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Abstract

The brown alga Silvetia siliquosa (Tseng et Chang) Serrão, Cho, Boo & Brawly is endemic

to the Yellow-Bohai Sea and southwestern Korea. It is increasingly endangered due to habi-

tat loss and excessive collection. Here, we sequenced the mitochondrial (mt) and chloro-

plast (cp) genomes of S. siliquosa. De novo assembly showed that the mt-genome was

36,036 bp in length, including 38 protein-coding genes (PCGs), 26 tRNAs, and 3 rRNAs,

and the cp-genome was 124,991 bp in length, containing 139 PCGs, 28 tRNAs, and 6

rRNAs. Gene composition, gene number, and gene order of the mt-genome and cp-genome

were very similar to those of other species in Fucales. Phylogenetic analysis revealed a

close genetic relationship between S. siliquosa and F. vesiculosus, which diverged approxi-

mately 8 Mya (5.7–11.0 Mya), corresponding to the Late Miocene (5.3–11.6 Ma). The syn-

onymous substitution rate of mitochondrial genes of phaeophycean species was 1.4 times

higher than that of chloroplast genes, but the cp-genomes were more structurally variable

than the mt-genomes, with numerous gene losses and rearrangements among the different

orders in Phaeophyceae. This study reports the mt- and cp-genomes of the endangered S.

siliquosa and improves our understanding of its phylogenetic position in Phaeophyceae and

of organellar genomic evolution in brown algae.

Introduction

Silvetia siliquosa (Tseng et Chang) Serrão, Cho, Boo & Brawly, a member of the Fucaceae, is an

ecologically and commercially important brown alga that occurs in the middle and low inter-

tidal zones. Historically, it has had a wide distribution in the Yellow-Bohai Sea and the south-

west coast of Korea [1–4]. However, the natural biomass and distribution range of S. siliquosa
in East Asia have declined dramatically since the 1990s due to habitat fragmentation and

anthropogenic influences [5, 6]. S. siliquosa is now listed as an endangered species with a high
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extinction risk in the Yellow-Bohai Sea [7]. Hence, there is an urgent need to restore and con-

serve its natural populations. For endangered algal species like S. siliquosa that have experi-

enced human interference, genomic data will play a fundamental role in effectively preserving

their resources and deciphering the factors that endanger them [8]. Limited genomic informa-

tion, including information on organellar genomes, hampers the conservation of threatened

species and the genome-scale evolutionary study of brown algae.

Complete organelle genome data can provide important reference for the phylogenetic con-

struction of brown algae [9, 10]. Compared to the nuclear genome, the relatively simple and

conserved structural composition of organellar genomes make them ideal molecular tools for

understanding genome evolution across the tree of brown algae [11−13]. Furthermore, the

substitution rates of chloroplast genes are generally lower than those of mitochondrial genes

[14, 15], and chloroplast genes are therefore more effective for resolving the brown algal phy-

logeny. Organellar structural variation provides key insights that enhance our understanding

of lineage diversification [16]. For example, designing molecular markers based on polymor-

phism can be used for species identification [10, 17]. Additional organelle genomes from novel

taxa will not only provides data support for analyzing the structural variation of organelle

genomes, but also advance our understanding of the evolution and diversity of brown algae.

In this study, we sequenced the complete mitochondrial genome (mt-genome) and chloro-

plast genome (cp-genome) of S. siliquosa in order to understand its organellar genomic archi-

tecture and preserve its genome resources. We explored the evolutionary status of S. siliquosa
in Phaeophyceae at the mt-genome level and the divergence time of typical brown algae. We

also compared the organellar genomes of S. siliquosa and other typical brown algae to deter-

mine how structures and substitution rates varied across organelles and lineages.

Materials and methods

Algal material and DNA extraction

Silvetia siliquosa was collected from the rocky shore on Jindo Island, Korea (34˚40’N, 126˚

28’E) in 2018. S. siliquosa is not listed on any Asian official threatened species list due to weak

legislation and less research on endangered seaweeds. No special permits were required for

this study and the sample was collected by researchers from Wonkwang University of Korea.

To avoid damage to algae, the tip of apical vegetative tissue (3–5 cm) was excised and stored in

silica gel. The total genomic DNA was extracted using the FastPure Plant DNA Isolation Mini

Kit (Vazyme Biotech Co., Ltd., Nanjing, China) according to the manufacturer’s instructions.

