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Abstract
Cuproptosis, a recently identified copper-dependent cell death mechanism, remains poorly unexplored in ovarian cancer 
(OC). This study systematically evaluates clinically significant cuproptosis-related genes (CRGs) as potential prognos-
tic biomarkers in OC. Cox regression analysis and LASSO algorithms were used to develop a prognostic risk model 
incorporating 5 CRGs (CD8B2, GJB2, GRIP2, MELK, and PLA2G2D) within the TCGA cohort. This model stratified 
OC patients into high-risk and low-risk groups, with the high-risk group exhibiting significantly shorter overall survival 
compared to the low-risk group. The model's predictive accuracy for prognosis in OC patients was validated in the TCGA 
training cohort, TCGA testing cohort, and ICGC external validation cohorts. Among these 5 signature genes, the number 
of cuproptosis genes associated with GJB2 is the largest, so we selected GJB2 for further validation. qPCR revealed that 
GJB2 was highly expressed in OC cells and tumor tissues. The high expression of GJB2 was closely associated with 
poor prognosis in OC patients. Functionally, GJB2 silencing suppressed OC cell proliferation and migration while its 
overexpression promoted malignant progression and EMT. Furthermore, GJB2 regulated copper homeostasis and reduced 
cuproptosis sensitivity, while also facilitating immune escape by inhibiting CD8+ T cell infiltration and cytokine secre-
tion, revealing its multiple roles in OC progression. In conclusion, we established a novel prognostic model incorporating 
5 CRGs that effectively predicts clinical outcomes and characterizes the immune microenvironment in OC. Our findings 
particularly highlight GJB2 as a key regulator of cuproptosis with significant potential as both a prognostic biomarker and 
therapeutic target for OC management.
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Abbreviations
OC	� Ovarian cancer
TCGA	� The cancer genome atlas
GTEx	� Genotype tissue expression
ICGC	� International cancer genome consortium
CGs	� Cuproptosis genes
DEGs	� Differentially expressed genes
DECGs	� Differentially expressed cuproptosis genes
CRGs	� Cuproptosis-related genes
CNVs	� Copy number variations
LASSO	� Least absolute shrinkage and selection operator
OS	� Overall survival
KM	� Kaplan–Meier
ROC	� Receiver operating characteristic
AUC	� Areas under the curve
PCA	� Principal component analysis
t-SNE	� T-distributed Stochastic Neighbor Embedding
C-index	� Concordance index
IC50	� Half-maximal inhibitory concentration
TIDE	� Tumor immune dysfunction and exclusion
ICI	� Immune checkpoint inhibitor
TIS	� Tumor inflammation signature
CSCs	� Cancer stem cells
GO	� Gene ontology
GSVA	� Gene set variation analysis
GDSC	� Genomics  of  drug sensitivity  in  cancer
GSCA	� Gene set cancer analysis
TCIA	� The cancer immunome atlas
IOSE	� Immortalized ovarian surface epithelial
OE	� Overexpression
NC	� Negative control
GJB2	� Gap junction protein beta-2
Cx26	� Connexin 26
TMB	� Tumor mutation burden
TME	� Tumor microenvironment
TIME	� Tumor immune microenvironment
EMT	� Epithelial-mesenchymal transition

Introduction

Ovarian cancer (OC) is the second highest cause of mortality 
in gynecological malignancies worldwide, and its high mor-
tality is mainly related to the difficulty of early diagnosis, 
high aggressiveness, and the development of chemotherapy 
resistance [1]. Due to the absence of distinctive symptoms 
and reliable biomarkers, most patients are diagnosed at 
advanced stages [2]. Despite advances in treatments such 
as targeted therapy and immunotherapy, the 5-year overall 
survival rate remains low, largely due to recurrence, drug 
resistance, and therapeutic uncertainty [3–5]. In clinical 
applications, the accurate assessment of prognosis in cancer 

patients relies on molecular biomarkers, which can help 
identify clinical risk groups and guide treatment decisions, 
making them a crucial component of personalized therapy 
[6].

Emerging evidence demonstrates that dysregulated cop-
per homeostasis plays a pivotal role in cancer pathogenesis 
across multiple malignancies [7, 8]. Some studies have 
shown that decreased serum copper concentrations are 
linked to the development of endometrial cancer [9], and an 
imbalance in copper homeostasis has also been observed in 
the progression of head and neck cancers [10]. Recently, a 
groundbreaking study by Tsvetkov et al. identified a novel 
form of copper-dependent cell death, termed cuproptosis 
[11]. This mechanism, previously unidentified, has signifi-
cant implications for understanding new regulatory path-
ways in cancer. While this breakthrough has opened new 
avenues for exploring copper-mediated regulatory networks 
in cancer biology, the potential connection between cupro-
ptosis and OC pathogenesis remains largely speculative, 
with no definitive mechanistic evidence currently available 
to substantiate this relationship in OC models or clinical 
samples.

Gap Junction Protein Beta 2 (GJB2), also known as 
connexin 26 (Cx26), is a member of the connexin family 
and plays a key role in the formation of hemichannels and 
gap junctions. The opening of hemichannels facilitates the 
release of signaling molecules, such as ATP and glutamate, 
into the extracellular space [12]. Emerging evidence demon-
strates that aberrant GJB2 expression disrupts gap junction 
intercellular communication (GJIC) across multiple malig-
nancies, including breast, colorectal, and non-small cell lung 
cancers [13–15]. Beyond its canonical role in GJIC, con-
nexins have been shown to orchestrate cancer progression 
through hemichannel-mediated modulation of autocrine/
paracrine signaling networks [16]. Previous studies have 
shown that GJIC mediated by Cx26 promotes tumorigene-
sis by regulating cell proliferation and differentiation, while 
also enhancing cancer cell migration by reducing tumor 
cell adhesion [17, 18]. Teleki et al. [19] reported that GJB2 
expression was downregulated after chemotherapy in breast 
cancer patients, suggesting an association between GJB2 
expression and chemotherapy response, and highlighting its 
potential as an anti-cancer drug target. Although significant 
progress has been made in understanding GJB2 functions in 
other cancer types, its pathophysiological roles in OC, par-
ticularly the specific mechanisms underlying therapy resis-
tance, metastasis, and tumor microenvironment modulation, 
remain completely uncharted territory.

This study aimed to identify predictive cuproptosis-
related genes (CRGs) in OC that can not only provide 
valuable insight into the molecular networks, the signaling 
pathway, and the tumor immune infiltration that is related 
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to cuproptosis in OC but can also be used to identify OC 
patients at high risk of poor survival. In our research, we 
identified 5 CRGs (CD8B2, GJB2, GRIP2, MELK, and 
PLA2G2D) and developed a prognostic model. Based on 
the CRG risk score, we classified the TCGA-OC patients 
into a high-risk group and a low-risk group. The functional 
role of CRGs in OC was further explored through gene set 
enrichment analysis (GSEA), assessing their potential for 
predicting prognosis, diagnosis, tumor immune infiltra-
tion, chemotherapeutic drug sensitivity, and immunother-
apy efficacy, with both internal and external validations. 
Among these 5 signature genes, GJB2 was associated with 
the largest number of cuproptosis genes, so we selected 
the key gene GJB2 for further validation. To elucidate the 
oncogenic properties of GJB2, OC cells were transfected 
with GJB2-related plasmid, then performed CCK-8, col-
ony formation assay, wound healing assay, and Transwell 
migration assay to evaluate the impact of CJB2 on the pro-
liferation and migration of cells. To further characterize 
the molecular mechanisms underlying GJB2's oncogenic 
effects, we employed qPCR and Western blotting analyses 
to systematically evaluate its impact on the Epithelial-Mes-
enchymal Transition (EMT) signaling pathway activation. 
Simultaneously, through GO enrichment analysis of GJB2-
correlated genes, we identified significant involvement in 
copper ion binding pathways, which was subsequently vali-
dated by qPCR showing marked alterations in key cupro-
ptosis regulators following GJB2 overexpression. Later, cell 
viability assays also confirmed GJB2's regulatory impact 
on cuproptosis sensitivity. Finally, Transwell migration 
and flow cytometric analyses revealed that GJB2 inhibits 
CD8+ T cell infiltration and suppresses cytokine secretion, 
indicative of its role in immune evasion. Collectively, these 
findings establish GJB2 as a multifaceted oncogene in OC 
pathogenesis, driving tumor progression through prolifera-
tive, migratory, EMT-promoting, cuproptosis-modulating, 
and immunoevasive mechanisms, while highlighting its 
potential as a prognostic biomarker and therapeutic target.

