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Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer

immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell

death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor

types with limited therapeutic options such as melanoma and lung cancer. However,

reactivation of T cells is only one step toward tumor elimination, and a substantial fraction

of patients fails to respond to these therapies. In this context, combination therapies

targeting more than one of the steps of the cancer-immune cycle may provide significant

benefits. To find the best combinations, it is of upmost importance to understand the

interplay between cancer cells and all the components of the immune response. This

review focuses on the elements of the complement system that come into play in the

cancer-immunity cycle. The complement system, an essential part of innate immunity,

has emerged as a major regulator of cancer immunity. Complement effectors such

as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have

been associated with tolerogenic cell death and inhibition of antitumor T-cell responses

through the recruitment and/or activation of immunosuppressive cell subpopulations

such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2

tumor-associated macrophages (TAMs). Evidence is provided to support the idea that

complement blocks many of the effector routes associated with the cancer-immunity

cycle, providing the rationale for new therapeutic combinations aimed to enhance the

antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors.
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INTRODUCTION

Profound advances in our understanding of the interactions between tumors and the immune
system have allowed the development of therapeutic approaches that boost the body’s natural
defenses against cancer. These therapies are aimed to mount effective antitumor immune responses
and include immunomodulators, vaccines, and adoptive transfer of immune cells (1). Some of
the most clinically effective immunotherapies to date target the programmed cell death protein 1
(PD-1) immune checkpoint. PD-1 is expressed by T cells during priming or expansion and binds to
one of its two ligands PD-L1 or PD-L2 (2). Tumor cells upregulate PD-L1 in response to cytokines
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such as interferon (IFN)-γ (3). Interaction of PD-L1 with PD-
1 on T cells causes T-cell apoptosis, anergy, and exhaustion,
protecting tumor cells from CD8+ T cell-mediated cytolysis
(3). PD-L1 can also deliver intrinsic intracellular signals that
enhance cancer cell survival, regulate stress responses, and confer
resistance toward apoptotic stimuli (4, 5). PD-1 and other
checkpoints are also expressed by NK cells which may contribute
to the antitumor activity of some therapeutic strategies under
development (6, 7).

Neutralizing monoclonal antibodies against PD-1 or PD-L1
have transformed the therapeutic landscape of a wide range of
cancers (Table 1), being particularly successful for tumors with
limited therapeutic options such as melanoma or lung cancer
(3). Notably, these antibodies generate durable responses without
causing serious side effects. However, a significant fraction
of patients manifests innate or acquired resistance to these
therapies. Immune escape mechanisms stem from different cell
interactions within the tumor microenvironment, and emphasize
the need of developing rational combination strategies to obtain
more potent anticancer responses (8).

In 2013, Daniel Chen and Ira Mellman described a series of
self-sustaining stepwise events, referred as the cancer-immunity
cycle, by which the anti-cancer immune responses lead to an
effective elimination of cancer cells (9). The existence of negative
feedback mechanisms developed by tumors hinders this cycle of

TABLE 1 | FDA-approved immune-checkpoint inhibitors (monoclonal antibodies)

for cancer treatment.

Drug Brand

name

Target Antibody

subclass

Cancer type

Nivolumab Opdivo PD-1 Human IgG4 Melanoma

Non-small cell lung cancer

Small cell lung cancer

Renal cell cancer

Hodgkin lymphoma

Head and neck cancer

Urothelial cancer

Colorectal cancer*

Hepatocellular cancer

Pembrolizumab Keytruda PD-1 Humanized

IgG4

Melanoma

Non-small cell lung cancer

Head and neck cancer

Hodgkin lymphoma

Primary mediastinal B-cell

lymphoma

Urothelial cancer

Solid tumors*

Gastric cancer

Cervical cancer

Atezolizumab Tecentriq PD-L1 Humanized

IgG1

Urothelial cancer

Non-small cell lung cancer

Durvalumab Imfinzi PD-L1 Human IgG1 Urothelial cancer

Non-small cell lung cancer

Avelumab Bavencio PD-L1 Human IgG1 Merkel cell cancer

Urothelial cancer

*For patients with mismatch repair deficiency (dMMR) or microsatellite instability

high (MSI-H).

cancer immunity and may pose a barrier to the development of
effective clinical responses. Anticancer immunotherapies should
be aimed to reactivate all the steps of the cycle, which include
immunogenic cell death, maturation of antigen-presenting cells,
T-cell priming and activation, promotion of immune infiltration,
blockade of immunosuppression, and enhancement of effector
T-cell activity. In this context, combination therapies would
provide synergistic effects for the maintenance of the cancer-
immunity cycle.