The extracted DNA was subsequently purified based on quality control protocols.

Illumina sequencing, genome assembly and annotation

After DNA purification, 1 μg of DNA was used to construct paired-end libraries with insert

sizes of 450 bp following Illumina’s standard genomic DNA library preparation procedure.

The quality-checked Illumina paired-end libraries were sequenced on the Illumina HiSeq 4000

platform (Biozeron, Shanghai, China). The raw paired-end reads were trimmed and quality-

filtered using Trimmomatic-0.39 [18] with parameters SLIDINGWINDOW: 4:15 MINLEN:

75. Clean data obtained after quality control were used for further analysis. We used SOAPde-

novo v2.04 [19] to construct de novo assemblies, and contigs were Blasted against the reference

organellar genomes of Fucus vesiculosus (mt-genome: NC_007683; cp-genome: FM957154).

Aligned contigs with high similarity (� 80%) were ordered based on the reference genomes.

GapCloser v1.12 [19] was subsequently used to fill in the remaining local inner gaps. Finally,

an mt-genome with one 36,036 bp scaffold and a cp-genome with one 124,991 bp scaffold

were obtained.

PLOS ONE The organellar genomes of Silvetia siliquosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0269631 June 16, 2022 2 / 17

genome and cp-genome of S. siliquosa are

MW485980 and MW485976, respectively. The raw

reads of Silvetia siliquosa organelle genomes have

been deposited in the NCBI Sequence Read Archive

under the BioProject number PRJNA824893,

Sequence Read Archive accession number of

mitochondrial and chloroplast genomes are

SAMN27488512 and SAMN27488513,

respectively.

Funding: This research was supported by the

Strategic Priority Research Program of Chinese

Academy of Sciences (XDB42030203,

XDB42040106, XDA19060102) (received by DD)

and the National Natural Science Foundation of

China (Nos. 31971395, 41761144057) (received

by Z-MH).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0269631


Protein-coding genes (PCGs) and open reading frames (ORFs) were annotated using the

online Dual Organellar GenoMe Annotator tool (DOGMA) with default parameters [20]. The

transfer RNA (tRNA) genes were identified by reconstructing their cloverleaf structures using

tRNAscan-SE v1.23 with default parameters [21], and ribosomal RNA (rRNA) genes were deter-

mined using RNAmmer v1.2 [22]. The circular mitochondrial and chloroplast genomes map

were drawn using OGDRAW v1.3.1 [23]. The mt-genome and cp-genome of S. siliquosawere

deposited in GenBank under accession numbers MW485976 and MW485980, respectively.

Boundary regions and synteny analysis

To identify possible structural rearrangements in organellar genomes of the Phaeophyceae, we

used Mauve [24] to conduct co-linear analysis with the following settings: progressive Mauve

alignment algorithm, the organellar genomes of S. sililiquosa as the reference sequences, and

automatic calculation of full alignment and minimum locally collinear block (LCB) score. To

detect variations in the LSC/IR/SSC boundaries of the chloroplast genomes in Phaeophyceae,

we compared and visualized the exact IR border positions and their adjacent genes using the

online tool IRscope [25].

Phylogenetic analysis and divergence timing

Phylogenetic relationships within the Phaeophyceae were analyzed using the concatenated

sequence datasets of 35 shared mitochondrial PCGs (rps2–4, rps7, rps8, rps10–14, rps19; rpl2,

rpl5, rpl6, rpl14, rpl16, rpl31; nad1–7, nad9, nad11; cob; cox1–3; atp6, atp8, atp9; and tatC)

from 19 brown algae (see S1 Table). The nucleotide sequences of each gene were aligned using

default setting of ClustalW 2.0 [26] and then concatenated for tree construction. Heterosigma
akashiwo (Raphidophyceae, GenBank number: NC_016738) was selected as an outgroup.

Maximum likelihood (ML) and Bayesian inference (BI) trees were reconstructed using PhyML

v.3.1 [27] and MrBayes v.3.2 [28], respectively. Modeltest v3.7 [29] was used to determine the

best-fit substitution model for the concatenated dataset (GTR+G+I, I = 0.1682, G = 0.5123)

under the Akaike information criterion (AIC). The ML tree was constructed based on Sub-

tree-Pruning-Regrafting (SPR) with heuristic analysis of 103 bootstrap replicates. For BI analy-

sis, the Markov Chain Monte Carlo (MCMC) process was run for 2×106 generations using

four chains with a tree sampling frequency of every 200 generations, discarding the first 10%

as burn-in and calculating the posterior consensus tree.