Materials and methods

Data collection

The flowchart of the study design is illustrated in Fig.  1. 
A total of 379 OC patients and 88 normal ovarian samples 
were involved in the present study. The transcriptome data 
of TCGA-OC was downloaded from the UCSC Xena server 
(https://xenabrowser.net/) [20]. A total of 88 normal ovarian 
tissue mRNA expression samples were downloaded from 
the Genotype-Tissue Expression (GTEx) database. Then 
converted and normalized the FPKM values of TCGA-OC 

(379 OC patients) and GTEx-ovary (88 normal samples) to 
TPM values, and finally obtained an integrated expression 
matrix. The "NormalizeBetweenArrays" instruction of R 
package "limma" was used to remove batch-specific effects 
in the process. The clinical information of OC cases was 
obtained from The Cancer Genome Atlas (TCGA) database 
(​h​t​t​p​​s​:​/​​/​p​o​r​​t​a​​l​.​g​d​c​.​c​a​n​c​e​r​.​g​o​v​/​) [21, 22], including OS, ​s​u​r​v​
i​v​a​l status, age, grade, and stage. The summarized clinical 
data of the OC patients are shown in Table S1. The concrete 
clinical information for TCGA whole dataset OC patients 
is in Table S2. Study participants with incomplete clinical 
information were excluded. OC data for Ovarian cancer-
Australia OV-AU items were collected from the Interna-
tional Cancer Genome Consortium (ICGC, ​h​t​t​p​s​:​/​/​i​c​g​c​.​
o​r​g​​​​​) database. A total of 85 samples were included in the 
column as an independent verification cohort for analysis. 
GSE38666, GSE105437, and GSE63885 were derived from 
the Gene Expression Omnibus (GEO) database (​h​t​t​p​​s​:​/​​/​w​
w​w​​.​n​​c​b​i​​.​n​l​m​​.​n​i​​h​.​g​​o​v​/​g​e​o​/). These datasets were achieved 
from common databases, and strict guidelines were obeyed 
according to these databases. The 97 cuproptosis genes 
(CGs) were extracted from a previous study for subsequent 
bioinformatics analysis [11, 23–25], listed in Table S3.

Mutation, correlation analysis, and differential 
analysis of DECGs

Differential expression genes (DEGs) in the TCGA-OC 
samples and normal ovarian samples were analyzed by the 
“limma” package in RStudio (|log2FC|> 1, p < 0.05). Venn 
diagrams were used to identify TCGA-DEGs that inter-
sected with CGs, and the overlapping genes were defined 
as differentially expressed cuproptosis genes (DECGs). To 
identify the expression differences of DECGs between the 
normal and tumor samples, the R “limma” and “ggpubr” 
packages were used to generate the boxplots for compari-
son. We then utilized the “maftools” [26] R package to 
generate a waterfall plot that allowed us to examine the 
mutation frequency and mutation type of DECGs in each 
sample. Finally, the correlation analysis of 18 DECRs was 
drawn with the "corrplot" R package.

Construction and validation of cuproptosis-related 
prognosis model

To identify cuproptosis-related genes (CRGs), we used the 
"limma" package to calculate the correlation between DECGs 
and CRGs [27]. Using the correlation coefficient|R|> 0.4 and 
p < 0.001 as the screening criteria, a total of 1435 CRGs with 
expression values were obtained. We further screened the 
differentially expressed CRGs (|log2FC|> 3, p < 0.05) and 
finally obtained 71 differentially expressed CRGs. Then 
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Fig. 1  Flowchart of the Study
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Correlation of the prognostic signature with TME 
and immune checkpoints

"Reshape2", "tidyverse", "ggplot2", "ggpubr" and "ggExtra" 
R packages were used to analyze the correlation of risk score 
with immune cells and plot a heatmap depicting the rela-
tionship of signature genes with immune cells. Additionally, 
we compared the Tumor Microenvironment (TME) scores 
between high-risk and low-risk groups using the "reshape2" 
and "ggpubr" R packages. To further investigate the signa-
ture's predictive capability in immunotherapy response, we 
analyzed the expression of immune checkpoints between 
high-risk and low-risk groups using "limma", "ggplot2", 
"ggpubr" and "ggExtra" R packages [32].

Drug sensitivity analyses

Half-maximal inhibitory concentration (IC50) data for anti-
cancer drugs were obtained from the Genomics  of  Drug 
Sensitivity  in  Cancer (GDSC) database (​h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​a​n​c​
e​r​r​x​g​e​n​e​.​o​r​g​/​) [33, 34]. The drug distribution in the ​h​i​g​h​-​r​
i​s​k and low-risk score groups was analyzed and visualized 
using the "pRRophetic" [35] R package. The Wilcoxon sign 
rank test was used to compare IC50 differences between 
common anti-tumor drugs in the high-risk and low-risk 
groups. Differences in common anti-tumor drugs between 
high-expression and low-expression groups of GJB2 are 
also analyzed using the same methods.

Protein expression in the HPA database

The Human Protein Atlas (HPA) database ​(​​​h​t​t​p​s​:​/​/​w​w​w​
.​p​r​o​t​e​i​n​a​t​l​a​s​.​o​r​g​/​​​​​) was used for the comparison of protein 
expression of GJB2 between normal ovarian tissue and OC 
tissue samples by immunohistochemistry (IHC) [36].

Cell culture and transfection

All cell lines used in this study included human normal 
ovarian surface epithelial cells (Immortalized Ovarian Sur-
face Epithelial, IOSE) and OC cell lines, HO 8910, A2780, 
OC314, and SKOV3 (STR identification), were cultured in 
RPMI-1640 (BI) replenished with 10% fetal bovine serum 
(FBS) (BI), 100  µg/ml penicillin (Sigma) and 100  µg/ml 
streptomycin (Sigma). All cells were cultured at 37 °C in a 
humidified 5% CO2 incubator. Cells were collected for the 
experiment at the indicated time. 5 × 105 °C cells were seeded 
in a six-well plate and then reached 60–70% fusion degree 
per well, jetPRIME was applied for transient transfection 
plasmid and/or siRNA in vitro according to manufacturer's 
instructions. These cells were digested and collected after 

used univariate Cox regression analysis to obtain CRGs 
related to the prognosis of OC patients, and we carried out 
multivariate Cox regression analysis and least absolute 
shrinkage and selection operator (LASSO) Cox regression 
to construct the CRGs predictive signature for OC patients. 
Finally, the prognostic risk model was constructed by 5 
CRGs (CD8B2, GJB2, GRIP2, MELK, and PLA2G2D). For 
each patient, the risk score was calculated based on the fol-
lowing formula: Cuproptosis risk score = ∑(Expi × Coefi). 
(Expi denotes each signature gene's expression level, and 
Coefi denotes the corresponding coefficient).

The reliability of the prognostic signature was validated 
using internal validation (TCGA-OC) and external valida-
tion groups (ICGC-OC). We randomly divided all patients 
from the TCGA-OC database into the training and test-
ing groups. Based on the median value of the risk score, 
the training group, the testing group, and all patients were 
classified into high-risk and low-risk groups, respectively. 
In both training and validation groups, the signature’s pre-
dictive capability was assessed by Kaplan–Meier (KM) 
survival analysis and ROC curves using the “timeROC”, 
“survival”, and “survminer” R packages. Additionally, 
we also created a nomogram using the "survival", “rms”, 
and “regplot” R packages to predict the 1-, 3-, and 5-year 
survival rates and calibrated the signature to evaluate its 
consistency with practice. To measure the nomogram's 
capacity to differentiate and predict, the concordance index 
(C-index) was also determined. The C-index ranged from 
0.5 to 1.0, with a higher C-index indicating stronger dif-
ferentiating ability of the predictive model. Additionally, we 
utilized the “ggplot2” R package to perform PCA analysis, 
which allowed us to observe the distribution of samples in 
the high-risk and low-risk groups.

Functional enrichment analysis and immune cell 
infiltration analysis

The biological processes (BP), molecular functions (MF), 
and cellular components (CC) of cuproptosis-related genes 
and GJB2-correlated genes were determined using Gene 
Ontology (GO) analysis [28] by using the clusterProfiler 
package [29] and org.Hs.eg.db package. Additionally, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis [30] and Gene set variation analysis (GSVA) 
[31] were used to investigate the pathways involved in dif-
ferentially expressed genes in various risk groups. The gene 
sets of hallmarkers were obtained from the Molecular Sig-
natures Database (MSigDB, ​h​t​t​p​​:​/​/​​s​o​f​t​​w​a​​r​e​.​​b​r​o​a​​d​i​n​​s​t​i​​t​u​t​​e​.​o​​
r​g​/​g​​s​e​​a​/​m​s​i​g​d​b​/​i​n​d​e​x​.​j​s​p) for GSVA analysis.
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Transwell assay

Cell migration was measured by Transwell assays using 
the 24-well transwell chambers with 8  μm polycarbonate 
membranes (Corning Incorporated, USA). For the assay of 
GJB2-regulated tumor cell migration ability, OC cells were 
collected after transfection with GJB2 overexpression plas-
mid or siRNA for 24  h. A total of 2 × 105 cells in 200  µl 
serum-free medium were added to the upper chamber. The 
lower chamber contained 800 µl medium with 20% FBS as 
a chemoattractant. For the assay of GJB2's ability to attract 
CD8+ T cells, OC cells overexpressing GJB2 were seeded 
into the lower chamber. 24  h after transfection, a total of 
1 × 106 CD8+ T cells were added to the upper chamber in 
200  µl medium containing 10%  FBS. At the same time, 
800 µl medium containing 10% FBS was added to the lower 
chamber. After incubation for 24  h, non-migrating cells 
were removed with a cotton swab, the remaining cells were 
subsequently fixed with 4% paraformaldehyde for 30 min 
and stained with crystal violet for 20  min. The relative 
cell number was calculated a light microscope (Olympus, 
Tokyo, Japan).

