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Abstract

In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is

widely used in unsupervised 2D classification of projection images of biological macromole-

cules. 3D ab initio reconstruction requires accurate unsupervised classification in order to

separate molecular projections of distinct orientations. Due to background noise in single-

particle images and uncertainty of molecular orientations, traditional K-means clustering

algorithm may classify images into wrong classes and produce classes with a large variation

in membership. Overcoming these limitations requires further development on clustering

algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering

method building upon the traditional K-means algorithm. By introducing an adaptive con-

straint term in the objective function, our algorithm not only avoids a large variation in class

sizes but also produces more accurate data clustering. Applications of this approach to both

simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly

improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

Introduction

Single-particle reconstruction in cryo-electron microscopy (cryo-EM) is a powerful technol-

ogy to determine three-dimensional structures of biological macromolecular complexes in

their native states [1]. Recent advances in direct electron detector and high-performance com-

puting enabled 3D structural determination of biological macromolecular complexes at a

near-atomic resolution [2–4]. The goal of single-particle reconstruction is to recover the 3D

structure of a macromolecule from a large number of 2D transmission images, in which the

macromolecules assume random, unknown orientations.

Due to high sensitivity of biological samples to radiation damage by electron beam, cryo-

EM data are often acquired with very limited electron doses (10–50 electron/Å2), which makes

the cryo-EM images extremely noisy. To determine the relative orientations of molecular pro-

jections, a crucial step is to classify 2D projection images in an unsupervised fashion such that

PLOS ONE | DOI:10.1371/journal.pone.0167765 December 13, 2016 1 / 19

a11111

OPENACCESS

Citation: Xu Y, Wu J, Yin C-C, Mao Y (2016)

Unsupervised Cryo-EM Data Clustering through

Adaptively Constrained K-Means Algorithm. PLoS

ONE 11(12): e0167765. doi:10.1371/journal.

pone.0167765

Editor: Carmen San Martin, Centro Nacional de

Biotecnologia (CNB-CSIC), SPAIN

Received: September 7, 2016

Accepted: November 18, 2016

Published: December 13, 2016

Copyright: © 2016 Xu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was funded by a grant of the

Thousand Talents Plan of China (YM), by a grant

from National Natural Science Foundation of China

91530321 (YM), by the Intel Parallel Computing

Center program (YM). The cryo-EM experiments

were performed in part at the Center for Nanoscale

Systems at Harvard University, a member of the

National Nanotechnology Coordinated

Infrastructure Network (NNCI), which is supported

by the National Science Foundation under NSF

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167765&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


the images in the same class come from similar orientations of projection [5, 6]. For each class,

images are aligned, centered and averaged to produce class averages with enhanced signal-to-

noise ratio (SNR). Generating 2D class averages is important for both common-line based 3D

ab initio reconstruction [7–14] and some modern methods [15, 16]. Unsupervised classifica-

tion is also useful for a quick evaluation on structural heterogeneity and quality of samples

before entering time-consuming 3D refinement steps [17, 18].

If ignoring conformational dynamics of imaged macromolecules, the intrinsic difference

among projection images mainly comes from two sources: projection direction and in-plane

rotation. Prior to classification, single-particle images must be aligned to minimize the differ-

ences in their translation and in-plane rotation. There are two popular approaches for initial

classification of 2D projection images, namely, multi-reference alignment (MRA) [19] and ref-

erence-free alignment (RFA) [20]. In MRA, a 2D image alignment step and a data-clustering

step are performed iteratively until convergence. In the 2D image alignment step, each image

is rotated and shifted incrementally with respect to each reference. All possible correlations

between a rotated, translated image and a reference are computed. The distance between an

image and a reference is defined as the minimum of all correlation values between them. Based

on these distances, in the data-clustering step, traditional K-means clustering is used to classify

all images into many classes. An implementation of the MRA strategy can be found in SPARX

[21]. In RFA, all images are first aligned globally, which attempts to find rotations and transla-

tions for all images that minimize the sum of squared deviation from their mean. These aligned

images are used as the input for data-clustering algorithms. This strategy was implemented in

SPIDER [22].

Moreover, upon the suggestion of Jean-Pierre Bretaudière, multivariate statistical analysis

(MSA) was introduced into cryo-EM [6, 23, 24]. MSA reduces the dimensionality of images by

projecting them into a subspace spanned by several eigenvectors, which are also called features.

Reducing dimensionality not only accelerates computing but also denoises projection images.