In the last years, the complement system, an essential part
of innate immunity, has surged as a master regulator of cancer
immunity (10). We, and others, have actively contributed to this
field, leading to the proposal that modulation of complement
activation can improve the antitumor efficacy of inhibitors
targeting the PD-1/PD-L1 pathway. In 2008, making a paradigm
shift in tumor immunology, we demonstrated that complement
activation, followed by C5a signaling, has a tumor-promoting
role in cancer (11). In 2012, using a lung cancer model, we
first demonstrated an association between the inhibition of
C5a receptor 1 (C5aR1) and the expression of PD-L1 within
the tumor microenvironment (12). These results suggested the
possibility of blocking complement factors to increase the efficacy
of other immune therapeutic strategies (12). Following this line,
we demonstrated that inhibition of PD-1/PD-L1 synergizes with
the inhibition of C5a/C5aR1 in various preclinical models of lung
cancer (13). This rationale provided the basis for a clinical trial
in which the anti-C5aR1 antibody IPH5401 is being evaluated
in combination with the anti-PD-L1 antibody durvalumab in
patients with solid tumors (STELLAR-001).

In this review we describe the participation of complement
elements in the steps of the cancer-immunity cycle. We propose
that a combinational therapy using anti-PD-1/PD-L1 antibodies
together with modulators of the complement system may open
new therapeutic opportunities for tumors resistant to PD-1/PD-
L1 blockade.

THE CANCER-IMMUNITY CYCLE

The cancer-immunity cycle is defined as a series of functional
stepwise events needed to obtain an efficient control of
cancer growth by the immune system (9). The process is
initiated by the release of neo-antigens generated as a result
of genomic instability. Cancer-associated antigens are captured
by dendritic cells which, upon migration to lymph nodes,
prime and activate tumor-specific cytolytic CD8+ T cells.
These effector cells migrate and infiltrate the tumor stroma,
where potentially are able to recognize and eliminate cancer
cells. T cell-mediated cytotoxic responses release new tumor
antigens, fueling the cancer-immunity cycle. Interestingly, this
model provides the rationale for targeting different steps of
the cycle in order to maintain its functionality. An effective
cancer immunotherapy should be designed based on the specific
resistance mechanisms underlining the rate-limiting steps in
each particular patient (14, 15). In the case of anti-PD-1/PD-L1
therapies, a variety of biological factors contribute to treatment
resistance, including lack of cancer antigens recognizable by T
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cells, impaired cancer-antigen presentation, impaired activation
of cancer-specific T cells, poor infiltration of T cells into
tumors, and accumulation of immunosuppressive factors and
cells in the tumor microenvironment (15). The evading strategies
present in a given tumor would determine whether this tumor
shows an inflamed or a noninflamed phenotype (16). Clinical
evidence suggests that anti-PD-1/PD-L1 inhibitors are most
effective in inflamed tumors characterized by high tumor PD-
L1 expression, CD8+ T-cell infiltration or mutational burden
(17–20). Jerby-Arnon et al. recently analyzed the relationship
between malignant cell states and CD8+ T-cell infiltration and
identified a T-cell exclusion program that predicts responses to
PD-1/PD-L1 blockade (21). This program was enriched for genes
involved in predictable processes, such as antigen processing
and presentation, IFN-γ signaling, and immune modulation; but
also identified genes associated with activation and modulation
of the complement system (21). Elements of the complement
cascade are also present in a signature of serum proteins that
predicts survival in patients receiving PD-1 blocking antibodies,
suggesting that complement activation may inhibit the efficacy of
adaptive antitumor immunity (22).