Wound healing assay

After being transfected with GJB2 siRNA and GJB2-OE for 
24 h, OC cells were seeded into a 12-well plate and then 
scraped with a 200  µl pipette tip. Cell migration images 
were captured at 0, 24, 36, 48, 60, and 72 h after scratching.

Cell counting kit-8 (CCK-8) assay

The influence of GJB2 siRNA and GJB2-OE on cell pro-
liferation was evaluated by CCK-8 assay. Specifically, OC 
cells (3 × 103 cells/well) were planted into 96-well plates and 
cultivated at 37 °C for 12, 24, 48, and 72 h, respectively. At 
different time points, the cells were incubated with the mix-
ture containing 10 µl CCK-8 and 100 µl fresh medium for 
2 h at 37 °C. Finally, absorbance was measured at 450 nm 
with an enzyme-labeled apparatus.

Colony formation assay

A total of 500 cells per well were spread onto six-well plates 
and cultured at 37 °C for 2 weeks. The fresh medium was 
changed every three days. Finally, the colonies were treated 
with 4% paraformaldehyde fixation for 30 min and crystal 
violet staining for 20 min. Subsequently, a statistical analy-
sis of the colony number was conducted.

48  h of transfection for the subsequent assays. All of the 
sequences of primers are listed in Table S4.

RNA isolation and qPCR

To detect the gene expression of GJB2 and the changes 
resulting from GJB2 si/OE transfection, we performed qRT-
PCR analysis. Total RNA was isolated using Trizol reagent 
(Vazyme, Nanjing, China). Complementary DNA (cDNA) 
was synthesized using the TransScript Uni All-in-One 
First-Strand cDNA Synthesis SuperMix for qPCR (One-
Step gDNA Removal) (TransGen Biotech, AU341-02-V2). 
qPCR was performed by the Applied Biosystems 7500 
Real-Time PCR System and the ChamQ Universal SYBR 
qPCR Master Mix (Vazyme, Q711-02). We chose glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) to normalize 
GJB2, CDH1, CDH2, VIM, FDX1, LIAS, DLAT, and PDHB 
expression levels. Relative RNA abundances were calcu-
lated by the standard 2−ΔΔCt method. The sequences of all 
qPCR primers are listed in Table S4.

Cytokine secretion assay

OC cells were seeded at a density of 1 × 105 cells per well 
in 12-well plates and allowed to adhere overnight. Follow-
ing adhesion, cells were transfected with either GJB2-over-
expression plasmid (GJB2-Flag) or empty vector control 
(Flag). 24 h post-transfection, OTK3-activated T cells were 
added to the transfected tumor cells at a 5:1 effector-to-tar-
get ratio (T cells: tumor cells). The co-culture system was 
maintained for 12 h, after which 500 µl of BFA/monensin 
solution (1 × working concentration) was added to block 
cytokine secretion. Following 6 h of incubation, all T cells 
were harvested for subsequent intracellular cytokine analy-
sis. For cell surface and intracellular staining, cells were 
first incubated with APC-anti human CD8 antibody at 4 °C 
for 30 min in the dark for extracellular staining. Following 
washing, cells were fixed with 100 µl of fixation buffer and 
incubated at 4 °C for 30 min protected from light. Permea-
bilization was then performed by adding 200 µl of 1 × Perm 
wash buffer and incubating at 4 °C for 30 min or overnight. 
For intracellular staining, an antibody cocktail containing 
PerCP-anti human GZMB and PE-anti human IFN-γ was 
prepared, and 50 µl of the premixed antibodies was added 
to each sample, followed by incubation at room temperature 
for 30 min in the dark. The reaction was stopped by adding 
150 µl of FCM buffer to each well. Finally, cells were resus-
pended in 300 µl of 1 × PBS, filtered through a cell strainer, 
and transferred to flow cytometry tubes for acquisition.
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Results

DECGs and molecular characterization in OC 
patients

To investigate the correlation between cuproptosis-related 
genes (CRGs) and OC, we compiled a list of 97 cuproptosis 
genes (CGs) from published articles[23–25], as shown in 
Table S3. Gene ontology (GO) pathway enrichment analysis 
of these CGs revealed significant associations with various 
copper signaling pathways (Fig.  2A). We then compared 
normal ovarian and OC samples, identifying a total of 
5,723 differentially expressed genes (DEGs) (|Log2FC|> 1, 
p < 0.05; Fig. 2B). Among the 97 CGs, 18 were found to be 
differentially expressed in the TCGA cohort (Fig. 2B). Of 
these, 8 DECGs (differentially expressed cuproptosis genes) 
were upregulated, while 10 were downregulated, indicating 
dysregulation of cuproptosis in OC (Fig. 2C, Table S5). Fur-
ther analysis of the expression correlations among the 18 
DECGs revealed highly consistent relationships between 
the regulators of cuproptosis (Fig. 2D).

We next analyzed the somatic mutation frequency of 
the 18 DECGs and found that 56 out of 462 OC samples 
(12.12%) harbored mutations in these genes, predominantly 
in the form of missense mutations (Fig. 2E). We also evalu-
ated somatic copy number variations (CNVs) in the DECGs 
and observed widespread CNVs across all 18 genes. The 
frequencies of CNVs in DECGs in OC patients are shown in 
Fig. 2F, while the chromosomal locations of altered CNVs 
in these genes are depicted in Fig. 2G. Finally, Pearson cor-
relation analysis revealed significant associations between 
1,453 CRGs and the 18 DECGs (|R|> 0.4, p < 0.001), as 
illustrated in the Sankey diagram (Fig.  2H, Table S6). 
Among these, 71 differential genes were identified within 
the 1,453 CRGs, including 30 upregulated and 41 downreg-
ulated CRGs in tumor tissues (|Log2FC|> 3, p < 0.05; Fig. 2I, 
Table S7).

Construction and validation of CRGs signature

Univariate Cox regression analysis of 71 CRGs identi-
fied 9 CRGs significantly associated with the prognosis 
of OC patients (Fig. S1A, Table S8). To minimize over-
fitting during signature generation, we applied LASSO 
regression analysis, which revealed 7 significant genes and 
highlighted the trajectory changes in the regression coeffi-
cients of mRNAs, as well as estimated prediction accuracy 
through 1000 cross-validations (Fig. S1B-C). These high-
dimensional data were further reduced using a multifacto-
rial Cox proportional hazards regression model, resulting in 
the selection of 5 CRGs for the development of a risk score 
model to predict overall survival (OS) in OC patients. The 

Cell viability

Cells were inoculated into 96-well plates at a rate of 3000 
cells/well and allowed to attach for 12 h. Elesclomol and 
copper chloride (CuCl2) solution were added 1:1 for 24 h. 
Then 100 µl of fresh medium containing 10% CCK8 solu-
tion was added and the 450 nm absorbance was detected fol-
lowing incubation for 2 h at 37 °C using an enzyme-labeled 
apparatus. As for the chemical rescue assay, copper ion che-
lator (TTM) was added after plating overnight, then Eles-
clomol-CuCl2 was added into plates and incubated for 24 h.

Western blotting

Cells were cultured in 60 mm dishes to approximately 80% 
confluence and then lysed with ice-cold lysis RIPA buffer 
(P0013B) containing 1% protease inhibitor cocktail and the 
concentration of the supernatant was determined by BCA. 
After loading the target proteins onto an SDS poly acryl-
amide gel, the proteins were transferred from the gel to a 
PVDF membrane. Subsequently, the membranes were incu-
bated at 4 °C overnight with GJB2 (ER1902-42, HUABIO, 
1:1000), E-cadherin (20,874–1-AP, Proteintech, 1:2000), 
N-cadherin (22,018–1-AP, Proteintech, 1:2000), Vimentin 
(10,366–1-AP, Proteintech, 1:2000) and GAPDH (Utibody, 
UM4002, 1:2000) after being blocked with 5% BSA for 2 h. 
After washed 3 times with TBST, the membranes were incu-
bated with a secondary antibody (Zhengneng Biotechnol-
ogy) for 90 min at room temperature. Protein bands were 
detected and analyzed using enhanced ECL chemilumines-
cence. Digital images were taken by a MiniChemi from 
SageCreation, Beijing, China.