The resulting features can also be used as the references for image alignment. For example,

EMAN2 combines MSA with MRA (MSA/MRA) (see its script e2refine2d.py) [25]. It first gen-

erates translational and rotational invariants for initial classification. Then, a MSA step is iter-

ated with a MRA step, in which images are aligned to those features and classified by the K-

means algorithm, until a pre-defined number of iterations is reached.

Another approach to eliminate in-plane rotation is the use of rotationally invariant trans-

formation (RIT), which transforms two images into the same invariant map if they only differ

with respect to in-plane rotation. Then the transformed images are classified and averaged as

there is no more in-plane rotation. However, finding such a transform is not trivial. Several

attempts have been made [26]. The disadvantage is that the invariant transformation only pre-

serves amplitude information, which may cause misclassification in the later steps. Recently, a

new RIT approach was proposed [27] to preserve both amplitude and phase information.

After RIT, the difference between each pair of invariant maps is used to measure the difference

between the corresponding images. Then each image is denoised by averaging all the images

in its neighbor. Thus, the n input images are transformed into n denoised images that are used

to compute an ab initio model. Moreover, a Covariance Weiner Filter was recently developed

to do CTF correction and denoising on individual images directly [28], making it possible to

examine particles without 2D classification. However, this method does not negate the neces-

sity of unsupervised data clustering.

Despite the aforementioned progress in data science, the traditional K-means algorithm

remains one of the most popular data clustering approaches for single-particle cryo-EM, not

only in 2D classification but also in the modern 3D analysis method [29]. However, the tradi-

tional K-means algorithm has certain limitations. A class average with a higher SNR correlates
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preferably with noise in the high-frequency domain, resulting in attraction of more images into

high-SNR classes. Therefore, when used with MRA, traditional K-means clustering tends to

misclassify single-particle images to classes with more members [30]. Moreover, some classes

may be depleted during iterations. Reseeding empty classes may tentatively remedy this prob-

lem. However, it can also break the balance of class sizes among distinct classes, resulting in the

coexistence of both oversized and undersized classes. The same issue was also found in multi-

reference maximum-likelihood classification, implemented in XMIPP and RELION [31–33].

To avoid class size getting improperly large, several approaches were proposed [22, 30, 31,

34]. First, a modified traditional K-means was implemented in SPIDER for data clustering,

where the objective function is multiplied with a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=ðs� 1Þ

p
. Here, s is class size. ‘–’ is

adopted when an image is compared with its own class average; and ‘+’ is adopted when the

image is compared to other class averages. For very large classes, this factor is almost 1, whereas

it is well below one for small classes. Therefore, it tends to classify more images to small classes.

This modification does avoid generating empty classes, but it does not exclude over-sized classes

or ones containing only one image (We refer this modified traditional K-means in SPIDER as

the traditional K-means in the later context, when there is no ambiguity). Second, an algorithm

called equally-sized group K-means (EQK-means) was developed to control the sizes of classes

[34], which was implemented in SPARX. In each iteration of EQK-means, every class is forced

to have the same number of image members, which avoids the attraction of images to high-SNR

classes. Therefore, the resulting class averages may achieve comparable SNRs. However, given

that the experimental projection directions can be hardly evenly distributed, it is problematic to

produce equally sized classes. Classes in denser angular areas should be assigned with more

image members than classes in sparser areas. Third, a modified MRA approach using the CL2D

algorithm [30] was implemented in XMIPP [33], which classifies images hierarchically. At each

hierarchical level, images are classified with a control of class size by dividing large classes into

many smaller classes. The hierarchical approach conducts classification at each level and may

require more CPU time than non-hierarchical approaches.

In addition, outside of the cryo-EM field, there were several studies on K-means clustering

with size constraints. Banerjee et al. proposed a method with three steps [35]. The algorithm is

started by clustering a sampled subset of an original dataset. Then the remaining data are pop-

ulated to the initial clusters satisfying the cluster size constraint motivated by stable marriage

problem. Last, the clustering is refined by moving one point or a pair of data points that keep

the size constraint. An equivalent implementation of this algorithm in SPA is EQK-means

[34], where it starts clustering by randomly selecting k centroids and populates the remaining

data by using distance matrix. Zhu et al. also proposed a size-constrained algorithm [36]. In

their algorithm, the data are first clustered by existing clustering algorithms. The size con-

straint is then enforced when minimizing the difference between the old partition matrix and

the new partition matrix. To find a more balanced clustering results, Malinen et al. proposed a

method solving the assignment problem by Hungarian algorithm [37]. With the size con-

straint, it can find a good solution with a cost of O(n3) complexity. All the above algorithms

were developed for direct marketing, document clustering, energy aware sensor networks, etc.,

with predefined cluster sizes from known information. However, in SPA one expects the clus-

tering to be approximately uniform so that the SNRs of different classes are comparable. In

fact, we do not know the exact number of particles that a class should have.