THE COMPLEMENT SYSTEM

The complement system, a central element of innate immunity,
represents a first line of defense against unwanted non-self
and host elements, and orchestrates many immunological and
inflammatory processes that substantially contribute to body
homeostasis (23, 24). Complement activities are mediated by
more than 50 circulating, cell surface-bound and intracellular
proteins. There are three main mechanisms of complement
activation, known as classical, lectin, and alternative pathways.
The classical pathway is commonly initiated by the binding
of C1q to complement-fixing antibodies (mostly IgM and IgG
types); although C1q can also recognize non-immunoglobulin
ligands such as C-reactive protein (CRP), pentraxin 3 (PTX3),
or apoptotic cells (25). The lectin pathway is activated by
homologous proteins to C1q (mannose-binding lectin, collectins,
and ficolins) that recognize repetitive carbohydrate patterns
(26). Lastly, the alternative pathway is initiated by spontaneous
cleavage of C3 on activating surfaces (27). Although the
three complement pathways differ in their mechanisms of
target recognition, in all cases, initiation of the complement
cascade leads to the formation of C3 convertases and the
activation of the central component C3. After this activation,
C5 convertases are formed, C5 is cleaved, and the assembly
of the pore-like membrane attack complex (MAC) is initiated.
The enzymatic cleavage of complement elements leads to
the release of proteolytic fragments such as C3a and C5a,
and the deposition of other fragments such as C3b and
iC3b. These molecules modulate a diverse set of processes
(23), including the initiation and regulation of effector T-
cell responses (28). Prevention of inappropriate activation by
complement regulators takes place at threemain levels: inhibition
of protease activities in the activation cascade, decay and
destruction of convertases, and control of MAC formation (29).

Finally, recent experimental and clinical evidences suggest that
intracellular complement components have important roles in
cell physiology (30).

Complement has been traditionally regarded as playing a
role in the elimination of tumor cells. Accordingly, an effective
control of tumor growth may be achieved by complement-
fixing antibodies (31). However, growing evidence, starting for
the initial observation in a model of cervical cancer (11),
strongly supports a tumor-promoting role of complement in
several tumor types. This topic has been extensively reviewed
elsewhere (10, 32–35). Briefly, complement establishes an
immunosuppressive microenvironment, promotes angiogenesis,
sustains cellular proliferation, and participates in tumor cell
invasion and migration. In light of the various contributions
of complement to cancer progression, it is not surprising that
expression of complement effectors and receptors is associated
with disease progression and poor prognosis (36–42). Among
all the complement elements with potential pro-cancer activities,
C1q, C3-derived fragments, and C5a are recognized as major
modulators of tumor progression (43–45).

COMPLEMENT IN THE REGULATION OF
THE CANCER-IMMUNITY CYCLE

In this section we will discuss the potential implication of
effectors and regulators of the complement system in the steps of
the cancer-immunity cycle. In light of the breadth and complexity
of the immune response, we will focus our review on the specific
aspects of the regulation of CD8+ cytotoxic T cells, which
are in large part the mediators of anti-PD-1/PD-L1 therapies.
We will also examine evidence supporting the participation of
complement in the regulation of the type 1 T helper (Th1)
response, as it has a profound influence on the quality and
extension of cytotoxic T-cell responses (46). Recent reviews
have extensively addressed other complement-mediated immune
functions not covered in the present review (10, 28, 47–50).