Statistical analyses

For the data comparison between the two groups, we 
adopted the t-test for variables with a normal distribution 
and the Wilcoxon rank sum test for variables conforming to 
non-normal distribution. The overall survival rates of each 
group were compared using a KM analysis in conjunction 
with a log-rank test. Additionally, we developed the prog-
nostic signature using the univariate Cox-LASSO-multi-
variate Cox regression analysis methods. We performed 
all statistical analyses using the R software (version 4.2.0) 
and GraphPad Prism software (version 9.0). Statistical sig-
nificance is indicated with asterisks (*). A two-sided p value 
of < 0.05 was considered statistically significant (*p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001).
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(Fig. 3G). Three-dimensional principal component analysis 
(PCA) showed that the distribution of high-risk and low-
risk patients was indistinguishable based on the 18 DECGs 
and all CRGs expression sets (Fig. 3H, I). However, the dis-
tribution of high-risk and low-risk groups based on the 5 
CRGs was most distinct (Fig. 3J). These results indicate that 
the 5 CRGs used in the risk model effectively distinguish 
between high-risk and low-risk samples, further support-
ing the utility of our method in differentiating these popu-
lations. Overall, these findings suggest that the prognostic 
risk model, based on the 5 genes (CD8B2, GJB2, GRIP2, 
MELK, and PLA2G2D), can serve as a reliable predictor of 
OC prognosis.

Heatmap and KM curves of clinicopathological 
variables in the high-risk and low-risk groups

To facilitate the clinical application of the prediction model, 
we integrated clinical data and gene features from TCGA-
OC patient samples. We analyzed the association between 
the CRGs' prognostic signature and clinicopathological char-
acteristics. The heatmap illustrates the distribution of age, 
grade, stage, and risk score across all OC patient samples 
(Fig. S2A). The proportions of clinicopathological variables 
in the high-risk and low-risk groups are shown in Fig. S2B-
D. Patients with missing clinical information were excluded 
from the analysis. We further explored whether prognosis var-
ied across different clinical subgroups by separating samples 
based on age (≤ 65 and > 65), tumor grade (2 and 3), and stage 
(III and IV). Survival rates were worse for high-risk patients 
compared to low-risk patients in all subgroups (Fig. S2E–G). 
These results suggest that our risk model can accurately pre-
dict the prognosis across various clinical subgroups of OC.

Prognostic analysis of the 5 CRGs risk model in TCGA 
and ICGC cohorts

The prognostic risk score, combined with age and tumor 
grade, was used to generate the ROC survival curve. The 
results indicated that, compared to other clinical traits, the 
CRGs prognostic risk scoring system accurately predicted 
the 1-, 3-, and 5-year survival rates of OC samples (Fig. 4A–
C, AUC = 0.620, 0.593, and 0.601, respectively). Using the 
5 CRGs features, we constructed a prognostic nomogram 
to predict the 1-, 3-, and 5-year OS probabilities. As shown 
in Fig. 4D, the score assigned to each factor corresponds to 
its contribution to survival risk. The accuracy of the nomo-
gram was verified using calibration curves, which demon-
strated a high degree of agreement between actual values 
and predicted values (Fig. 4E). Moreover, the C-index for 
the risk score was greater than 0.5, indicating that the risk 
model offers a significant advantage in predicting OS in 

selected genes included CD8B2, GJB2, GRIP2, MELK, and 
PLA2G2D (Fig. 3A). A heatmap illustrating the relationship 
between the 18 DECGs and the 5 CRGs is shown in Fig. 3B. 
Risk score =  (0.39814766790876 ∗ Expression CD8B2) +
(0.319840250099011 ∗ Expression GJB2) +   
(11.80464867091524 ∗ Expression GRIP2) + 
(−0.652506214718363 ∗ Expression MELK) +   
(−0.747117340620353* ∗ Expression PLA2G2D) . 
Based on the median risk score, we classified patients in the 
TCGA-OC cohort into high-risk and low-risk groups for sur-
vival analysis. The KM method was used to compare the OS 
between the two groups, and the results revealed that the OS 
of patients in the high-risk group was significantly worse than 
that of the low-risk group (p = 0.003, Fig. 3C). Given the strong 
correlation between the risk model and patient outcomes, 
we further investigated whether the prognostic value of the 
5 CRGs could serve as an independent prognostic factor. In 
the univariate Cox analysis, both age and risk scores showed 
statistically significant associations with OS (p < 0.001, 
Fig. 3D). Furthermore, in multivariate Cox regression analy-
sis, both variables retained their prognostic significance for 
OS (Fig. 3E). Subsequently, OC patients were divided into 
3 groups (all, training, and testing) to assess the accuracy 
and feasibility of the prognostic risk model in predicting OC 
prognosis. The detailed expression levels of the risk genes, 
risk scores, and risk group assignments are provided in Table 
S9. The analysis revealed that, in all 3 groups (all, training, 
and testing), the expression levels of the 5 key risk-scoring 
genes differed significantly between the high-risk and low-
risk groups (Fig. 3F). Specifically, GRIP2, GJB2, and CD8B2 
were more highly expressed in the high-risk group, whereas 
PLA2G2D and MELK had lower expression levels (Fig. 3F). 
Scatter plots for the 3 groups (all, training, and testing) dem-
onstrated that the mortality rate of OC patients increased with 
higher risk scores (Fig. 3F).

The receiver operating characteristic (ROC) curve anal-
ysis revealed that the area under the curve (AUC) values 
for evaluating survival outcomes in OC patients at 1, 2, 
and 3  years were all greater than 0.5, demonstrating the 
high specificity and sensitivity of the prediction model 

Fig. 2  DECGs and Molecular Characterization in OC Patients. A GO 
pathway enrichment analysis of CGs involved signaling pathway. B 
Venn diagram showing the DECGs shared by TCGA-DEGs and CGs, 
18 DECGs were found in the TCGA cohort. C Differential expres-
sion of 18 DECGs between normal tissue and OC tissues. D The cor-
relations between the expression of 18 DECGs. E Mutation frequen-
cies of 18 DECGs in 462 patients with OC from the TCGA cohort. 
F Frequency of CNV alterations in 18 DECGs. Red dots represented 
CNV amplification, while green dots represented CNV deletion. G 
Location of CNV alterations of 18 DECGs on chromosomes in the 
TCGA-OC cohort. H Sankey diagram of coexpression between 18 
DECGs and 1453 CRGs. I The volcano plot depicted the expression 
patterns of CRGs in TCGA-OC. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001
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adhesion, and WNT signaling, while the low-risk group was 
notably enriched in pathways related to chemokine signal-
ing and primary immunodeficiency (Fig. 5A, B). We also 
analyzed the immune microenvironment of samples with 
different risk scores and obtained their immune expression 
profiles (Fig. S4A). Additionally, GSVA enrichment analy-
sis revealed significant differences between the high-risk 
and low-risk groups in several immune-related pathways, 
including Type II IFN response, MHC class I, HLA, cyto-
lytic activity, inflammation promotion, T cell co-stimula-
tion, checkpoint regulation, T cell co-inhibition, and APC 
co-inhibition (Fig. S4B, Table S10).

We next used CIBERSORT to compare immune cell 
infiltration between the high-risk and low-risk groups. In the 
low-risk group, we observed a higher proportion of mem-
ory B cells, plasma cells, CD8+ T cells, activated memory 
CD4+ T cells, follicular helper T cells, activated NK cells, 
and M1 macrophages. In contrast, the high-risk group had a 
lower proportion of naive B cells, resting memory CD4+ T 
cells, monocytes, and activated mast cells (Fig. 5C). Since 
human leukocyte antigen (HLA) genes are critical for anti-
gen presentation, we analyzed HLA indexes that are closely 
associated with immune function. Our analysis revealed a 
significant upregulation of HLA gene expression in the low-
risk group compared to the high-risk group, encompassing 
both classical class I (HLA-A) and class II molecules (HLA-
DQA1, HLA-DOB, HLA-DMB), as well as the non-classical 
HLA-F (Fig. S4C). This elevated HLA expression profile 
suggests enhanced antigen presentation capacity in low-risk 
patients, which is generally associated with more robust 
anti-tumor immune responses. Additionally, we examined 
the expression of m6A-related genes in the high-risk and 
low-risk groups. The results showed that only FTO expres-
sion differed significantly, with higher expression in the 
high-risk group compared to the low-risk group (Fig. S4D).

To further evaluate the predictive value of risk scores for 
immunotherapy, we evaluated immune scores in OC cells 
using the ESTIMATE algorithm and found that the low-
risk group had higher immune scores (Fig. 5D), indicating 
a more immunologically active tumor microenvironment. 
Importantly, our analysis of immune exclusion patterns 
demonstrated a significant positive association with risk 
scores (Fig.  5E), suggesting that tumors from high-risk 
patients exhibit characteristics of immunologically "cold" 
tumors that are less responsive to immune checkpoint block-
ade (ICI) therapy. Previous studies have shown that Tumor 
Mutation Burden (TMB) is positively correlated with tumor 
stage, grade, and immune cell infiltration [37]. We catego-
rized OC patients into "high-TMB" and "low-TMB" groups 
using median cutoff points and performed survival analyses. 
Kaplan–Meier analysis revealed that patients in the high-
TMB group had significantly better OS compared to those 

OC patients (Fig. 4F). To assess the classification ability of 
the risk model based on the 5 CRGs, we performed PCA 
(Fig. 4G) and t-distributed stochastic neighbor embedding 
(t-SNE) (Fig. 4H) on all TCGA datasets. The results showed 
distinct distributions between the high-risk and low-risk 
groups, suggesting that the prognostic signature accurately 
differentiates between them (Fig.  4G, H). Additionally, 
when we compared our CRGs signature prognostic model 
with the Tumor Immune Dysfunction and Exclusion (TIDE) 
model and the Tumor Inflammation Signature (TIS) model, 
we found that our model had a superior ability to predict the 
1-year survival rate of OC samples (Fig. 4I, AUC = 0.620, 
0.579, and 0.497, respectively).