In this study, we introduce a novel data clustering approach, named adaptively constrained

K-means algorithm (ACK-means), for unsupervised cryo-EM image classification. Different

from EQK-means that enforces an equal size on all classes or other clustering algorithms with

predefined class sizes, ACK-means controls the class size with an adaptive balance between
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class size and classification accuracy. Thus, ACK-means can in principle avoid an excessive

growth of class size while producing a more accurate angular assignment. Our study suggests

that ACK-means is a significantly improved alternative to the traditional K-means for cryo-

EM data clustering.

Methods

A brief review on the traditional K-means algorithm

Let X = {x1,x2,. . .,xn} represent a set of projection images to be classified. Each class is repre-

sented by a centroid μj, for j = 1, 2,. . ., k. The goal is to partition X into k classes so that the fol-

lowing objective function is minimized:

Jk ¼
Xk

j¼1

X

pi¼j

dissimðxi;μjÞ;

where dissim(�,�) is a function measuring the dissimilarity between images xi and μj. The parti-

tioning is denoted by an assignment vector p = (p1,p2,. . .,pn), which assigns image xi to the pi-

th class. The commonly used dissimilarity measure is the Euclidian distance [38]. In most

MRA approaches, the dissimilarity is defined as a minimum over all possible relative rotations

and translations of an image with respect to another.

To solve this minimization problem globally is NP-hard [39]. As a local minimum solution,

the traditional K-means algorithm was first developed by MacQueen [40]. He gave the name

“K-means” to the algorithm that assigns each image to the class of the nearest centroid. This

can be formulated in the following:

1. Initialization step: Determine k initial centroids (seed points) fμjg
k
j¼1

by randomly select-

ing k images from X;

2. Assignment step: For each image, assign it to the class specified by the most similar cen-

troid;

pi ¼ arg min
j

dissimðxi;μjÞ

3. Update step: Recalculate the centroid by the image mean in each class:

μj ¼ meanðfxi : pi ¼ jgÞ

4. Repeat (2) and (3) until there are no more changes of membership.

Adaptive constraint

To introduce an adaptive constraint to K-means clustering, we add an additional term to the

objective function as shown in the following expression:

J ¼
Xk

j¼1

X

pi¼j

dissimðxi;μjÞ þ lssT: ð1Þ

Adaptively Constrained K-Means
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The first term is the sum of dissimilarity between image xi and centroid μj. In the second

term, s is a vector, whose element si denotes the number of images belonging to the i-th class;

and λ is a non-negative parameter.

Note that the sum of all the elements of s is the total number of images, which is a constant

n. According to the Cauchy-Schwarz inequality, the second term is minimized only when

s1 = s2 = . . . = sk. Therefore, by introducing the second term, we establish a competition

between the dissimilarity and the balance of class sizes. If we set λ = 0, no constraint is exer-

cised on class sizes and minimizing expression (1) has the same effect as that is achieved by

the traditional K-means algorithm. If λ = +1, all classes would have the same size. As λ is

changed from 0 to +1, more weight is given on the balance of class sizes. It allows us to

tune the class sizes adaptively by regulating the strength of the constraint, as opposed to the

EQK-means algorithm that enforces equally sized classes [34]. For this reason, we call the

second term an adaptive constraint. Thus, the proposed algorithm allows more images to

update their memberships in a large class than in a small class during the optimization of

the objective function.

For a given set of centroids, n images are assigned to k classes one by one through minimiz-

ing the objective function (1). Suppose that at the end of the previous iteration, image xi is

assigned to class pi and that the class size vector is s = (s1,s2,. . .,sk). In the current iteration, the

class size vector is first recalculated as s0 by omitting xi. Almost all the elements of s0 is the same

as s, except s0pi
¼ spi

� 1. Then image xi is reassigned to class pi by solving the following mini-

mization:

pi ¼ arg min
j
fdissimðxi;μjÞ þ l

Xk

h¼1

½s0h þ dhj�
2
g

¼ arg min
j
fdissimðxi;μjÞ þ 2ls0j þ lþ l

Xk

h¼1

s02h g

¼ arg min
j
fdissimðxi;μjÞ þ 2ls0jg;

where δhj is the Kronecker delta function. When all the images are reassigned, we end up with

a new assignment vector p describing the updated partition in the current iteration. To further

minimize the objective function (1), we update the k centroids by averaging images in the

same class. This process is iterated until there are no more changes in membership.

