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Abstract

Background: The distribution and composition of cis-regulatory modules
composed of transcription factor (TF) binding site (TFBS) clusters in promoters
substantially determine gene expression patterns and TF targets. TF
knockdown experiments have revealed that TF binding profiles and gene
expression levels are correlated. We use TFBS features within accessible
promoter intervals to predict genes with similar tissue-wide expression patterns
and TF targets using Machine Learning (ML).

Methods: Bray-Curtis Similarity was used to identify genes with correlated
expression patterns across 53 tissues. TF targets from knockdown experiments
were also analyzed by this approach to set up the ML framework. TFBSs were
selected within DNase l-accessible intervals of corresponding promoter
sequences using information theory-based position weight matrices (iPWMs)
for each TF. Features from information-dense clusters of TFBSs were input to
ML classifiers which predict these gene targets along with their accuracy,
specificity and sensitivity. Mutations in TFBSs were analyzed in silico to
examine their impact on TFBS clustering and predict changes in gene
regulation.

Results: The glucocorticoid receptor gene (NR3C1), whose regulation has
been extensively studied, was selected to test this approach. SLC25A32 and
TANK exhibited the most similar expression patterns to NR3C1. A Decision
Tree classifier exhibited the best performance in detecting such genes, based
on Area Under the Receiver Operating Characteristic curve (ROC). TF target
gene prediction was confirmed using siRNA knockdown, which was more
accurate than CRISPR/CAS9 inactivation. TFBS mutation analyses revealed
that accurate target gene prediction required at least 1 information-dense
TFBS cluster.

Conclusions: ML based on TFBS information density, organization, and
chromatin accessibility accurately identifies gene targets with comparable
tissue-wide expression patterns. Multiple information-dense TFBS clusters in
promoters appear to protect promoters from effects of deleterious binding site
mutations in a single TFBS that would otherwise alter regulation of these
genes.
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(i5757:3 Amendments from Version 1

The manuscript has been extensively edited to improve clarity

of the presentation. Sentence lengths were reduced. Duplicate
terms and text were eliminated. The titles of the subsections of
Results were revised to indicate the primary conclusions. Two
paragraphs were moved to the Supplementary Methods. The
revised manuscript is shortened by 400 words and approximately
2 pages.

We addressed the impact of covariance between expression
levels of developmentally related tissues from the same organ,
by sequentially removing 12 of 13 brain tissues from the GTEx
dataset prior to recomputing the Bray-Curtis Similarity index. We
found multiple covarying brain tissue expression values to not
significantly influence the set of most similar genes seen with all
53 tissues in this analysis.

For the Decision Tree classifiers predicting transcription factor
target genes, Gini importance values were computed to assess
the relative contribution of the six ML features to their predictive
power. For the CRISPR-perturbed TFs in the K562 cell line,
clustering Features 1-3, particularly the TFBS cluster information
densities (Feature 3), were most important. The TFBS-level
Feature 5 comprising the distribution of strong binding sites
accounts for the largest contribution to classifier performance for
the 11 siRNA-perturbed TFs in the GM19238 cell line.

Additional file 1 now contains text from v1 of the manuscript as
requested by a reviewer. Additional file 5 now contains the Gini
scores for the machine learning features and the accuracy value
of each individual round of 10-fold cross validation.

We now cite:

e Zabet & Adryan (2015)-indicating properties of TF
molecules that contributed to genome-wide binding
profiles.

e Ma et al. (2018)-describing spatially colocalized cis-
clusters of TFs and how these groups of TF constitute
tissue specific regulatory subnetworks.

¢ Applications of Bray-Curtis Similarity in genomics (https://
precision.fda.gov/challenges/3/view/results), geosocial
networks (Chen at al., 2014; Chen et al., 2014), and
ecology (Ricotta et al., 2017).