In the ICGC cohorts, patients with OC were also divided 
into high-risk and low-risk groups. KM curves revealed 
that patients in the low-risk group had a significantly bet-
ter survival benefit (Fig. 4J). Additionally, the AUC values 
for 1-, 2-, and 3-year survival in the ICGC cohorts were 
0.645, 0.708, and 0.691, respectively (Fig. 4K). The scatter 
plot further demonstrated that patients in the low-risk group 
exhibited more favorable prognostic outcomes (Fig.  4L, 
M). Finally, PCA and t-SNE analyses of the ICGC data sets 
revealed a clear distinction between high-risk and low-risk 
components, indicating that the prognostic signature accu-
rately differentiated the two groups (Fig.  4N, O). These 
results collectively demonstrate that the gene signature per-
forms well in predicting the prognosis of patients in both 
groups.

Risk score of CRGs predicts the signaling pathways, 
tumor microenvironment, and immune cell 
infiltration

We conducted GSEA using both KEGG and GO databases 
to investigate the differences in biological functions and 
signaling pathways between the high-risk and low-risk 
groups defined by the 5 CRG signatures (Fig. 5A, B, Fig. 
S3A-B). The high-risk group exhibited significant enrich-
ment in pathways such as ECM receptor interaction, focal 

Fig. 3  Construction and Validation of CRGs Signature. A The forest 
plot demonstrated the hazard ratio of 5 CRGs with prognostic values 
filtered by the univariate Cox regression analysis. B The heatmap of 
the correlation between 18 DECGs and 5 CRGs. C KM curves for 
OS of the two risk groups (chi-square test, p = 0.003). D Univariate 
Cox analysis of the signature with clinical phenotypes. E Multivari-
ate Cox regression analysis of the signature with clinical phenotypes. 
F The expression heatmap of 5 CRGs in the 3 groups (all, training, 
and testing). The ranked dot plot indicates the risk score distribu-
tion and the scatter plot presents the patients' survival status. G ROC 
curves to predict the sensitivity and specificity of 1-, 2-, and 3-year 
survival according to the risk score in the 3 groups (all, training, and 
testing). (H-J) PCA between the high-risk and low-risk groups based 
on the 18 DECGs H, All CRGs I, and 5 CRGs risk model J. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001
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chemotherapy protocols. To further investigate the drug 
resistance potential between high-risk and low-risk groups, 
we used the "pRRophetic" package to estimate the IC50 val-
ues of chemotherapy drugs and inhibitors for both groups. 
6 representative drugs are shown in Fig. 6E-F. Our analy-
sis identified Ruxolitinib, Temozolomide, and Tubastatin A 
as potential candidates for treating patients in the low-risk 
group, while Trametinib, Midostaurin, and 17-AAG (Tane-
spimycin) may offer therapeutic benefits for patients in the 
high-risk group.

Analysis of GJB2 expression and survival prognosis 
in OC

To further validate the prognostic signature, we conducted 
functional assays through in vitro experiments. Among 
these 5 signature genes (CD8B2, GJB2, GRIP2, MELK, and 
PLA2G2D), GJB2 was associated with the largest number of 
cuproptosis genes (Table S6) and exhibited strong positive 
correlations with multiple key tumor-related signaling path-
ways (Fig. 7A). A literature review showed that GJB2 has 
not been previously reported in OC, prompting us to include 
GJB2 for further functional and mechanistic analysis in this 
study. First, we assessed GJB2 expression in normal ovarian 
surface epithelial cells (IOSE) and OC cell lines (HO 8910, 
A2780, OC314, and SKOV3). The qPCR results indicated 
that GJB2 expression was significantly higher in OC cell 
lines compared to IOSE cells (Fig. 7B). Subsequently, we 
analyzed clinical specimens from 42 OC patients and 16 
normal ovarian controls obtained from Xiangya Hospital, 
Central South University. qPCR analysis demonstrated sig-
nificantly elevated GJB2 expression levels in tumor tissues 
compared to normal ovarian tissues (Fig.  7C). Addition-
ally, we analyzed GJB2 protein expression patterns in OC 
through immunohistochemical data from the Human Pro-
tein Atlas (HPA, https://www.proteinatlas.org/) database. 
The IHC results consistently demonstrated upregulated 
GJB2 protein expression in OC tissues compared to normal 
ovarian tissue (Fig.  7D), corroborating our qPCR-based 
observations and further supporting the potential oncogenic 
role of GJB2 in OC development.

Through comprehensive bioinformatic analysis of 
multiple independent cohorts, we consistently observed 
significant upregulation of GJB2 expression in OC tis-
sues versus normal controls, as evidenced by data from 
the  TCGA + GTEx (Fig.  7E), GSE38666 (Fig.  7F), and 
GSE105437 (Fig. 7G). Additionally, we assessed the diag-
nostic performance of GJB2 using the area under the ROC 
curve (AUC) in the TCGA (Fig. 7H), GSE38666 (Fig. 7I), 
and GSE105437 (Fig. 7J) datasets. The AUC values were 
0.954, 0.744, and 0.918, respectively, indicating that GJB2 
has strong diagnostic value in OC patients. Importantly, 

in the low-TMB group (p < 0.001, Fig. 5F). A combined sur-
vival analysis of TMB and CRG risk scores further revealed 
that patients with both high TMB and low-risk scores had 
the best prognosis, while those with low TMB and high-risk 
scores had the worst prognosis (Fig. 5G). We conclude that 
patients in the low-risk group are more likely to benefit from 
immunotherapy.

Immunotherapy analysis and drug sensitivity 
prediction in high-risk and low-risk groups

Several studies have shown that combination therapy with 
anti-CTLA-4 and anti-PD-1 can increase the proportion of 
activated CD8+ T cells and NK cells while reducing the 
number of suppressive immune cells in the tumor micro-
environment, thereby enhancing the therapeutic efficacy 
against cancer [38, 39]. Building on this background and our 
analysis of immune checkpoints, we sought to investigate 
whether there are differences in immunotherapy response 
between high-risk and low-risk groups. To do so, we down-
loaded the OC immunotherapy score data from The Can-
cer Immunome Atlas (TCIA, https://tcia.at/) and assessed 
the correlation of immunotherapy response between the 
two risk groups. The results indicated that patients in the 
low-risk group had a better response to immunotherapy, 
whether treated with anti-CTLA-4 and anti-PD-1 alone or 
in combination (Fig. 6A–D). This finding further supports 
our hypothesis that the risk score can predict the sensitivity 
and efficacy of immunotherapy.

Chemotherapy resistance remains a significant chal-
lenge in the treatment of OC and contributes substantially 
to cancer-related mortality. Identifying the chemotherapy-
sensitive population could optimize the therapeutic effi-
cacy for OC patients, maximizing the benefits of standard 

Fig. 4  Prognostic Analysis of the 5 CRGs Risk Model in TCGA and 
ICGC Cohorts. A–C ROC curve of 1-, 3-, and 5-year OS for multiple 
prognostic indicators of OC samples. D The nomogram, a quantitative 
model for predicting clinical prognosis, to predict 1-year, 3-year, and 
5-year OS in the OC patients of the TCGA-OC cohort using 3 factors, 
including Age, Grade, and risk score. E The calibration curves indi-
cated that the nomogram accurately predicted the 1-, 3-, and 5-year OS 
of OC patients in the TCGA cohort. F A concordance index (C-index) 
was generated to assess the identification and forecasting capabili-
ties of the nomogram. G The PCA analysis based on the prognostic 
signature demonstrated that the patients in the different risk score 
groups were distributed in two directions. Red and blue dots repre-
sent the high-risk group and the low-risk group. H t-SNE analysis of 
risk groups in all TCGA cohorts. I Comparison of the prognostic risk 
model with TIS models and TIDE models. TIS: Tumor Inflammation 
Signature; TIDE: Tumor Immune Dysfunction and Exclusion. J KM 
survival analysis of high and low-risk groups in ICGC cohorts. K 1-, 
2-, and 3-year ROC curve analysis in ICGC cohorts. L The distribution 
of the risk score in the ICGC cohorts. M The correlation of survival 
time and risk scores in ICGC cohorts. N PCA between low-risk and 
high-risk groups in ICGC cohorts. O t-SNE analysis of risk groups in 
the ICGC cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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increases with the advancing OC stage (Fig. 7M). To fur-
ther investigate the relationship between GJB2 expression 
and OC prognosis, we evaluated its prognostic significance 
in the GEO dataset cohort (GSE63885). Meta-analysis 
confirmed that GJB2 is an independent prognostic factor, 
with high expression associated with poor prognosis in OC 
patients (Fig. 7N). Additionally, we assessed the diagnostic 

analysis using the KM Plotter website ​(​​​h​t​t​p​s​:​/​/​k​m​p​l​o​t​.​c​o​m​/​
a​n​a​l​y​s​i​s​/​​​​​) revealed that high expression of GJB2 was asso-
ciated with poorer OS outcomes in the TCGA-OC dataset 
(Fig. 7K). In addition to OS, high expression of GJB2 was 
also linked to worse progression-free survival (PFS) out-
comes (Fig. 7L). Similarly, the GEPIA2 website (​h​t​t​p​​:​/​/​​g​e​
p​i​​a​2​​.​c​a​​n​c​e​r​​-​p​k​​u​.​c​​n​/​#​i​n​d​e​x) revealed that GJB2 expression 