Characteristic dissimilarity

Due to background noise and variation in molecular projections, the scale of pixel intensities

in single-particle images is expected to vary from case to case. To keep the competition

between the two terms of Eq (1) at the same magnitude, one needs a larger λ for an image data-

set with large dissimilarities than that with small dissimilarities. Therefore, we developed a

strategy to tune the value of λ that is applicable to varying scales. One quantity reflecting data

scaling is the maximum value of dissimilarity between any pairs of images in given dataset.

However, computing all the dissimilarities between any image pair is extremely time-consum-

ing and practically prohibited. Instead, because we already computed dissimilarities between

images and centroids during image assignment to different classes, we can construct a quantity

called “characteristic dissimilarity” from these values. In each iteration, we randomly select 10

images. For each one of them, we find its smallest and largest dissimilarities among the k dis-

similarities with k centroids. The difference between the largest and smallest dissimilarities is

calculated for each image, and is then averaged together to make characteristic dissimilarity dc.

Adaptively Constrained K-Means
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Hence, we rewrite 2λ as:

2l ¼ b
dc

bn=kc
;

where β is a free parameter in the range from 0 to +1. So we decompose 2λ into two parame-

ters. The first parameter dc describes the change of pixel intensity scaling, whereas the second

parameter β decides the weight on the class size whose value is independent of data scaling.

The constant bn/kc is the class size if all images are partitioned equally. Hence, if the partition

of all classes is ideally balanced, Ds0j=bn=kc represents the fraction of membership-changed

images in the j-th class. Given 0< β< +1, images are partitioned in accordance to dissimilar-

ity while the class sizes are monitored by the adaptive constraint. Note that the only parameter

to be considered during the application of ACK-means is β. The smaller β is, the less balance

of class sizes. Our experiments show that ACK-means can generate satisfying results with β =

0.5 (see below). In this case, if dc is the diameter of the area occupied by the data, then βdc is

the radius.

Implementation algorithm

The algorithm of adaptively constrained K-means is implemented in the following pseudo

code.
Algorithm:ACK-means
Input:
fxig

n
i¼1
: Set of data points.

k: Numberof classes.
σ0: The minimumfractionof data pointsthat are changedmembership.
β: The weighton the adaptiveconstraintterm.
1: Initializecentroids fμjg

k
j¼1

by randomlyselectingk data pointsfrom input

data.
2: Computep accordingto pi = arg minj dissim(xi,μj).
3: Update fμjg

k
i¼1

by averagingdata pointsin the same class.
4: whileσ > σ0 do
5: Randomlyselect10 images frmg

10

m¼1
and computetm for m = 1:10 accordingto:

tm ¼ max
j

dissimðrm;μjÞ � min
j

dissimðxm;μjÞ

6: Computedc accordingto dc ¼
P10

m¼1

tm=10

7: Computeλ accordingto λ ¼ β dc=2

bn=kc.

8: Save the old assignmentvectoraccordingto pold = p
9: for i = 1: n do
10: Computes0 accordingto s0l ¼

P
m6¼i δpm;l

11: Updatepi accordingto pi ¼ arg minj dissimðxi; μjÞ þ 2λs0j
12: end for
13: Update fμjg

k
i¼1

by averagingdata pointsin the same class.

14: Computeσ accordingto σ ¼ 1 � 1

n

Pn

i¼1

δpold
i ;pi

15: end while
Return:assignmentvectorp.

Note that we exercise no assumption regarding classification and initialize the algorithm as

what the traditional K-means does. To ensure an unsupervised nature of the classification, k
images are randomly selected from the dataset as the initial centroids. This guarantees that

Adaptively Constrained K-Means
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there is at least one member in each class. Then, each of the rest images is assigned to the class

whose centroid is the nearest to the image. To devise a termination criterion for the algorithm,

we set a threshold parameter σ0 (usually set as 0.01) here. If the fraction of data points changing

their membership in the current iteration decreases to this threshold, the algorithm is

terminated.

Since adding the adaptive term costs computational time linear to the number of images,

the complexity of ACK-means is at the same level as the traditional K-means, namely, O(kntdis +

10k2). However, EQK-means sorts all the distances after they are computed. The complexity of

EQK-means is O(kntdis + k2n2), where tdis is the time for computing the dissimilarity between a

pair of images. In the MRA approach, images are aligned before their distances are computed.

The alignment process may cost considerable time depending on the dimension of images.

Thus, in MRA kntdis contributes substantially to the complexity. In the MSA/MRA or RFA

approach, images are well aligned before entering clustering algorithm, the calculation of tdis is

faster. Generally, ACK-means shares the complexity of the traditional K-means.