Modulation of the Initiation of T-Cell
Immunity by the Complement System
The cancer-immunity cycle is initiated by tumor-specific neo-
antigens generated by somatic mutations (51). Dying cancer cells
release these antigens to the tumor microenvironment, where
are captured and processed by dendritic cells, the principal cell
type responsible for instructing naïve T cells to undergo antigen-
specific effector functions. Depending on the stimuli provided by
dying cancer cells, their interaction with dendritic cells can have
immunogenic or tolerogenic consequences (52). The generation
of an immunogenic or a tolerogenic cell death is mainly
regulated by damage-associated molecular patterns (DAMPs).
DAMPs are endogenous co-stimulatory signals secreted or
presented on the cell surface of dying cells that interact with
pattern-recognition receptors (PRRs) alerting the host of danger.
Complement is required for efficient sensing of DAMPs (53–55).
The specific interactions of danger sensors with complement
elements allow to differentiate between physiological and
pathological danger, shaping the maturation of dendritic cells
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(23). This activity depends mainly on the classical complement
pathway. Direct binding of complement C1q to apoptotic
cells promotes a phagocytic-mediated uptake of dying cells,
which sustains an anti-inflammatory innate immune response
through the expression of cytokines such as transforming growth
factor (TGF)-β (56). In fact, genetic deficiencies in C1q, as
well as other elements of the classical complement pathway,
can compromise the induction of self-tolerance and result in
systemic autoimmune diseases (57, 58). Another complement
element involved in the recognition of danger signals is factor
H, a soluble complement inhibitor produced and secreted by
cancer cells (59, 60). Upon opsonization of apoptotic cells, factor
H induces an anti-inflammatory cytokine profile (61, 62) and a
tolerogenic stage (63). CD46, a membrane-bound complement
regulatory protein able to interact with C3 activation fragments
and found at high levels in some cancer types (64, 65), has also
been proposed as a negative regulator of immune recognition
(66). Complement proteins are easily detectable in various types
of cancer, consistent with complement activation by these tumors
(32). Therefore, upregulation of complement components in
the surface of dying cancer cells may be associated with
a tolerogenic cell death, in contrast to the immunogenic
cell death required for an effective anticancer immune
response (67, 68).

Modulation of Priming and Activation of T
Cells by the Complement System
Progress of the cancer-immunity cycle requires the presence
of activation signals that allow dendritic cells to mature,
migrate to the lymph nodes, and present the neo-antigens to
naïve T cells. Efficient priming also relies on the contextual
information provided by the microenvironment. Mature
dendritic cells in the presence of suitable signals are able to
induce T-cell effector functions; whereas in the absence of
appropriate conditions, antigen presentation leads to T-cell
anergy or generation of regulatory T cells (Tregs) that suppress
effector responses.

Locally-produced complement elements determine the state
of dendritic cell activation (69), and are critical in the regulation
of T-cell responses (28). Production of C1q and C3 by dendritic
cells induces their maturation and their capacity to stimulate
Th1-cell responses (70, 71). C3 may also facilitate intracellular
antigen processing and presentation (72). In agreement with
these observations, optimal priming and expansion of CD4+

and CD8+ T cells in infection models is dampened by C3
deficiency (73, 74), and the complement fragment C3d amplifies
antitumor T-cell responses (75). In the case of C3a and C5a,
through activation of their respective receptors C3aR and C5aR1,
these anaphylatoxins enhance the capacity of human monocyte-
derived dendritic cells to stimulate T cells (76). In accordance,
C3aR pathway inhibition in dendritic cells results in defective
T-cell priming, associated with a reduced surface expression
of major histocompatibility complex (MHC) and costimulatory
molecules (77). Finally, downregulation of the expression of the
complement regulator CD55 in antigen-presenting cells during
T-cell activation increases the local production of C3a and C5a,

providing costimulatory signals to induce T-cell proliferation and
differentiation (78, 79).

Complement elements can also exert a direct influence on
T cells. Activation of human CD4+ T cells by CD46 stimulates
the effector potential of Th1 cells (80–82). As on dendritic cells,
paracrine and autocrine interactions of C3a and C5a with their
respective receptors C3aR and C5aR1 mediate Th1 cytokine
production and T-cell induction (78, 83). It has also been
suggested that Tregs express C3aR and C5aR1, and that signaling
through these receptors inhibits Treg function (84, 85).

A central role in T-cell homeostasis has been recently
assigned to intracellular elements of the complement system
(30). Activation of lysosomal C3aR by intracellularly generated
C3a contributes to the survival of resting CD4+ T cells. Upon
activation, the intracellular stores of the C3 system translocate to
the cell surface triggering the upregulation of IFN-γ and Th1-
cell responses in conjunction with the extracellular engagement
of C3b to CD46 (86). Intracellular C5a can also be generated from
endogenous C5. Upon T-cell activation, C5a binds to intracellular
C5aR1, inducing the activation of the NLRP3 inflammasome and,
consequently, the initiation of a Th1 response (87).