Fig. 5  Risk Score of CRGs Predicts the Signaling Pathways, Tumor 
Microenvironment, and Immune Cell Infiltration. (A-B) GSEA enrich-
ment analysis (KEGG) between the high-risk A and low-risk B groups. 
C The abundance of infiltrating immune cell types in the high-risk and 
low-risk groups. D Comparison of immune-related scores between the 

high-risk and low-risk groups. E Violin plot illuminating the differ-
ence in the exclusion score between the high-risk and low-risk groups. 
F Survival analysis curves of the high-TMB and low-TMB groups. 
G Effect of TMB with different risks on the probability of survival. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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(Fig. 7P). To further explore potential therapeutic options, 
we used the "prophetic" R package to estimate the IC50 
values of various chemotherapy agents and inhibitors in 
groups with high and low GJB2 expression. 8 representa-
tive drugs are shown in Fig. S5. The analysis showed that 
the high GJB2 expression group exhibited greater sensitiv-
ity to Paclitaxel, MG-132, Sunitinib, Lapatinib, Dasatinib, 
Pazopanib, Cyclopamine, and Crizotinib. These findings 
suggest that OC patients with high GJB2 expression may 
benefit from treatment with these drugs. Therefore, GJB2 
expression could serve as a predictor of chemotherapy sen-
sitivity, enabling the estimation of chemotherapy responses 
based on GJB2 expression levels in OC patients.

utility of GJB2 to differentiate between tumor and normal 
samples in the GSE63885 cohort using ROC analysis. The 
ROC curve showed that the AUC values for predicting 
patient survival at 1-, 3-, and 5-years were all greater than 
0.5 (Fig. 7O). These findings from independent validation 
cohorts collectively demonstrate that GJB2 holds significant 
diagnostic and prognostic value for OC patients.

Subsequently, we investigated the relationship between 
GJB2 expression and the response to anti-tumor drugs. 
Gene Set Cancer Analysis (GSCA, ​h​t​t​p​​:​/​/​​b​i​o​i​​n​f​​o​.​l​​i​f​e​.​​h​u​s​​t​.​e​​
d​u​.​c​n​/​G​S​C​A​/#/) indicated a significant correlation between 
GJB2 expression and drug sensitivity. The results revealed 
that GJB2 expression was negatively associated with the 
sensitivity to several chemotherapeutic agents, including 
Afatinib, Cetuximab, Docetaxel, Gefitinib, and Trametinib 

Fig.  6  Immunotherapy Analysis and Drug Sensitivity Prediction in 
High-risk and Low-risk Groups. A–D Differences in sensitivity to 
anti-PD-1, anti-CTLA-4, and the combination of these two antibodies 
in different risk score groups. E, F Boxplot showing the mean differ-

ences in estimated IC50 values of 6 representative drugs (Ruxolitinib, 
Temozolomide, Tubastatin A, Trametinib, Midostaurin, and 17-AAG) 
between the two risk groups

 

1 3

1603

http://bioinfo.life.hust.edu.cn/GSCA/
http://bioinfo.life.hust.edu.cn/GSCA/


Apoptosis (2025) 30:1589–1613

 

1 3

1604



Apoptosis (2025) 30:1589–1613

HO 8910 and A2780 cells (Fig. 8F, S6F). In both CCK-8 
(Fig. 8G, S6G) and colony formation (Fig. 8H, S6H) assays, 
GJB2-OE promoted OC cell proliferation. Additionally, in 
comparison to the control group, GJB2-OE significantly 
increased the relative migration rate of OC cells in both 
Transwell (Fig. 8I, S6I) and wound healing (Fig. 8J, S6J) 
assays. These findings suggest that targeting GJB2 could 
offer potential therapeutic strategies for treating OC.

After determining GJB2's critical role in regulating 
the malignant progression of OC, we next investigated its 
potential involvement in EMT. Bioinformatics analysis 
using the GSCA platform (Gene Set Cancer Analysis, ​h​t​t​
p​​:​/​/​​b​i​o​i​​n​f​​o​.​l​​i​f​e​.​​h​u​s​​t​.​e​​d​u​.​c​n​/​G​S​C​A​/#/) revealed significant 
enrichment of EMT-related pathways in OC samples with 
high GJB2 expression (Fig. 8K). To validate these findings 
experimentally, we examined EMT marker expression in 
GJB2-overexpressing OC cells. Both qPCR (Fig. 8L) and 
Western blotting (Fig.  8M) analyses demonstrated that 
GJB2 overexpression significantly downregulated the epi-
thelial marker E-cadherin while upregulating the mesen-
chymal markers N-cadherin and Vimentin. These results 
suggest that GJB2 may promote OC metastasis by activat-
ing the EMT processes.

GJB2 is associated with copper ionophore-induced 
cell death

Building upon our investigation of GJB2's functional roles, 
we further examined its potential involvement in cupropto-
sis regulation. GO enrichment analysis of GJB2-correlated 
genes (|R|> 0.45, p < 0.001, Table S11) revealed significant 
enrichment in copper ion binding pathways (GO:0005507, 
p = 2.4 × 10–4, Fig.  9A), suggesting GJB2 may modulate 
cuproptosis through copper-related processes. Subsequent 
qPCR analysis revealed that overexpression of GJB2 in 
OC cells led to significant downregulation of key cupropto-
sis regulators (FDX1, DLAT, LIAS, and PDHB) (Fig. 9B). 
These findings collectively indicate that GJB2 participates 
in cuproptosis regulation by modulating the expression of 
core pathway components.

Accumulating evidence suggests that Elesclomol is a 
copper-binding small molecule and Elesclomol-induced cell 
death results from the accumulation of intracellular copper 
rather than from the direct effects of Elesclomol itself [40, 
41]. However, the mechanisms underlying copper-induced 
cytotoxicity in OC cells remain unclear. To investigate this, 
we first assessed the IC50 values of HO 8910 and A2780 
cells treated with Elesclomol-CuCl2 (1:1) for 24 h. The IC50 
values were found to be 30  nM and 15  nM, respectively 
(Fig. 9C, D). We then constructed a cuproptosis induction 
model, which included 3 experimental groups: negative con-
trol (NC), Elesclomol-CuCl2, and TTM-Elesclomol-CuCl2. 

GJB2 modulates malignant phenotypes and EMT in 
OC cells

In this study, SKOV3 and OC314 cells exhibited higher 
expression levels of GJB2 compared to A7820 and HO 8910 
cells (Fig. 7B). To further investigate the role of GJB2, we 
selectively knocked down GJB2 in SKOV3 and OC314 
cells using siRNA. The siRNA constructs GJB2-si2 and 
GJB2-si3 were chosen for subsequent assays due to their 
effective knockdown efficiency (Fig. 8A, S6A). To assess 
the impact of GJB2 knockdown on cell proliferation, we 
performed CCK-8 (Fig.  8B, S6B) and colony formation 
(Fig. 8C, S6C) assays in SKOV3/OC314 cells with or with-
out GJB2 knockdown. The results showed that, following 
GJB2 knockdown, the proliferation rate in the GJB2-si2 and 
GJB2-si3 groups was significantly reduced compared to the 
siNC control group (Fig.  8B-C, S6B-C). We also exam-
ined the effect of GJB2 knockdown on cell migration using 
Transwell (Fig.  8D, S6D) and wound healing (Fig.  8E, 
S6E) assays. Both assays revealed a marked reduction in 
the migratory ability of OC cells upon inhibition of GJB2 
expression. Collectively, these findings suggest that silenc-
ing GJB2 expression inhibits both the proliferation and 
migration of OC cells.