Benchmark with simulated data

The density map of Escherichia coli 70S ribosome [41] was used to generate 10,000 simulated

projection images (S1 Fig). Most protein structures are of lower symmetry or asymmetric.

Therefore, some orientations are expected to appear more frequently than others in vitreous

ice. To emulate this phenomenon, we uniformly chose 100 orientations covering half a sphere.

Each orientation is regarded as a Gaussian center, around which 100 projections were gener-

ated with a Gaussian distribution. Due to electron lens aberrations and defocusing, we further

modified the projection images with the contrast transfer function (CTF). The projections

were then additively contaminated with Gaussian noise at different SNR = 1/3, 1/10, 1/30 (S2

Fig), which allowed us to investigate the proposed algorithm at different noise level. The input

projections to all experiments were CTF-corrected by phase flipping [42].

To examine the performance of our algorithm, we compared the results of classifying the

10,000 simulated images into 100 classes by using ACK-means with those from other existing

approaches. For the standard MRA, we compared ACK-means against traditional K-means

and EQK-means algorithms implemented in SPARX. The script isac.py in SPARX is part of a

method called ISAC (Iterative Stable Alignment and Clustering) proposed in [34], consisting

of the standard MRA part, followed by analysis within classes. The within-class analysis traces

the change of membership of images and selects stably classified images that do not change

their membership in each iteration. To focus on the effect of different data clustering algo-

rithms, only the MRA part is used in our test. To see the influence of ACK-means in MRA

with MSA (MRA/MSA), we replaced the traditional K-means with ACK-means of e2refine.py

in EMAN2 and compared their performance. For RFA, we followed the protocol of SPIDER

[41] and compared the classification results of the traditional K-means with those of ACK-

means.

Results

Simulated data

Since all the original angles of the input projections are known, the angular difference between

any pair of projections in each class, also termed “angular distances”, can be computed. The

statistical behavior of the angular distances can be used to measure the quality of the corre-

sponding class [30]. A class assigned with n image members has
n

2

 !

pairs of angular
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distances. We used two plots to compare the results from different algorithms. The first plot is

the histogram distribution of the angular distances from all classes [30]. A better algorithm is

expected to exhibit a distribution curve with a sharper, higher peak at lower angular distances.

The second plot ranks the sizes of all classes to show the balance of classification. As shown in

Fig 1, we compared the unsupervised classification results by ACK-means on the simulated

data with a SNR of 0.1 with those obtained by several existing K-means implementations: the

traditional K-means and EQK-means in the standard MRA approach implemented in SPARX

[21, 34], the traditional K-means in the MRA/MSA approach implemented in EMAN2 [25],

and the one in the RFA approach implemented in SPIDER [22].

In the MRA approach, although EQK-means avoids the attraction of dissimilar images by

delivering equally sized classes, it exhibits reduced angular accuracy of classification (Fig 1A and

1B). By contrast, ACK-means makes little compromise on the balance of class size, yet improves

the classification accuracy. In both MRA and MRA/MSA approaches, ACK-means gives rise to

a prominent improvement in both the classification accuracy and the balance of class sizes (Fig

1A–1D). However, in the RFA approach, although the improvement of classification accuracy is

not obvious (Fig 1E), ACK-means still generates more balanced class sizes (Fig 1F).

The three experiments behave differently as SNR is changed (S3 and S4 Figs). Since MRA

has the strongest effect of attraction of dissimilar particles over other approaches, the attraction

effect becomes much stronger with decreasing SNR. By contrast, the performance of ACK-

means in controlling the class size adaptively does not degrade with decreasing SNR (Fig 1A

and 1B; S3A, S3B, S4A and S4B Figs). In the MRA/MSA approach, ACK-means outperforms

the traditional K-means at moderately low SNR level (Fig 1C and S3C Fig). However, at lower

SNR (0.033), their difference in the histogram disappears (S4AC Fig). This is likely because

alignment errors introduced in the early step cannot be eliminated by ACK-means in the later

step. In the RFA approach, ACK-means generates similar classification accuracy with the tra-

ditional K-means at all noise levels (Fig 1E, S3E and S4E Figs). This result confirms that the

classification accuracy is bound by the alignment error. In all cases, ACK-means gives rise to a

well-balanced classification (S4D Fig).