All these activities underline the importance of complement
effectors and regulators in the initiation of T-cell responses. In
contrast, the complement system has also been associated with
the prevention of T-cell priming and the induction of tolerance;
probably as a regulatory mechanism to facilitate the timely
resolution of the immune response. Thus, C1q can suppress
macrophage-mediated inflammation and dendritic cell-mediated
Th1-cell proliferation (88, 89). Binding of the C3 fragment iC3b
to complement receptor type 3 (CR3) on antigen-presenting cells
results in the production of TGF-β2 and interleukin (IL)-10, and
the induction of antigen-specific tolerance (90). C3a and C3b
also participate in the contraction phase of human Th1 responses
(80, 82). CD46 promotes the switching of CD4+ T cells toward
IL-10 producing cells with a regulatory phenotype (80, 91),
and negatively regulates Th1 activity through the binding of
endogenous C5a to surface-expressed C5aR2 (87). C5aR2 was
first proposed as a negative regulator of C5aR1, but some specific
functions have been ascribed to this C5a receptor (92). CD55may
also have a role in the suppression of adaptive immune responses.
Mice lacking CD55 experience enhanced T-cell responses to
active immunization, characterized by an increased production
of INF-γ and IL-2, as well as downregulation of IL-10 (93).

All these studies point to the dual role played by complement
in the activation of effector T-cell responses. On the one hand,
complement elements are central in the primary phase of effector
expansion. On the other hand, complement can mediate a
suboptimal T-cell activation associated with the contraction
phase or the establishment of tolerance. With this duality in
mind, it is interesting to analyze the relative role played by
complement in the context of well-established tumors. It has been
suggested that C5a affects T-cell responses in a concentration-
dependent manner (94). Tumor-bearing mice with low C5a-
producing tumor cells exhibit a reduced tumor burden with
increased IFN-γ-producing CD4+ and CD8+ T cells in the
spleen and tumor-draining lymph nodes. In contrast, tumor-
bearing mice with high C5a-producing cancer cells have an
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accelerated tumor progression with less CD4+ and CD8+ T cells
in the tumor, tumor-draining lymph nodes, and the spleen (94).
This effect was associated with the presence of more myeloid-
derived suppressor cells (MDSCs) in the spleen. Interestingly,
other studies have found elevated levels of C5a in cancer
patients (12), which have been implicated in the recruitment
of MDSCs to tumors (11). MDSCs are immunosuppressive
immature myeloid cells able to disrupt major mechanisms of
antitumor immune responses (95–97). In models of breast
cancer, C5aR1 signaling in MDSCs induces the production of
immunosuppressive cytokines, such as TGF-β, and reduces Th1
immune responses (98, 99). Treatment of mouse squamous cell
carcinomas with paclitaxel and PMX-53, a C5aR1 inhibitor,
results in peripheral priming and expansion of antigen-specific
clones (100). Therefore, we can conclude that complement-
mediated effects may have evolved at established tumors to
interfere with the generation of antitumor T-cell responses.

Modulation of T-Cell Trafficking by the
Complement System
A range of tumors escape from antitumor immune responses
even after activation and expansion of T cells. In some
cases, this can be attributed to the ability of the tumor
endothelium to prevent T-cell trafficking. A complex network
of endothelial adhesion molecules, Th1 cytokines, and surface
receptors regulates T-cell homing and infiltration (101). Tumor
cells, in concert with the endothelium, interfere with T-cell
infiltration through a variety ofmolecularmechanisms, including
the downregulation of endothelial adhesion molecules and the
expression of T-cell inhibitory ligands (102).