We concatenated five mitochondrial genes (cox1, cox3, nad1, nad4, and atp9) and three

chloroplast genes (rbcL, psbA, and atpB) from 15 brown algae for molecular dating. These

genes were highly conserved and slow-evolving. After alignment, the concatenated sequences

were divided into three partitions corresponding to the 1st, 2nd, and 3rd codon sites. ML trees

were reconstructed using PhyML v.3.1 based on the best scoring alternative model of GTR+G

+I with 100 bootstrap replicates. Divergence times were estimated by the approximate likeli-

hood calculation method implemented in MCMCTree of PAML v4.8 [30, 31]. Two fossil cali-

brations were incorporated based on previous studies (S2 Table). The prior parameters of

rgene_gamma was calculated with estimates of the overall substitution rate on the ML tree

obtained by BASEML in PAML. The gradient and Hessian of the branch lengths were esti-

mated by BASEML using the GTR+G substitution model at the maximum likelihood estimates

[30]. The independent rate model (clock = 2) for the molecular clock and the GTR+G model

for nucleotide substitutions were set in the mcmctree.ctl control file, with the following param-

eter settings: substitution rate per time unit = 0.080406; rgene_gamma = 1 12.5; sigma2_-

gamma = 1 4.5. To determine whether convergence had been achieved, two independent

MCMC chains were run with 5×106 steps after discarding 104 generations as burn-in.
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Substitution rate estimation

To investigate the variation in nucleotide substitution rates of mt- and cp-genomes in the

Phaeophyceae, we retrieved 35 mitochondrial PCGs and 129 chloroplast PCGs to measure the

ratio of non-synonymous (dN) and synonymous substitutions (dS). We selected the brown

algae listed in Tables 1 and 2 for this analysis. We performed codon alignment for each PCG

using MEGA and identified conserved blocks using Gblocks v0.91b with default parameters

[32]. The alignment sequence was transformed into pml format using DAMBE5 [33]. We esti-

mated dN, dS, and dN/dS ratio using the Codeml program in PAML v4.8 [31] with the follow-

ing options: runmode = −2 and CodonFreq = 2. Genes with synonymous substitution values

greater than 5 were discarded from further analysis. The dN/dS values were averaged for all

pairwise comparisons of each gene. The significance of differences between mean values was

determined by independent-samples t-test with a 95% confidence interval using SPSS

software.

Results and discussion

The mitochondrial genome of S. siliquosa
The circular mt-genome of S. siliquosa is 36,036 bp in length (Fig 1), longer than those of Dic-
tyota dichotoma, Sargassum thunbergii, and Sargassum horneri but shorter than those of the

Fucophycidae (Table 1). Its overall GC content of 33.75% is comparable to those of other

phaeophycean species (i.e., 32.53–36.60%, Table 1). The mt-genome of S. siliquosa is gene

dense, and the length of coding genes accounts for 94.31% of the total mt-genome, and non-

coding regions accounts for only 5.69%, well within the range of Phaeophycean species (3.21–

6.49%, Table 1). An overlap of base A is present between rpl6 and rps2 in the mt-genome of S.
siliquosa, and the overlapping regions are exceedingly conserved in eight mt-genomes of the

Table 1. General features of mitochondrial genomes in Phaeophyceae.

Genome Features Silvetia
siliquosa

Fucus
vesiculosus

Sargassum
thunbergii

Sargassum
horneri

Desmarestia
viridis

Saccharina
japonica

Undaria
pinnatifida

Ectocarpus
siliculosus

Dictyota
dichotoma

Genome Size / GC

Content (%)

36,036/33.75 36,392/34.45 34,748/36.62 34,606/36.16 39,049/36.60 37,657/35.30 37,402/32.53 37,187/33.51 31,617/36.52

Gene number

rRNA/ tRNA/CDS/

Total

3/26/38/67 3/26/38/67 3/25/37/65 3/25/37/65 3/26/39/68 3/25/38/66 3/25/38/66 3/25/40/68 3/25/38/67