We also compared the classification results of ACK-means under different approaches with

those of the maximum-likelihood-based 2D classification in RELION [31] (S5 Fig). ACK-

means in both MRA and RFA outperforms the results by RELION at all noise levels tested

(S5A, S5B, S5E and S5F Fig). However, the MRA/MSA approach does not improve over

RELION at a higher noise level (S5C and S5D Fig). In all the cases tested, RELION generates

many classes with no or few particles, which might prevent the resulting class averages from

supporting initial reconstructions with sufficient quality.

To examine the convergence behavior of the ACK-means algorithm, we recorded the frac-

tion of images changing membership in each iteration relative to the previous iteration. The

curve generated from the above experiments in the MRA approach is plotted in Fig 2. Other

approaches have similar results. All three algorithms converge exponentially in a similar way.

The ACK-means and the traditional K-means uses less iterations to achieve the same degree of

convergence as does EQK-means. We also examined the total run time for the above experi-

ments with simulated data to show the time cost of theses algorithms in different approaches

(Table 1). For each iteration, the ACK-means algorithm used slightly more time than others,

which is nonetheless affordable.

Experimental cryo-EM data

Three real experimental datasets were used to examine our ACK-means algorithm in this

study. We compared the results of our algorithm against the traditional K-means

Adaptively Constrained K-Means
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implementations in SPARX, EMAN2 and SPIDER, as well as EQK-means in SPARX. Since it

is impossible to know the true projection angles of individual single particles, we evaluate the

classification results by inspecting the quality of 2D class averages visually.

Case 1: GroEL. The first dataset consists of 5,000 particles selected from a GroEL dataset

of 26 micrographs, whose pixel size is 2.10 Å/pixel. The size of particles is 140 × 140 pixels

[43]. These particles were first phase-flipped and then classified into 25 classes by different

algorithms. As shown in Fig 3, a set of 2D class averages were computed with the traditional

K-means (Fig 3A), EQK-means (Fig 3B) and ACK-means (Fig 3C) through the MRA protocol

in SPARX. The traditional K-means did not control class sizes and produced more blurred

classes than other two algorithms (Fig 3A). Although EQK-means and ACK-means both pro-

duced balanced results, EQK-means generated two worst class averages among all class aver-

ages (Fig 3B). For the MRA/MSA approach in EMAN2, class averages from the traditional K-

means (Fig 4A) and ACK-means (Fig 4B) were compared. ACK-means generated clearer class

averages with balanced sizes. Furthermore, comparison between the traditional K-means (Fig

Fig 1. Comparison of classification results of simulated data with SNR = 1/10. The First column (panels a, c and e) is the normalized histogram of

angular distances. More accurate classification produces curve with higher peak concentrated at lower angular distance. The second column (panels b, d

and f) shows the class sizes arranged in an ascend order. The most balanced classification has a horizontal line in this plot. (a) and (b) are from

experiments using different clustering algorithms in MRA approach under SPARX. (c) and (d) are from experiments using different clustering algorithms in

MRA/MSA approach under EMAN2. (e) and (f) are from experiments using different clustering algorithms in RFA approach under SPIDER. In all graphs,

red curves present the results from the ACK-means algorithm.

doi:10.1371/journal.pone.0167765.g001

Fig 2. Convergence of K-means, EQK-means and ACK-means in MRA. The three algorithms behave similarly

as iteration increases, converging very fast at the first several iterations.

doi:10.1371/journal.pone.0167765.g002
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5A) and ACK-means (Fig 5B) were made with the RFA approach in SPIDER. Both the tradi-

tional K-means and ACK-means generated class averages of comparable quality, but the latter

substantially improved the balance of class sizes, avoiding both oversized and empty classes.

Case 2: Inflammasome. We used 281 particles of inflammasome to benchmark our algo-

rithm [44]. The data were collected with a pixel size of 1.72 Å/pixel and an acceleration voltage

of 200 kV. The particles have a size of 160 × 160 pixels. These particles were pre-selected such

that only side views with different lengths, corresponding to different oligomeric states of

inflammasome, were included in the dataset. After phase-flipped, the dataset was classified

into 20 classes using different algorithms. In the MRA approach with SPARX, the class aver-

ages were generated by the traditional K-means (Fig 6A), EQK-means (Fig 6B) and ACK-

means (Fig 6C). Without the constraint on class sizes, many classes in the traditional K-means

were not assigned with enough particles, producing blurred class averages (Fig 6A). Although

many class averages of EQK-means and ACK-means are similar, some classes of EQK-means

present misaligned features, indicating the failure of classifying different particles. Similarly,

when compared in the MRA/MSA approach with EMAN2, ACK-means produced generally

improved classification results than did the traditional K-means (Fig 7A and 7B). We further

compared our approach with the traditional K-means in the RFA approach implemented in

SPIDER. The traditional K-means generated many classes with only one particle (Fig 8A). By

contrast, this was well avoided in the results from unsupervised classification by our ACK-

means algorithm (Fig 8B).