Although complement elements can directly act on the
endothelium (103–105), little is known about its contribution
to the biology of tumor-associated endothelial cells. In the
context of adoptive T-cell transfer, the capacity of tumor-reactive
CD4+ and CD8+ T cells to infiltrate tumors requires the local
production of C3, complement activation and release of C5a
(106). Accordingly, the abrogation of CD55 expression enhances
tumor T-cell infiltration (106). Radiotherapy has been found
to upregulate the release of C3a and C5a within the irradiated
tumors, leading to pronounced infiltration of CD8+ effector T
cells (107). The presence of C3d on melanoma cells yields greater
infiltration by CD4+ and CD8+ lymphocytes (75). However,
in apparent contradiction to these findings, blocking of C3aR
or C5aR1 in most cancer models has been associated with an
increased infiltration of T cells both in the primary tumor (11,
13, 42, 99, 100, 108, 109) and the metastatic niche (98, 109). The
mechanisms underlying this outcome are not fully understood
but may be related to the downregulation of immunosuppressive
cell populations, such as MDSCs, able to impair T-cell trafficking
(11, 12). Complement inhibition also reduces the levels of VEGF
(110), which may normalize the tumor vasculature, increasing
the infiltration of lymphocytes into tumors (111).

Modulation of Cytotoxic T-Cell Activity by
Complement
An immunosuppressive microenvironment hampers the killing
capacity of cytotoxic CD8+ T-cells. The pro-tumorigenic effect
of complement activity is mediated, in an important way,
by promoting immunosuppressing responses within the tumor
microenvironment. The critical contribution of complement to
regulating immunosuppressive cell populations, such as TAMs,

FIGURE 1 | The complement system in the cancer-immunity cycle. The cancer-immunity cycle is summarized in four steps. Complement-mediated mechanisms

associated with the inhibition of the cancer-immunity cycle, together with complement components that participate in these processes, are shown in blue boxes.
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MDSCs, or Tregs, has been recently reviewed (47). C5a acts as
a potent chemoattractant for polymorphonuclear MDSCs and
stimulates the production of immunosuppressive reactive oxygen
and nitrogen species by tumor infiltrating monocytic MDSCs
(11). Accordingly, pharmacological blockade of C5aR1 decreases
the frequency of MDSCs and impairs tumor growth (11–13,
112). C5aR1 inhibition also downregulates the expression of
immunosuppression-related genes within the tumor milieu (12).
In addition, C5a contributes to conditioning the premetastatic
niche through TGF-β and IL-10-mediated accumulation of
Tregs, proliferation of resident alveolar macrophages, and
decrease in number and maturation of dendritic cells (98). As a
consequence, effector CD4+ T-cell responses skew toward a Th2
phenotype, limiting Th1 responses (98, 113).

C5a also affects the biology of macrophages. C5a skews
macrophage polarization toward an M2 phenotype via C5aR1
signaling upon Leishmania infection (114). After ex vivo
challenge of human whole blood with heat-killed Pseudomonas
aeruginosa, C5a induces PD-L1 expression on monocytes,
and the production of IL-10 and TGF-β (115). Elevation of
PD-L1 expression has also been reported after C1q-mediated
polarization of macrophages (89). M2 tumor-associated
macrophages (TAMs) are an essential component of the tumor
microenvironment that contribute to tumor progression by
blocking CD8+ T-cell responses (116). Recruitment of tumor-
promoting TAMs with a M2-like phenotype is also observed
in mouse sarcomas induced in a PTX3-deficient context and
characterized by an increase in C5a and CCL2 (44). C5a also
promotes hepatic metastases of colon cancer associated with an
increase of monocyte chemoattractant protein-1 (MCP1), anti-
inflammatory modulators such as arginase-1, IL-10, or TGF-β,

TABLE 2 | Contribution of some elements of the complement system to the

inhibition of the cancer-immunity cycle.

Entity Role Affected cancer-immunity

step

C1q Tolerogenic clearance of dying

tumor cells

Initiation of anti-tumor

immunity

Inhibition of antitumor Th1

response

T-cell priming and activation

C3 fragments

(C3b, iC3b, C3a)