Total Gene Length 27,879 28,212 27,096 27,060 30,570 29,007 29,067 28,764 24,513

Average Gene

Length

734 742 732 731 784 763 765 719 645

Gene’s GC Content 32.5 33.3 35.5 35.1 35.6 34.2 31.1 32.3 35.5

% of Genome

(Genes)

77.36 77.52 77.98 78.19 78.29 77.03 77.72 77.35 77.53

Intergenic region

length

8,157 8,180 7652 7546 8479 8650 8335 8423 7104

% of Genome

(Intergenic)

22.64 22.48 22.02 21.81 21.71 22.97 22.28 22.65 22.47

Spacer content (%) 5.69 5.61 4.12 4.29 6.06 6.49 5.83 6.34 3.21

Spacer size (bp) 0–209 0–422 0–166 0–172 0–385 0–361 0–354 0–356 0–74

Pairs of overlapping

genes

10 10 14 12 13 13 15 14 12

Overlap size (bp) 1–66 1–66 1–60 1–66 1–60 1–16 1–60 1–59 1–30

GenBank accession MW485980 NC_007683 NC_026700 NC_024613 NC_007684 NC_013476 NC_023354 FP885846 NC_007685

https://doi.org/10.1371/journal.pone.0269631.t001
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Phaeophyceae [11–13]. In addition, there are two more highly conserved overlapping regions

in the Fucophycidae species: ATGA, which overlaps with rps8 and rpl6, and ATGCTCTTAA,

which overlaps with cox2 and nad4. However, the rps8-rpl6 overlap in D. dichotoma is 7 bp in

length (GTGGTAA), and there are no overlaps between cox2 and nad4 in D. dichotoma.

The mt-genome of S. siliquosa contains 38 PCGs (including 3 conserved ORFs), 3 rRNAs

(rnl, rns, and rrn5), and 26 tRNAs. None of the genes contain introns. There are 64 conserved

homologous genes (3 rRNAs, 24 tRNAs, and 37 PCGs, including 2 ORFs) that are also

observed in nine brown algal mt-genomes, underscoring the highly conserved gene content of

these genomes. TrnM-2 is located between trnQ and ORF39 in the order Fucales and E. silicu-
losus, but trnI is located here in D. viridis, S. japonica, U. pinnatifida and D. dichotoma. In

addition, trnL-3 is only found between trnA and rps10 in S. siliquosa, and it has been replaced

by trnY-2 in F. vesiculosus and D. viridis. S. siliquosa and F. vesiculosus share two conserved

ORFs, despite their different sizes (ORF39 and ORF43, ORF331 and ORF379).

All PCGs encoded by the S. siliquosamt-genome have a methionine (ATG) as the start

codon, with the exception of ORF331, which has a TTG. This phenomenon has been reported

in other brown algal mt-genomes. For example, ORF221 in D. viridis and ORF37 in D. dichot-
oma use TTG as the start codon, whereas ORF379 in F. vesiculosus uses GTG as the start codon

[11]. Three stop codons are used, with a preference of 84.21% for TAA (10.53% for TAG and

5.6% for TGA). This is similar to other reported brown algal mt-genomes, although the pro-

portions are slightly different [11–13, 34].

Table 2. General features of chloroplast genomes in Phaeophyceae.

Genome Features Silvetia
siliquosa

Fucus
vesiculosus

Sargassum
horneri

Sargassum
thunbergii

Saccharina
japonica

Costaria
costata

Undaria
pinnatifida

Ectocarpus
siliculosus

Dictyopteris
divaricata

Genome Size / GC

content (%)

124,991/

28.84

124,986/28.9 124,068/

30.61

124,592/30.40 130,584/31.05 129,947/

30.87

130,383/30.61 139,954/30.67 126,099/31.19

LSC size (bp) / GC

content (%)

74,247/27.32 74,287/27.42 73,311/29.20 73,668/29.00 77,379/29.79 76,507/29.72 76,598/29.53 80,011/29.42 72,648/30.14

SSC size (bp) / GC

content (%)

40,222/27.93 40,215/27.98 40,139/29.74 40382/29.48 43,175/30.04 42,622/29.67 42,977/29.26 42,711/29.77 41,455/30.26

IR size (bp) / GC

content (%)

10,522/43.07 10,484/43.32 10,618/43.67 10,542/43.77 10,030/44.29 10,818/43.73 10,808/43.71 17,232/38.70 11996/40.75