Case 3: Proteasome. Finally, we used a dataset containing proteasomal RP (regulatory

particle) and RP-CP (regulatory particle associated with core particle) subcomplex [45]. The

total number of particle is 3,960, with pixel size 2.00 Å/pixel and particle size 160 × 160 pixels.

All particles were pre-processed by phase-flipping and classified into 40 classes. For the MRA

approach in SPARX, the class averages generated by the traditional K-means, EQK-means and

ACK-means are shown in Fig 9A–9C, respectively. The traditional K-means (Fig 9A) gener-

ated many blurred classes because of no constraint on class sizes. ACK-means (Fig 9C) and

EQK-means (Fig 9B) yielded comparable results. For the MRA/MSA approach in EMAN2 and

RFA approach in SPIDER, we compared the class averages of traditional K-means (Figs 10A

and 11A) and ACK-means (Figs 10B and 11B). Class averages of ACK-means show more clas-

ses with clear details. Additionally, the traditional K-means in SPIDER generated 3 classes

with only one particle.

Discussion

In this study, we propose a new data-clustering algorithm, which generates adaptively bal-

anced, unsupervised classification, preventing the attraction of dissimilar particles into classes

of large sizes or higher SNRs. This allows significant improvement in unsupervised image clas-

sification over the traditional K-means algorithm. Meanwhile, by controlling class sizes adap-

tively, our approach also improves angular accuracy of image clustering as compared to EQK-

means, allowing more particles to be assigned to a class if the operation can improve classifica-

tion accuracy.

Table 1. The running time of different algorithms in different approaches.

Approach MRA, SPARX (48 cores) MSA/MRA, EMAN2 (1 core) RFA, SPIDER (1 core)

Algorithm EQK-means K-means ACK-means K-means ACK-means K-means ACK-means

Time (in hour) 0.3h 0.25h 0.45h 7h 12h 0.8h 1.3h

doi:10.1371/journal.pone.0167765.t001
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We tested our algorithm with both simulated and real experimental datasets. The projection

orientations of simulated data were generated with both dense and sparse angular areas to imi-

tate realistic situation. We found that our ACK-means algorithm consistently outperforms the

traditional K-means in all cases. In MRA, traditional K-means suffers from attracting dissimi-

lar particles into classes with more particles. It does not control class sizes and often generates

many classes of very few image members, resulting in blurred class averages. ACK-means and

EQK-means both generate balanced class averages, whereas ACK-means gives rise to

improved classification accuracy, allowing more details to be recovered in class averages. In

contrast to EQK-means that avoids the growing of class sizes by forcing each class to have the

Fig 3. 2D class averages of GroEL using the traditional K-means (a), EQK-means (b) and ACK-means (c) in MRA approach from SPARX.

Class size is shown at the left bottom of each class average. ACK-means (b) is the best by having the most number of clear classes.

doi:10.1371/journal.pone.0167765.g003

Fig 4. 2D class averages of GroEL using the traditional K-means (a) and ACK-means (b) in MRA/MSA from EMAN2. Class size is shown at

the left bottom of each class average. Their performance is similar, but ACK-means (b) has the more number of clear classes.

doi:10.1371/journal.pone.0167765.g004
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same size, ACK-means monitors class sizes adaptively when determining the class assignment

of particles.

In the tests with the simulated and experimental GroEL dataset, we found little improve-

ment on the accuracy of classification by ACK-means against the traditional K-means in the

RFA approach in SPIDER. However, in the tests with the experimental inflammasome and RP

Fig 5. 2D class averages of GroEL using the traditional K-means (a) and ACK-means (b) in RFA from SPIDER. Class size is shown at the left

bottom of each class average. The quality of class averages from both algorithms is comparable, but ACK-means (b) substantially improved the

balance of class sizes.

doi:10.1371/journal.pone.0167765.g005

Fig 6. 2D class averages of Inflammasome using the traditional K-means (a), EQK-means (b) and ACK-means (c) in MRA from

SPARX. Class size is shown at the left bottom of each class average. The traditional K-means generated many blurred class averages and

EQK-means produced some class averages with misaligned features.

doi:10.1371/journal.pone.0167765.g006
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datasets, we observed prominent differences between the two algorithms. Although the tradi-

tional K-means was modified by a factor in SPIDER, it still generated many classes with only

one image. By contrast, ACK-means produced balanced classes with more informational class

averages. Interestingly, we further combined ACK-means with our recently proposed statisti-

cal manifold learning algorithm [45] and found a significant improvement in the RFA

approach (data not shown). It bodes well for the future development of improved data cluster-

ing protocols that integrate both ACK-means and manifold learning approaches. In summary,

the ACK-means algorithm takes into account both the classification accuracy and the balance

of class sizes. It presents a significantly improved alternative to the traditional K-means as a

data-clustering algorithm for cryo-EM data analysis.