We further investigated the potential effects of GJB2 
upregulation on OC cells. GJB2 overexpression (GJB2-OE) 
plasmids were constructed and transfected into HO 8910 
and A2780 cells, followed by the detection of GJB2 over-
expression using qPCR and Western blotting assays. The 
results showed that GJB2 was markedly elevated in both 

Fig. 7  Analysis of GJB2 Expression and Survival Prognosis in OC. A 
GSVA analyzed the signaling pathways involved in 5 characteristic 
genes (CD8B2, GJB2, GRIP2, MELK, and PLA2G2D). B The expres-
sion of GJB2 in normal ovarian surface epithelial cells (IOSE) and 
OC cell lines (HO 8910, A2780, OC314, and SKOV3) were detected 
by qPCR. CGJB2 expression levels in OC and normal ovarian tissues 
were quantified by qPCR. D Representative IHC staining for GJB2 
protein in normal ovarian tissue and OC tissue, taken from the HPA 
with permission on its website. E–G The violin plot depicts the upreg-
ulation of GJB2 in OC tumor samples in TCGA + GTEx, GSE38666, 
and GSE105437. H–J ROC Curves Displaying the Sensitivity and 
Specificity of GJB2 for the Diagnosis of OC Patients from the TCGA, 
GSE38666, and GSE105437 Dataset. K KM survival curves for OS in 
OC patients according to the tumor expression of GJB2. L KM sur-
vival curves for PFS in OC patients according to the tumor expression 
of GJB2. M GEPIA2 online website analysis showed a correlation 
between GJB2 and the OC stage. N Meta-analysis depicting forest 
plots of GJB2 expression in GSE63885 datasets as a univariate pre-
dictor of OS. O ROC curves display the sensitivity and specificity of 
GJB2 for the diagnosis of OC patients from the GSE63885 datasets. 
X-axis indicates false-positive rates, and Y-axis indicates true-positive 
rates. P Correlation between GJB2 expression and the sensitivity of 
GDSC drugs (top 30). Positive correlation indicates a higher gene 
expression may lead to drug resistance. Negative correlation indicates 
a higher gene expression may make drug-sensitive. In all statisti-
cal plots, data are expressed as the mean ± SD. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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a copper ion chelator that inhibits cuproptosis), and then 
treated with 30 nM Elesclomol-CuCl2 for 24 h. The results 
showed that TTM rescued the viability of HO 8910 cells 
under Elesclomol-CuCl2-induced conditions (Fig.  9E, F). 
Similar results were observed in another OC cell line A2780 

In the Elesclomol-CuCl2 group, HO 8910 cells were treated 
with 30 nM Elesclomol-CuCl2 (1:1, Elesclomol is a potent 
copper ionophore which induces cuproptosis) for 24 h. In 
the TTM-Elesclomol-CuCl2 group, HO 8910 cells were 
pretreated overnight with 20 μM tetrathiomolybdate (TTM, 
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in the TCGA cohort was associated with significantly higher 
TIDE, Dysfunction, and Exclusion scores (Fig.  10A, C). 
These findings collectively indicate that GJB2 overexpres-
sion may contribute to an immunosuppressive TIME, poten-
tially diminishing immunotherapy responsiveness in OC 
patients. To further investigate the immunomodulatory role 
of GJB2, we examined its correlation with immunosuppres-
sive components in the tumor microenvironment, including 
regulatory T cell marker FOXP3, M2 macrophage marker 
CD163, and immune checkpoint molecules (TIGIT, CTLA4, 
and CD274). Strikingly, GJB2 expression showed signifi-
cant positive correlations with all these immunosuppres-
sive markers (FOXP3, CD163, TIGIT, CTLA4, and CD274) 
(Fig. 10D), strongly suggesting that GJB2 overexpression 
contributes to establishing an immunosuppressive tumor 
microenvironment in OC.

To elucidate the mechanism by which GJB2 modulates 
immune cell function, we performed Transwell migration 
assays which revealed that GJB2-overexpressing OC cells 
exhibited significantly reduced chemotactic attraction of 
CD8+ T cells compared to controls (Fig.  10E), consistent 
with its established pro-tumorigenic role. This impaired 
recruitment capacity suggests that GJB2 may facilitate 
immune evasion by inhibiting CD8+ T cell infiltration. 
Furthermore, in functional co-culture experiments using 
OTK3-activated primary human CD8+ T cells (effector: 
target  ratio = 5:1), flow cytometric analysis demonstrated 
that GJB2 overexpression in tumor cells substantially sup-
pressed the production of key cytokines (Granzyme B and 
IFN-γ) compared to control cells after 24  h of co-culture 
(Fig.  10F). These findings collectively demonstrate that 
GJB2 not only inhibits CD8+ T cell migration but also func-
tionally impairs their cytotoxic potential, ultimately foster-
ing an immune-evasive tumor microenvironment.

Discussion

Ovarian cancer (OC) is one of the most common malignan-
cies of the genital tract, with high mortality rates and a sig-
nificant impact on the health of women worldwide [44]. The 
conventional therapeutic approach for OC typically consists 
of cytoreductive surgery combined with platinum-based 
chemotherapy [45]. Nevertheless, a substantial proportion 
of patients ultimately develop platinum resistance, leading 
to disease recurrence [46]. Despite advances in characteriz-
ing molecular prognostic factors for OC, the field still lacks 
definitive markers that reliably predict tumor development 
and serve as clinically useful biomarkers [47]. Therefore, it 
is crucial to identify promising biomarkers for OC progno-
sis prediction and to develop effective therapeutic strategies.

(Fig. 9E, F). These findings collectively suggest that Eles-
clomol-induced OC cell death is dependent on copper accu-
mulation. To further elucidate the role of copper in OC cells 
and clarify the function of GJB2 in cuproptosis, we assessed 
the recovery of OC cell viability in the Vector and GJB2-
OE groups following treatment with Elesclomol-CuCl2. 
Both groups were treated with varying concentrations of 
Elesclomol-CuCl2 for 24 h, and cell viability was measured 
using the CCK-8 assay. The results indicated that GJB2-OE 
significantly increased the IC50 value (Fig. 9G, H). Addi-
tionally, the bar chart revealed a significant difference in cell 
viability between the two groups after 24 h of Elesclomol-
CuCl2 treatment, with the GJB2-OE group showing mark-
edly higher viability than the Vector group (Fig. 9I, J). This 
suggests that GJB2 overexpression enables OC cells to 
recover viability more rapidly after Elesclomol-CuCl2 treat-
ment. In conclusion, GJB2-OE mitigates copper-induced 
cell death in OC cells treated with Elesclomol-CuCl2.

GJB2 inhibits the infiltration of CD8+ T cells and promotes 
immune escape

The tumor immune microenvironment (TIME) has emerged 
as a critical focus in cancer research, with growing evidence 
highlighting its role in tumor progression and therapeutic 
response. While our previous studies have established that 
abnormal GJB2 expression can regulate the malignant pro-
gression in OC, its specific impact on immune regulation 
remains poorly understood. To investigate GJB2's immu-
nomodulatory role, we first applied the TIDE algorithm to 
assess the potential efficacy of immunotherapy across OC 
subgroups stratified by GJB2 expression levels. Given that 
higher TIDE scores correlate with increased immune eva-
sion and reduced likelihood of benefiting from ICI therapy 
[42, 43], our analysis revealed that elevated GJB2 expression 

Fig. 8  GJB2 Modulates Malignant Phenotypes and EMT in OC Cells. 
A The transfection efficiency of GJB2 siRNA in SKOV3 was detected 
by qPCR. B The CCK-8 assay showed that GJB2 interference sig-
nificantly inhibited SKOV3 cell proliferation at 12, 24, 48, and 72 h. 
C Knockdown of GJB2 inhibited the proliferation ability of SKOV3 
cells and was evaluated by a colony formation assay. D–E Transwell 
(D) and wound healing (E) assays were performed to determine the 
effect of GJB2 knockdown on the migration ability of SKOV3 cells. F 
Validation of GJB2 expression after transfection of GJB2-OE and neg-
ative control (NC) plasmids in A2780 cells using qPCR and Western 
blotting assays. G CCK-8 assay displaying the influence of GJB2-OE 
on the cell viability. H The colony formation assay displays the effect 
of GJB2 upregulation on cell proliferation ability. I–J The effects of 
GJB2-OE on OC cell migration were evaluated through Transwell 
(I) and wound healing (J) assays. K Bioinformatic analysis of GJB2-
associated signaling pathways in OC using GSCA. L–M The mRNA 
and protein levels of GJB2, E-cadherin, N-cadherin, and Vimentin in 
A2780 cells after GJB2 overexpression were detected by qPCR (L) 
and Western blotting (M). In all statistical plots, data are expressed 
as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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death [50]. A recent study by Tsvetkov et al. introduced 
a novel form of copper-induced programmed cell death, 
termed cuproptosis, which operates through mechanisms 
distinct from those of classical cell death [11]. Copper, as an 
essential cofactor for a variety of metalloenzymes that con-
tribute to tumor initiation, invasion, and metastasis [7, 51, 

In recent years, researchers have focused on develop-
ing therapies that induce cancer cell death, as triggering the 
death of malignant cells is a viable strategy for cancer treat-
ment [48, 49]. Based on different signaling pathways, there 
are many types of cell death, such as apoptosis, necropto-
sis, pyroptosis, ferroptosis, and autophagy-dependent cell 

Fig. 9  GJB2 is Related to Copper Ionophore-induced Cell Death. A 
GO enrichment analysis of signaling pathways associated with GJB2-
correlated genes (|R|> 0.45, p < 0.001). B Analysis of GJB2, FDX1, 
DLAT, LIAS, and PDHB expression in GJB2-overexpressing OC cells 
by qPCR. C–D HO 8910 and A2780 cells were exposed to different 
doses of Elesclomol-CuCl2 for 24 h and detected by CCK-8 reagent. E 
Representative images of OC cells treated with Elesclomol-CuCl2 with 

or without TTM for 24 h. Scale bars represent 200 μm. F The rescue 
effect of TTM in HO 8910 and A2780 treated with Elesclomol-CuCl2 
was explored through CCK-8 assay. G–J HO 8910 and A2780 cells 
transfected with GJB2-OE were treated with various concentrations 
of elesclomol for 24 h. Cell viability was evaluated by CCK-8 assay. 
In all statistical plots, data are expressed as the mean ± SD. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001
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carcinoma demonstrate that reduced expression of PDHB, 
a key cuproptosis regulator, is associated with diminished 
copper-dependent cytotoxicity [57]. Although there is grow-
ing interest in the potential connection between cuproptosis 
and OC, there is currently no direct experimental or clinical 
evidence to support such a link.