Tolerogenic clearance of dying

tumor cells

Initiation of anti-tumor

immunity

Inhibition of antitumor Th1

response

T-cell priming and activation

Abrogation of T-cell infiltration T-cell trafficking

Differentiation of MDSCs Killing of cancer cells

Impaired T-cell cytotoxicity Killing of cancer cells

C5a Inhibition of antitumor Th1

response

T-cell priming and activation

Abrogation of T-cell infiltration T-cell trafficking

Angiogenesis T-cell trafficking

Tumor infiltration of MDSC and

Tregs

Killing of cancer cells

Polarization toward an M2

phenotype

Killing of cancer cells

Impaired T-cell cytotoxicity Killing of cancer cells

and M2-like macrophages (117, 118). Similarly, in a model of
squamous carcinogenesis, C5a regulates the protumorogenic
properties of C5aR1-expressing mast cells and macrophages,
leading to hampered antitumor CD8+ T-cell responses (100).
A combined treatment with cytotoxic chemotherapy and the
blockade of C5aR1 synergistically inhibits the recruitment
of effector memory CD8+ T cells by both the modification
of macrophage- and IFNγ-dependent mechanisms (100).
Interestingly, this study suggests that C5a is not generated in
the tumors through C3 activation, although further studies are
needed to rule out this possibility (119).

Complement C3 activation fragments can also precondition
the tumor microenvironment toward immunosuppression. The
C3 degradation product iC3b promotes the development of
MDSCs in vitro (120). Inhibition of complement C3 abrogates
the suppressor phenotype of polymorphonuclear MDSCs in the
ovarian tumor microenvironment (121). Deletion of C3 in tumor
cells also inhibits M2 polarization (122). Signaling mediated
by C3a contributes to melanoma tumorigenesis by inhibiting
neutrophil and CD4+ T-cell responses (108). Interestingly,
some studies have suggested a direct effect of complement
effectors in the functionality of T cells. C3 inhibits IL-10-
mediated cytotoxic properties of tumor-infiltrating CD8+ T
lymphocytes in an autocrine manner, enhancing melanoma and
breast cancer growth (123). Alterations in CD4+ T cells by
C3/C5-dependent pathways may also have a major role in lung
cancer progression (109).

Finally, complement can also slow down the feeding of
the cancer-immunity cycle by dying cancer cells. Ribosomal
protein S19 (RPS19), upon release from dying tumor cells,
interacts with C5aR1 expressed on MDSCs, promoting its
recruitment to tumors, the generation of Tregs, the production
of immunosuppressive cytokines (including TGF-β), and the
reduction of CD8+ T-cell tumor infiltration (99).

Overall, tumor-associated complement activation deeply
influences the tumor microenvironment, leading to an
immunosuppressive state and the attenuation of tumor-specific
cytotoxic T-cell responses.

COMPLEMENTING THE
CANCER-IMMUNITY CYCLE

As reviewed in the previous section, a growing body of
evidence supports the notion that complement activities support
cancer growth and metastasis in the context of established
tumors (124). Many mechanisms related to immune escape
and resistance to checkpoint inhibitors can be modulated by
elements of the complement system (summarized in Figure 1).
The non-immunology-related effects of complement on cancer
cell biology, including cancer cell proliferation, survival and
invasion capacity (42, 43, 117, 125–137), further reinforces the
impact of complement activation in cancer progression.

Based on the regulatory functions of complement in
the cancer-immunity cycle, we sought to evaluate whether
complement inhibition may represent an effective target for
combined immunotherapies in preclinical syngeneic models of
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FIGURE 2 | Points of complement inhibition. Steps of the classical complement activation pathway and some inhibitors available for targeting these steps are shown.

These points of therapeutic intervention may render synergistic antitumor activities in combination with anti-PD-1/PD-L1 therapies.

cancer. Clinical successes and limitations of anti-PD-1/PD-L1
monotherapy prompted us to use this target as the primary
building block for the combination. The C5a/C5aR1 axis was
selected as the complement-related target based on the abundant
evidence supporting the role of this pathway in the establishment
of an immunosuppressive microenvironment (Table 2) (45).
Using different lung cancer models, we observed a remarkable
synergistic control of lung tumor burden and metastatic
progression in animals simultaneously treated with an aptamer
against C5a (AON-D21) and an anti-PD-1 monoclonal antibody
(13). This effect is accompanied by a negative association between
the frequency of CD8+ T cells and the presence of MDSCs
within tumors, and by a reduction of CD8+ T-cell exhaustion
markers (13). The synergistic benefit of this combination was
later confirmed in models of melanoma and colon cancer (138).
Interestingly, PD-1/PD-L1 antibodies induce the production of
C5a (138), establishing a regulatory loop between both pathways.