Fig 7. 2D class averages of Inflammasome using the traditional K-means (a), and ACK-means (b) MRA/MSA from EMAN2. Class

size is shown at the left bottom of each class average. ACK-means generated improved results as compared to the traditional K-means.

doi:10.1371/journal.pone.0167765.g007

Fig 8. 2D class averages of inflammasome using the traditional K-means (a), and ACK-means (b) in RFA from SPIDER. Class size

is shown at the left bottom of each class average. There are many classes in (a) with only one particle. Traditional K-means generated

many classes with only one particle, which is avoided in the results from ACK-means.

doi:10.1371/journal.pone.0167765.g008
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Supporting Information

S1 Fig. Simulated projections of Escherichia coli 70S ribosome. For each noise level, six ori-

entations are shown. (a) SNR = 1/3. (b) SNR = 1/10. (c) SNR = 1/30.

(TIF)

Fig 9. 2D class averages of RP using the traditional K-means (a) and ACK-means (b) in MRA from SPARX. Class size is shown at the left bottom of

each class average. There are many blurred classes in (a) generated by the traditional K-means.

doi:10.1371/journal.pone.0167765.g009

Fig 10. 2D class averages of RP using the traditional K-means (a) and ACK-means (b) in MRA/MSA from EMAN2. Class size is shown at the left

bottom of each class average. Classes generated by ACK-means (a) are clearer than those by the traditional K-means (a).

doi:10.1371/journal.pone.0167765.g010

Fig 11. 2D class averages of RP using the traditional K-means (a) and ACK-means (b) in RFA from SPIDER. Class size is shown at the left bottom of

each class average. The traditional K-means (a) generated some poor classes with only one particle. The performance of ACK-means (b) is better than the

traditional K-means.

doi:10.1371/journal.pone.0167765.g011
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S2 Fig. Comparison of classification results of ACK-means on simulated data with differ-

ent β and at different noise levels. The first column (panels a, c and e) is the normalized histo-

gram of angular distances. The second column (panels b, d and f) is the size of classes which is

arranged in ascend order. The most balanced classification has a horizontal line in this plot.

The experiments are conducted by the MRA approach in SPARX. (a) and (b) SNR = 1/3. (c)

and (d) SNR = 1/10. (e) and (f) SNR = 1/30.

(TIF)

S3 Fig. Comparison of classification results of simulated data with SNR = 1/3. The first col-

umn (panels a, c and e) is the normalized histogram of angular distances. The second column

(panels b, d and f) is size of classes which is arranged in ascend order. The most balanced clas-

sification has a horizontal line in this plot. (a) and (b) are for experiments using different clus-

tering algorithms in the MRA approach under SPARX. (c) and (d) are for experiments using

different clustering algorithms in the MRA/MSA approach under EMAN2. (e) and (f) are for

experiments using different clustering algorithms in the RFA approach under SPIDER. In all

graphs, red curves present the results from the ACK-means algorithm.

(TIF)

S4 Fig. Comparison of classification results of simulated data with SNR = 1/30. The first

column (panels a, c and e) is the normalized histogram of angular distances. The second col-

umn (panels b, d and f) is size of classes which is arranged in ascend order. The most balanced

classification has a horizontal line in this plot. (a) and (b) are for experiments using different

clustering algorithms in the MRA approach under SPARX. (c) and (d) are for experiments

using different clustering algorithms in the MRA/MSA approach under EMAN2. (e) and (f)

are for experiments using different clustering algorithms in the RFA approach under SPIDER.

In all graphs, red curves present the results from the ACK-means algorithm.

(TIF)

S5 Fig. Comparison of classification results of ACK-means in different approaches with

RELION. The first column (panels a, c and e) is the normalized histogram of angular dis-

tances. The second column (panels b, d and f) is the size of classes which is arranged in ascend

order. The most balanced classification has a horizontal line in this plot. (a) and (b) are from

ACK-means in MRA and RELION. (c) and (d) are for ACK-means in MRA/MSA and

RELION. (e) and (f) are for ACK-means in RFA and RELION. Many classes generated by

RELION have no or few particles.

(TIF)
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