Gene number

rRNA/ tRNA/CDS/

Total

6/28/140/174 6/28/140/

174

6/28/140/174 6/28/140/174 6/29/141/176 6/27/141/174 6/28/141/175 6/31/148/185 6/28/138/174

intron 1 1 2 1 1 1 1 0 1

Total Gene Length 96,216 96,183 95,907 95,805 97,971 97,935 97,920 101,154 97,641

Average Gene

Length

687 687 685 684 695 695 694 683 708

Gene’s GC Content

(%)

29.34 29.42 30.90 30.83 31.69 31.51 31.36 31.56 31.59

% of Genome

(Genes)

76.98 76.96 77.30 76.89 75.03 75.37 75.10 72.28 77.43

Intergenic region

length

28,775 28,803 28,161 28,787 32,613 32,012 32,463 38,800 28,458

% of Genome

(Intergenic)

23.02 23.04 22.70 23.11 24.97 24.63 24.90 27.72 22.57

Genes duplicated in

IR

5 5 5 5 5 5 5 11 6

GenBank accession MW485976 FM957154 NC_029856 NC_029134 JQ405663 NC_028502 NC_028503 FP102296 KY433579

https://doi.org/10.1371/journal.pone.0269631.t002
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The chloroplast genome of S. siliquosa
The cp-genome of S. siliquosa is a circular molecule of 124,991 bp (Fig 2). It is the largest cp-

genome in the Fucales (124,068–124,986 bp) but smaller than those of E. siliculosus (139,954

bp), D. divaricata (126,099 bp), and species in the Laminariales (129,947–130,584 bp, Table 2).

Its GC content (28.84%) is lower than that of other brown algal cp-genomes, which range

from 28.94% (F. vesiculosus) to 31.19% (D. divaricata) (Table 2). The cp-genome of S. siliquosa
displays a canonical quadripartite structure with two large inverted repeats of 5,261 bp divided

Fig 1. The mitochondrial genome of S. siliquosa. Annotated genes are colored according to the functional categories. Genes on the outside are

transcribed in the clockwise direction, whereas genes on the inside are transcribed in the counterclockwise direction.

https://doi.org/10.1371/journal.pone.0269631.g001
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by a short single copy region (SSC, 40,222 bp) and a long single copy region (LSC, 74,247 bp)

(Table 2). The GC content of the IR regions (43.07%) is higher than that of the LSC (27.32%)

and the SSC (27.93%). Protein-coding sequences constitute 76.98% of the cp-genome of S. sili-
quosa, similar to other cp-genomes in the Phaeophyceae (72.28–77.43%). The IRs of S. sili-
quosa are composed of the core rrn5-rnl-trnA-trnI-rns gene cluster, which is similar to

those in Fucales and Laminariales [35–38] but different from those of E. siliculosus and D.

divaricata, which have longer IRs (11,996–17,232 bp) and contain 11 and 6 gene loci, respec-

tively [9, 39].

Fig 2. The chloroplast genome of S. siliquosa. Annotated genes are colored according to the functional categories. Genes on the outside are transcribed in

the clockwise direction, whereas genes on the inside are transcribed in the counterclockwise direction.

https://doi.org/10.1371/journal.pone.0269631.g002
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The cp-genome of S. siliquosa contains 174 genes, including 140 PCGs, 28 tRNAs, and 6

rRNAs (Table 2). Only one intron is found in trnL-2, and this intron is also existed in the

homologous genes of Phaeophycean species, but absent in E. siliculosus [35, 36, 40].

All cp-genomes in Phaeophyceae share a core set of 136 genes, underscoring the high struc-

tural conservation of cp-genomes in the brown algae (S1 Fig). However, the four species (S.
siliquosa, F. vesiculosus, S. horneri, and S. thunbergii) in Fucales are missing the syfB gene that

is present in D. divaricata, Laminariales, and Ectocarpales. We speculate that this gene may

have been lost in a common ancestor of the order Fucales, although more taxonomic groups

must be added to confirm this possibility. The syfB gene encodes the β subunit of phenylala-

nyl-tRNA synthetase [17], and its loss may affect the synthesis of trnF encoded in the cp-

genomes [40]. Moreover, three PCGs (Escp36 = Escp99, Escp117, and Escp161) are found only

in E. siliculosus but absent in other species. The rpl32 and rbcR genes have been lost in the cp-

genome of D. divaricata but are present in Fucales, Laminariales, and E. siliculosus. The

absence of these genes may be due to gene transfer to the nucleus or gene loss [39]. All the

PCGs begin with an ATG codon with the exception of psbF in S. siliquosa, which begins with a

GTG; 116 PCGs are terminated by a TAA stop codon, 16 by a TAG, and 8 by a TGA.

