Canada, and the Canada Foundation for Innovation
(CFI), and with in-kind support from the University of Chicago
and the Ontario Research Fund of the Ministry of Research and
Innovation.

Research reported in this publication was also supported by the
National Human Genome Research Institute of the National

Institutes of Health (award no. U54HG007990). Computing
resources were contributed by Microsoft through a grant to the UC
Santa Cruz Genomics Institute.

Acknowledgements
The authors wish to acknowledge the valuable feedback from
the members of the Global Alliance for Genomics and Health
(GA4GH). Specifically, the Containers and Workflow Task Team
co-leaders Jeff Gentry and Peter Amstutz, and the team’s mem-
bership, including Kyle Ellrott who leads the development of the
GA4GH Task Execution API standard. We also wish to thank the
Big Data to Knowledge (BD2K) initiative, in particular contributors
from the Center for Big Data in Translational Genomics, including
David Haussler, for their valuable feedback and support.

Supplementary material
Supplementary File 1: Zipped file containing the following (Click here to access the data.):

A tool descriptor, in this case the Dockstore.cwl descriptor written for the BAMStats tool on Dockstore (https://dockstore.org/contain-
ers/quay.io/collaboratory/dockstore-tool-bamstats). Descriptors define the key attributes like name, inputs and outputs of a tool, the system
requirements, which Docker image to use, authorship information, and information making the construction of the command possible.

A Dockerfile that includes the instructions on how to make a Docker image, in this case, one containing the BAMStat tool.

This Sample.json file provides sample parameterizations for this tool including a “known good” input BAM file.

References

1.	 Stein LD, Knoppers BM, Campbell P, et al.: Data analysis: create a cloud
commons. Nature. 2015; 523(7559): 149–151.
PubMed Abstract | Publisher Full Text

2.	 Dirk M: Docker: lightweight linux containers for consistent development and
deployment. Linux Journal. 2014; 239: 2.
Reference Source

3.	 Mark L, Siu LL, Rehm HL, et al.: All the World’s a Stage: Facilitating Discovery
Science and Improved Cancer Care through the Global Alliance for Genomics
and Health. Cancer Discov. 2015; 5(11): 1133–1136.
PubMed Abstract | Publisher Full Text

4.	 Barry L: Oauth web authorization protocol. IEEE Internet Computing. 2012; 16(1):
74–77.
Publisher Full Text

5.	 Thomas FR: Architectural styles and the design of network-based software

architectures. University of California, Irvine. 2000.
Reference Source

6.	 Daniel B, Von Kuster G, Bouvier E, et al.: Dissemination of scientific software
with Galaxy ToolShed. Genome Biol. 2014; 15(2): 403.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Moreews F, Sallou O, Ménager H, et al.: BioShaDock: a community driven
bioinformatics shared Docker-based tools registry [version 1; referees: 2
approved]. F1000Res. 2015; 4: 1443.
PubMed Abstract | Publisher Full Text | Free Full Text

8.	 Belmann P, Dröge J, Bremges A, et al.: Bioboxes: standardised containers for
interchangeable bioinformatics software. Gigascience. 2015; 4: 47.
PubMed Abstract | Publisher Full Text | Free Full Text

9.	 Yuen D, Duncan A, Liu V, et al.: ga4gh/dockstore: 1.0. 2016.
Publisher Full Text

Page 9 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

https://f1000researchdata.s3.amazonaws.com/supplementary/10137/e672406c-6a9d-4089-b1dd-b5146ca3d21e.zip
https://dockstore.org/containers/quay.io/collaboratory/dockstore-tool-bamstats
https://dockstore.org/containers/quay.io/collaboratory/dockstore-tool-bamstats
http://www.ncbi.nlm.nih.gov/pubmed/26156357
http://dx.doi.org/10.1038/523149a
http://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
http://www.ncbi.nlm.nih.gov/pubmed/26526696
http://dx.doi.org/10.1158/2159-8290.CD-15-0821
http://dx.doi.org/10.1109/MIC.2012.11
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ncbi.nlm.nih.gov/pubmed/25001293
http://dx.doi.org/10.1186/gb4161
http://www.ncbi.nlm.nih.gov/pmc/articles/4038738
http://www.ncbi.nlm.nih.gov/pubmed/26913191
http://dx.doi.org/10.12688/f1000research.7536.1
http://www.ncbi.nlm.nih.gov/pmc/articles/4743153
http://www.ncbi.nlm.nih.gov/pubmed/26473029
http://dx.doi.org/10.1186/s13742-015-0087-0
http://www.ncbi.nlm.nih.gov/pmc/articles/4607242
http://dx.doi.org/10.5281/zenodo.154185

Open Peer Review

 Current Referee Status:

Version 1

 27 February 2017Referee Report

doi:10.5256/f1000research.10919.r20278

 Heinz Stockinger
SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

The article is very well written and discusses the implementation of a valuable tool for the community. The
use of Docker is currently very popular, and the combination with CWL/WDL is very good.