In this work, we enrolled more CRGs to separate OC 
samples according to the CGs expression levels from public 
datasets. Using the relevant data of OC patients in TCGA, 
we constructed a CRG prognosis prediction model based on 
the regulation of the cuproptosis process. In this research, 5 
CRGs (CD8B2, GJB2, GRIP2, MELK, and PLA2G2D) were 
chosen to construct a prognostic signature through LASSO 
Cox regression analysis. OC patients were stratified into 
high-risk and low-risk groups based on the risk score. The 

52], has recently emerged as a promising target for devel-
oping antitumor therapies. Emerging evidence highlights 
the critical roles of cuproptosis genes in tumor progression. 
For example, LIPT1 significantly influences hepatocellular 
carcinoma cell proliferation and invasion [53], and FDX1 
induces cuproptosis and regulates anti-tumor immunity in 
colon cancer [54]. Recent mechanistic studies reveal that 
copper ions (Cu⁺) directly bind to lipoylated DLAT, trigger-
ing protein aggregation that generates toxic stress and ulti-
mately leads to cuproptosis. Notably, TCA cycle inhibition 
causes acetyl-CoA accumulation, which competitively sup-
presses DLAT activity and consequently inhibits cupropto-
sis through feedback regulation [11, 55, 56]. Similarly, LIAS 
gene knockout has been shown to attenuate copper-induced 
cell death [11]. Likewise, studies in clear cell renal cell 

Fig. 10  GJB2 Inhibits the Infiltration of CD8+ T Cells and Promotes 
Immune Escape. (A-C) Violin plot illuminating the difference of the 
TIDE score A, Dysfunction score B, and Exclusion score C between 
the GJB2 high- and low-expression groups. D Box plot displaying dif-
ferential expression of immune checkpoints between GJB2 high- and 
low-expression groups. E CD8+ T cell migration to lower chambers 

was quantified following GJB2 overexpression in OC cells. F Flow 
cytometry analysis of Granzyme B (GZMB) and IFN-γ secretion 
by CD8+ T cells co-cultured with GJB2-overexpressing OC cells 
(E: T  ratio = 5:1). In all statistical plots, data are expressed as the 
mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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upregulating immune checkpoint molecule expression. 
While previous studies have highlighted the role of GJB2 
in cancer progression [13, 14, 61], our study provides new 
evidence for its specific involvement in OC cuproptosis. 
GJB2 was found to interact with the expression of numerous 
CRGs in OC, both positively and negatively, conjecture that 
GJB2 may regulate the cuproptosis process through multi-
ple mechanisms. Nonetheless, additional research is needed 
to determine the specific regulatory mechanisms by which 
GJB2 modulates OC cuproptosis.

These findings suggest the potential clinical application 
of GJB2 in the following aspects. Compared to BRCA status 
(primarily reflecting homologous recombination deficiency) 
[62], GJB2 better characterizes tumor proliferative and met-
astatic potential. Combined analysis of both markers could 
provide a more comprehensive evaluation of tumor bio-
logical characteristics and treatment sensitivity. In contrast 
to CA-125 (mainly used for clinical diagnosis and treat-
ment monitoring) [63], GJB2 expression levels objectively 
indicate tumor malignancy. Integrating both markers sig-
nificantly improves predictive accuracy for long-term prog-
nosis and therapeutic response. Regarding immunotherapy 
prediction, high GJB2 expression shows a significant asso-
ciation with an immunosuppressive microenvironment, 
suggesting its potential as a predictive biomarker for patient 
response to immune checkpoint inhibitors.

There may be some possible limitations in the current 
study. First, the major part of the cohort in this study is 
derived from the TCGA, GEO, and ICGC databases, which 
are retrospective studies and need to be validated by pro-
spective analysis. Second, while this study has elucidated 
the oncogenic mechanisms of GJB2, its clinical applica-
tion requires further validation through large-scale clinical 
cohorts to verify its predictive value, along with prospective 
studies to evaluate treatment efficacy based on GJB2 strati-
fication. Third, none of the anti-GJB2 targeting drugs have 
been tested in clinical trials to date. As such, the potential 
immunotherapeutic effects of anti-GJB2 treatment remain 
speculative. In the future, there is a critical need to develop 
and evaluate anti-tumor immunotherapeutic agents target-
ing GJB2.

In conclusion, our study elucidates the regulatory mecha-
nisms of cuproptosis in OC, laying the theoretical founda-
tion for developing novel therapies targeting this pathway. 
Significantly, we not only developed a cuproptosis-related 
prognostic model for OC but also pinpointed GJB2 as a key 
molecular target, a discovery that opens new avenues for 
targeted therapy and immunotherapy development in OC 
treatment.

ROC curve demonstrated the strong predictive performance 
of the signature. A predictive nomogram was then created 
by integrating the risk score with clinical factors such as 
age, grade, and stage, thereby enhancing the model's util-
ity and ease of application. External validation using ICGC 
cohorts confirmed the robustness of the signature's predic-
tive ability. Functional analyses revealed that CRGs asso-
ciated with the low-risk and high-risk groups were linked 
to immune-related pathways. A comparison of immune cell 
infiltration and activated pathways between the two groups 
showed that the high-risk group exhibited generally lower 
levels of infiltrating immune cells and reduced activity of 
immune-related pathways compared to the low-risk group. 
Among these 5 signature genes, GJB2 was associated with 
the largest number of CGs and showed significant positive 
associations with critical oncogenic pathways. Studies dem-
onstrate that GJB2 is highly expressed in various cancers 
including hepatocellular carcinoma (HCC) [58], non-small 
cell lung cancer (NSCLC) [59], and breast carcinomas [60], 
showing significant correlation with poor patient progno-
sis. Its oncogenic mechanisms involve activation of the 
NF-κB/HIF-1α/GLUT1/PD-L1 signaling axis, glycolytic 
regulation, and immune microenvironment remodeling. 
For instance, in HCC, GJB2 promotes immune suppres-
sion by translocating to the cytoplasm and activating the 
NF-κB pathway [58], while in NSCLC, its expression can 
be upregulated by CAR10 [59]. However, the specific func-
tions and mechanisms of GJB2 in OC remain unclear and 
warrant further investigation.

Based on preliminary findings, we prioritized GJB2 for 
comprehensive in vitro characterization. Both qPCR assays 
and bioinformatics analyses revealed that GJB2 was highly 
expressed in OC cells and tumor samples, with its elevated 
expression correlating positively with stage and worse prog-
nosis. Our findings demonstrate that GJB2 exerts an onco-
genic function in OC progression. Silencing GJB2 markedly 
suppressed OC cell proliferation and migration, whereas 
GJB2 overexpression enhanced these malignant phenotypes 
and triggered the EMT. Simultaneously, GO enrichment 
analysis revealed a significant association between GJB2 
and the copper ion binding pathway, with key cuproptosis 
regulators changed significantly after GJB2 overexpression. 
Furthermore, overexpression of GJB2 weakened the sensi-
tivity of OC cells to cuproptosis. Finally, we demonstrated 
that GJB2 markedly suppresses CD8+ T cell infiltration and 
reduces the secretion of key cytokines (GZMB and IFN-γ), 
revealing its critical role in promoting immune escape. Our 
findings establish GJB2 as a multifunctional oncogenic reg-
ulator that may shape the immunosuppressive tumor micro-
environment through three distinct mechanisms: promoting 
regulatory T cell recruitment and M2 macrophage polariza-
tion, inhibiting CD8+ T cell infiltration and function, and 
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Conclusions

Overall, the prognostic model established in this study holds 
significant clinical value for guiding targeted therapy and 
immunotherapy in OC. Our findings identify GJB2 as a piv-
otal CRG, whose elevated expression correlates strongly 
with poor patient outcomes. Functionally, GJB2 not only 
promotes OC cell proliferation, migration, and EMT, but 
also modulates cuproptosis by reducing cellular sensibility 
to copper-induced cell death. In terms of immune regulation, 
GJB2 fosters an immunosuppressive tumor microenviron-
ment by suppressing CD8+ T cell infiltration and cytokine 
secretion. These discoveries provide novel insights into 
the regulatory mechanisms of cuproptosis in OC and open 
new avenues for developing GJB2-targeted therapeutic 
strategies.
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