Phylogenetic assessment and molecular dating of brown algae

The phylogenetic dataset included 35 PCGs from the mt-genomes of 19 phaeophycean species,

and the total length of the concatenated sequence alignment was 23,604 bp.H. akashiwo was

used as the outgroup. Congruent topologies were obtained from maximum likelihood and

Bayesian inference on the complete data set, and all branches exhibited a high support rate (S2

Fig). Phylogenetic trees showed that 19 species of brown algae fit well into five established

clades: Fucales, Laminariales, Ectocarpales, Desmarestiales, and Dictyotales. S. siliquosa and

the two species of the genus Fucus (F. vesiculosus and F. distichus) formed sister groups with

high bootstrap support values. The Fucales species diverged later in the Phaeophyceae, and

their divergence was significantly later than those of Laminariales, Ectocarpales, Desmares-

tiales, and Dictyotales. The reconstructed phylogenetic tree supported Laminariales and Ecto-

carpales as sister monophyletic groups (S2 Fig). However, a previous phylogenetic tree of these

brown alga based on three rRNA genes (rnl, rns, and rrn5) indicated that Laminariales formed

a monophyletic group with Desmarestiales, and this group was sister to the Ectocarpales group

[12]. These topological differences may be due to the different evolutionary rates of rRNA

regions and protein coding gene regions. Here, Dictyotales diverged first in the Phaeophyceae

and had a sister relationship with other Phaeophyceae species. This result is consistent with

previous studies [11, 12].

Due to the incompleteness of the mitochondrial and chloroplast gene data sets, we recon-

structed a phylogenetic tree of 15 brown algae species using a concatenated sequence of five

mitochondrial genes (cox1, cox3, nad1, nad4, and atp9) and three chloroplast genes (rbcL,

psbA, and atpB). Fossils of a Padina-like morphology have been found in the Early Cretaceous

(145.5–99.6 Mya) clay shales [41, 42], and we therefore defined a lower boundary at 99.6 Mya

for the stem node of Padina boryana. In addition, a few species of Cystoseiraceae have been

found in the Monterey deposit (17–13 Mya) [43], and the crown node of the Fucales was there-

fore given a minimum age of 13 Mya [44]. Two run results based on the maximum likelihood

method were very similar, and we concluded that they had achieved convergence [30]. Time-

calibrated molecular clock analyses suggested that S. siliquosa and F. vesiculosus began to

diverge approximately 8 million years ago (5.7–11.0 Mya based on 95% highest posterior den-

sities, HPD) in the Late Miocene (5.3–11.6 Mya) (Fig 3). This was similar to the results of Sil-

berfeld et al. (2010), although the species they used were F. vesiculosus and Pelvetia
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canaliculata, and S. siliquosa belonged to the genus Pelvetia before 1999 [45]. According to the

time-calibrated clock, four brown algal orders diversified from the Upper Cretaceous to the

Paleocene, and the diversifications of the Fucales, the Laminariales–Ectocarpales clade, and

the Dictyotales began approximately 33.7 Mya, 56.4 Mya and 97.4 Mya, respectively. Yip et al.

(2020) also selected Sargassaceae and Fucaceae species and estimated divergence times; they

obtained one 95% HPD interval between the two families at 16.4–39.4 Mya [46], which over-

laps with the average age of diversification (33.7 Mya) inferred in this study. The previous esti-

mate for the average time of divergence between Laminariales and Ectocarpales was 98.0 Mya

[42], significantly earlier than our estimate (36.0–50.2 Mya, 95% HPD). This difference may

reflect the addition of a more distinct outgroup in the previous study, which may have caused

this node to be pushed forward [44]. Due to limited fossil data for Phaeophyta [42], it is not

surprising that the uncertainty of the divergence and diversification dates of brown algae spans

several million years [47].