Other complement elements, such as C1q, C3, or C3a, may
be also targeted to re-educate the tumor microenvironment
and sensitize it to the subsequent administration of immune
checkpoint blockers (Table 2). A multifaceted repertoire of
therapeutic inhibitors targeting these complement elements has
been developed, and are currently in preclinical or clinical
development (139, 140). Figure 2 shows examples of compounds
that may be used to target complement in the context of
cancer immunotherapy. Complement C3, the centerpiece of
complement activation, represents a particularly attractive target
for therapeutic complement inhibition (141). Nonresponsive
patients to PD-1/PD-L1 blockade frequently have noninflamed
tumors with a defect in the early stages of the cancer-immunity
cycle (15). Opsonization of dying cells with C3 fragments
induces the production of anti-inflammatory cytokines and
reduces the costimulatory molecules needed for the maturation
of dendritic cells, resulting in T-cell tolerance (90). Therefore,
C3 blockade may have a beneficial impact in the early

stages of the cancer-immunity cycle, converting a noninflamed
tumor into an inflamed tumor susceptible to PD-1/PD-L1
blockade. Moreover, both C3a and C5a production would be
impaired (at least in the case of inhibitors, such as compstatin,
that blocks C3 activation by all pathways). Interestingly, a
simultaneous blockade of C3aR and C5aR1 has been reported
to enhance the efficacy of anti-PD-1 therapy against melanoma
cells (123). Deletion of C3 in tumor cells that had high C3
expression enhanced efficacy of anti–PD-L1 treatment (122).
Additionally, complement C3 inhibition may have antitumor
potential in the context of other immune combinations. For
example, C3 inhibition by complement depletion or the use
of the inhibitor compstatin enhances the antitumor efficacy
of oncolytic virus (142, 143) and induces natural killer (NK)-
mediated antitumoral responses (144). Inhibition of complement
activation upstream of all complement effectors also appears to
be a rational approach. In this sense, combinatorial therapies
involving inhibitors of C1q (e.g., C1-INH), which presents both
complement-dependent and -independent tumor promoting
activities, merit further investigation. Finally, it has to be
noted that most complement inhibitors target the extracellular
complement system, preserving its intracellular activity. This
may be of upmost importance, since intracellular C3aR and
C5aR1 signaling pathways seem to be required for T-cell
survival (28).

Finally, it is interesting to point that the preclinical findings
showing the feasibility and value of blocking C5a/C5aR1 to
increase tumor-killing efficacy of checkpoint inhibitors have been
the basis for the design of a phase I/II study (STELLAR-001).
In this trial, the safety and efficacy of durvalumab (an anti-
PD-L1 monoclonal antibody) is being tested in combination
with IPH5401 (an anti-C5aR1 monoclonal antibody) in patients
with selected solid tumors, including non-small cell lung
cancer and hepatocellular carcinoma (NCT03665129). We are
looking forward to the outcome of this trial, as well as
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to the clinical evaluation of novel combinations involving
complement inhibitors.

CONCLUDING REMARKS

This is an exciting time for the complement field, in which new
biological concepts have brought new therapeutic opportunities.
Based on the extensive literature associating complement
activation and cancer progression, we propose here that
substantial clinical benefits can be achieved by multi-modal
anticancer immunotherapies targeting both complement-
mediated mechanisms (to reverse immunosuppression),
and PD-1/PD-L1 immune checkpoints (to re-activate T-
cell functionality). Our preclinical studies supporting the
idea that C5a/C5aR1 inhibition creates a “window of
opportunity” for the administration of anti-PD-1/PD-L1
checkpoint inhibitors pave the way for the evaluation of
other complement-based combinations. The challenge being
that many potential combinations can be evaluated. Insights
into how complement switches from tumor suppressing to
tumor promoting activities at the onset of disease, as well
as how to manage this dichotomy should be important
research areas in order to establish the best therapeutic
strategies. The differences between mice and humans in

complement-mediated T-cell responses should also be
considered (28, 87). To overcome this limitation, faithful
mouse models that recapitulate the complexity of the human
immune context in the tumor microenvironment are urgently
needed (145).
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