I have a minor comment for the on-line tool and the presented workflows
(https://dockstore.org/search-workflows). Currently, there does not seem to be description for the
presented workflows. Example:

https://dockstore.org/workflows/ICGC-TCGA-PanCancer/wdl-pcawg-bwa-mem-workflow
"No description associated with this workflow. "

This makes it difficult for users to select a workflow. Adding a short description would be very helpful.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 01 February 2017Referee Report

doi:10.5256/f1000research.10919.r19471

 Gaurav Kaushik
Seven Bridges Genomics, Inc., Cambridge, MA, USA

In this manuscript, the authors describe the motivation, design, architecture, and merit of Dockstore.org, a
community-focused utility for sharing Docker-based tools and workflows for the sciences.

The authors should be commended for their overview of the significant challenges facing large-scale
genomics efforts, such as maintaining consistent, reproducible analyses across environments, as well as
the solution they’ve architected. They highlight important considerations that must be addressed in order
to accelerate scientific progress and the improvement of human health. The technical description of the
ICGC PCAWG project is illuminating for researchers and organizations wanting to organize or participate
in large-magnitude informatics projects.

Page 10 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

http://dx.doi.org/10.5256/f1000research.10919.r20278
http://orcid.org/0000-0003-4666-7719
http://dx.doi.org/10.5256/f1000research.10919.r19471

Overall, we recommend that the manuscript be accepted pending minor revisions. Each revision item is
discussed below:

The description of Dockstore architecture is thorough and each design decision is justified and
informative to the reader. A few additions, however, may benefit audiences which are less conversant in
Docker or cloud architecture. For example, though container-based workflow descriptions are becoming
increasingly common, many researchers may not yet be familiar with CWL and WDL. A more detailed
description of the container-tool-workflow relationship and the benefit of modularizing workflows into
containerized tools (as opposed to have whole workflows in a single container) may be helpful to
newcomers.

We request that the authors cite the Common Workflow Language and Workflow Description Language
as appropriate. For CWL, the appropriate citation is ,https://dx.doi.org/10.6084/m9.figshare.3115156.v2
as stated on . For WDL, we have previously cited their GitHub repository (commonwl.org

) though a more appropriate citation may now exist and could behttps://github.com/broadinstitute/wdl
provided by their development team.

The authors mention that cloud APIs and scripts resulted in analytical failures. The manuscript may
benefit from brief discussion of any design constraints when using containers and workflows that may
introduce similar risks. If there are none or relatively few, please elucidate why such a technological
advantage exists to the reader.

Figure 2 may benefit from streamlining, as there are duplicate images and the discussion items (A-C) are
mentioned out of order.

Regarding the use of GitHub for automated builds and workflow descriptions, the reader may benefit from
a small description of best practices in a supplement. For example, how does Dockstore handle tagging
of Dockerfiles and how should users make use of them? This can be brief, but it may be helpful to better
describe how to augment the value add that Dockstore brings to reproducibility with good git practices.

On page 7, “Dream” should be “DREAM”.

References
1. Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M, Kartashov A, Leehr D, Ménager H,
Nedeljkovich M, Scales M, Soiland-Reyes A, Stojanovic L: Common Workflow Language, v1.0. 2016.

 Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 I am an employee of Seven Bridges Genomics, which participated in the PCAWGCompeting Interests:
project and a contributor to CWL. The Seven Bridges platform leverages Docker and CWL for analysis. I
also sit on the advisory board for CWL and have collaborated with Dr. O’Connor on a workshop at the
ISMB 2016 conference.

1

Page 11 of 11

F1000Research 2017, 6:52 Last updated: 27 FEB 2017

https://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://www.commonwl.org/
https://github.com/broadinstitute/wdl
http://dx.doi.org/10.6084/m9.figshare.3115156.v2