Substitution rate estimation

We estimated the synonymous and non-synonymous substitution rates based on the ML

method implemented in PAML. This is the most accurate method currently available to mea-

sure substitution rates [31, 48], and by measuring the synonymous substitution rate (dS) in

mt-genomes and cp-genomes of closely related species, we can obtain the relative mutation

rate between them [49]. The average dS values in Phaeophyceae varied from 0.845 to 4.715 for

mitochondrial genes and from 0.435 to 3.151 for chloroplast genes (Fig 4C; S3 Table). Mito-

chondrial and chloroplast protein-coding genes differed significantly in synonymous substitu-

tion rate based on an independent-sample t-test (p<0.001), and the mitochondrial mutation

rate was 1.4 times that of the chloroplast. The average nonsynonymous substitution rate (dN)

was significantly higher in mt-genomes than in cp-genomes (p<0.05). Specifically, the values

for mt-genome genes were 1.3-fold higher than those for cp-genome genes (Fig 4B; S4 Table).

The non-synonymous/synonymous rate ratio (dN/dS) is an important indicator used to infer

Fig 3. Posterior estimates of divergence time of 15 taxa on the phylogenetic tree. Blue bars depict the 95% highest posterior density (HPD) and

the values at the nodes represent posterior mean ages. Estimations were performed with MCMCTree based on the independent rate model using two

fossil calibrations on nodes indicated by arrows.

https://doi.org/10.1371/journal.pone.0269631.g003
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the selection pressure at the protein level [50]. The dN/dS ratios were similar and less than 1 in

the genomes of both organelles in phaeophycean species, indicating that protein-coding genes

in the mt- and cp-genomes have been subjected to stronger purifying selection (Fig 4A; S3 and

S4 Tables). The higher substitution rate observed in mitochondrial protein-coding genes is the

result of the high mutation rate caused by the presence of oxygen free radicals in mitochondria

[51]. Previous studies have also found that the substitution rates of mitochondrial genes in

green algae Volvulina compacta and the red algal genus Porphyra are greater than those of

chloroplast genes [52, 53]. By contrast, the opposite result is observed in most seed plants, in

which the mitochondrial substitution rate is estimated to be lower than that of the chloroplast

[51]. Although the consequences of markedly different substitution rates between the two

genomes are not fully understood, they are likely to reflect the evolutionary history of organelle

genomes among different lineages.

IR contraction and expansion

When we compared the IRb/LSC junctions (JLB) of cp-genomes in the Fucales, we did not

find major variations in the IR regions of S. siliquosa, S. horneri, and S. thunbergii. Their IRb

boundaries extended to the cbbx gene (Fig 5), and the extension varied from 59 bp (S. horneri)
to 188 bp (S. thunbergii). However, the cbbx gene of F. vesiculosus is located in the LSC region,

141 bp away from the JLB border, and F. vesiculosus showed a significant contraction in the IR

region (4,863 bp) among other members of the order Fucales (Fig 5). The IRb/SSC junctions

(JSB) of IRb were located mainly between rrn5 (plus strand) and ycf19, but the IRb boundary

Fig 4. Boxplots showing synonymous substitutions (dS), nonsynonymous substitutions (dN), and dN/dS ratios in mt- and cp-genomes in

Phaeophyceae. The box represents the values between the quartiles. Outliers are shown as black points, and the black lines inside the box represent the

median values.

https://doi.org/10.1371/journal.pone.0269631.g004
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of F. vesiculosus extended into rpl21. The rpl21-rrn5 (minus strand) sequences are located at

the junction of the SSC/IRa regions (JSA) in the four Fucales species. However, S. horneri and

S. thunbergii have a longer IR region with only minor expansions, and their IRa regions extend

into the ycf37 gene (Fig 5).

Through comparison of the IR boundary regions of Fucales, Laminariales, Ectocarpales,

and Dictyotales, we found that the IR boundaries in Phaeophyceae vary considerably at the

order level (Fig 5). S. siliquosa and S. japonica are the most similar at the IRa/LSC boundary

(JLA), which is located between rns and ycf37 in both species, whereas that of C. costata, U.

pinnatifida, and D. divaricata extends into ycf37. Interestingly, E. siliculosus is quite different

from other brown algae, and its JLA conjunction expands into the region between trnE-2 and

ccsA. We speculated that variation in the JLA boundary may not be related to the phylogeny of

the lineage. Unlike that of Fucales species, the JLB boundary region of the Laminariales is

located between trnL and rns, and the JSA boundary region is located between ycf17 and rrn5.

The rpl21 sequence is found at the JSB boundary in most species of Laminariales, with the

exception of S. japonica. The contraction and expansion of the IR boundary may be the result

of gene conversion and double-strand break recombination repair [54], which is a primary

reason for size changes in cp-genomes [39]. A previous report noted that expansions of the IR

may be involved in the emergence and diversification of monocot angiosperms [55]. There-

fore, we speculated that variation at the cp-genome structure level may play an important role

in the divergence of Phaeophyceae species.

Fig 5. Comparison of the borders of LSC, SSC and IR regions among Phaeophyceae chloroplast genomes.

https://doi.org/10.1371/journal.pone.0269631.g005
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Collinearity analysis of organellar genomes

By analyzing local collinear blocks among the brown algae, we found that mt-genomic archi-

tecture was conserved. Only one rearrangement was found in D. dichotoma (S3 Fig), and it

involved the displacement of atp8, rpl31, rps10, and atp9. Although these phaeophycean

brown algae represent a variety of morphologically divergent taxa and have a long evolutionary

history, most exhibit conserved mt-genome synteny with little variation in gene composition.

This is becauseD. dichotoma is an early divergent lineage, and the remaining orders have expe-

rienced the brown algal crown radiation (BACR) followed by strong constraints on mitochon-

drial gene content and genome evolution [42, 56]. This conserved mt-genome structural

pattern has also been reported in the Florideophyceae [57].

By contrast, the brown algal cp-genomes demonstrated many rearrangements and inver-

sion events at the order level (Fig 6). Syntenic regions of the four cp-genomes in the Fucales (S.
siliquosa, F. vesiculosus, S. horneri, and S. thunbergii) showed no rearrangements relative to

one another. Similarly, three Laminariales species (S. japonica, C. costata, and U. pinnatifida)

showed identical genome architecture. This indicates that no recombination events occurred

after the divergence of orders in Phaeophyceae. However, cp-genomes in the Fucales and

Laminariales exhibited several rearrangements, and the number of rearrangements in the E.

siliculosus cp-genome was twice as high as that in other brown algae (Fig 6). Interestingly,

structural variations in the cp-genomes of the Laminariales and E. siliculosus were not corre-

lated with their phylogenetic relationships (S2 Fig), and the collinearity between species of the

Laminariales, Fucales and Dictyotales was higher than between any of these groups and E. sili-
culosus. Recent research has found that variation in the chloroplast architecture of Ectocarpales

species may be linked to their reproductive strategy and mode of organellar inheritance [16].

The chloroplast genomes of Ectocarpales species with biparental inheritance show greater

structural variation than those of other brown algal lineages, and many brown algae adopt

Fig 6. The collinearity analysis of Phaeophyceae chloroplast genomes.

https://doi.org/10.1371/journal.pone.0269631.g006
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maternal inheritance for oogamous reproduction [16]. This genetic pattern and chloroplast

structure rearrangement coupling event is supported in another phaeophycean order Sphace-

lariales [58]. Furthermore, we believe that a large number of structural rearrangements at the

order level may play an important role in the process of species divergence. Although we did

not verify this possibility, a recent study has shown that rearrangements of two IR-flanking

inverted fragments in Taxaceae species were involved in the divergence of this family [59].

However, it will be necessary to obtain more chloroplast genome data to fill in the gaps and

fully understand species structural evolution in the Phaeophyceae.

Conclusions

We sequenced and analyzed the mitochondrial and chloroplast genomes of the threatened species

Silvetia siliquosa for the first time. The structures of S. siliquosa organellar genomes were highly

similar to those of F. vesiculosus, and we estimated the divergence time between S. siliquosa and F.

vesiculosus for the first time based on fossil correction. We also analyzed the substitution rates and

structural variations of mt-genomes and cp-genomes among phaeophycean algae. The results sug-

gested that the synonymous substitution rate of mt-genomes was significantly higher than that of

cp-genomes, but a large number of structural variations were detected among cp-genomes at the

order level, and these structural changes may be related to species diversification. However, our

study did not integrate all brown algae orders, and additional organellar genomes at the ordinal

level are needed for further study of their organellar genome evolution.
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