See referee reports

Introduction

The distinctive organization and combination of TFBSs and
regulatory modules in promoters dictates specific expression
patterns within a set of genes'. Clustering of multiple adja-
cent binding sites for the same TF (homotypic clusters) and for
different TFs (heterotypic clusters) defines cis-regulatory modules
(CRMs) in human gene promoters. Experimental studies have
shown that these clusters can reinforce (and in some instances,
amplify) the impact of individual TFBSs on gene expression
through increasing binding affinities, facilitated diffusion mecha-
nisms and funnel effects’. Because tissue-specific TF-TF interac-
tions in TFBS clusters are prevalent, these features can assist in
identifying correct target genes by altering binding specificities of
individual TFs’. Previously, we derived iPWMs from ChIP-seq
data that can accurately detect TFBSs and quantify their strengths
by determining the associated R, values (Rate of Shannon infor-
mation transmission for an individual sequence”). Rmmw (the area
under the sequence logo) is the average of R, values of all binding
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site sequences and represents the average binding strength of the
TF°. Neighboring, likely coregulatory TFBSs were identified by
information density-based clustering (IDBC), which takes into
account both the spatial organization (i.e. intersite distances)
and information density (i.e. R, values) of TFBSs’.

TF binding profiles, either derived from in vivo ChIP-seq
peaks™™ or computationally detected binding sites and CRMs’,
have been shown to be predictive of absolute gene expression lev-
elsusing a variety of tissue-specific ML classifiers and regression
models. Because signal strengths of ChIP-seq peaks are not
strictly proportional to strengths of the contained strongest
TFBSs and are instead controlled by TFBS counts*'’, represent-
ing TF binding strengths by ChIP-seq signals may not be appro-
priate; nevertheless, both achieved similar accuracy''. CRMs have
been formed by combining two or three adjacent TFBSs’, which
is inflexible, as it arbitrarily limits the number of binding sites
contained in a module, and does not consider differences between
information densities of different CRMs. Chromatin structure
(e.g. histone modification (HM) and DNase I hypersensitive
sites (DHSs)) were also found to be statistically redundant with
TF binding in explaining tissue-specific mRNA transcript abun-
dance at a genome-wide level*'>"*, which was attributed to the
heterogeneous distribution of HMs across chromatin domains®.
Combining these two types of data explained the largest frac-
tion of variance in gene expression levels in multiple cell lines’”,
suggesting that either contributes unique information to gene
expression that cannot be compensated for by the other.

Previous studies have shown that a small subset of target
genes bound by TFs were differentially expressed (DE) in the
GM19238 cell line, upon knockdown with small interfering RNAs
(siRNAs)'“. TFBS counts were defined as the number of ChIP-
seq peaks overlapping the promoter, with the caveat that the
number and strengths of the TFBSs in each peak were not
known". Correlation between total TFBS counts and gene expres-
sion levels across 10 different cell lines was more predictive
of which were DE than by setting a minimum threshold count
of TFBSs'". This has also been addressed by perturbing gene
expression with CASO9-directed clustered regularly interspaced
short palindromic repeats (CRISPR) of 10 different TF genes in
K562 cells'®. The regulatory effects of each TF were dissected
by single cell RNA sequencing with a regularized linear
computational model'®. This revealed DE targets and new func-
tions of individual TFs, some of which were likely regulated
through direct interactions at TFBSs in their corresponding
promoters. ML classifiers have also been applied to predict targets
of a single TF using features extracted from n-grams derived from
consensus binding sequences'’, or from TFBSs and homotypic
binding site clusters’.

We investigated whether the predicted TFBS strengths, distribu-
tion and CRM composition in promoters substantially determines
gene expression profiles of direct TF targets. A general ML frame-
work was developed by combining information theory-based
TF binding profiles with DHSs. The approach predicts which
genes have similar tissue-wide expression profiles, and conversely,
DE direct TF targets. Upon selecting DHSs to define accessible
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promoter intervals, ML features that captured the spatial distribu-
tion and information theory-based TFBS compositions of CRMs
were extracted from IDBC clusters. The intent of this frame-
work was to provide insight into the transcriptional program
of genes with similar profiles by dissecting shared properties
of their cis-regulatory element organization, without imposing
strict constraints on the strengths and distributions of TFBSs.
We first identify genes with comparable tissue-wide expression
profiles by application of Bray-Curtis similarity'®. Using tran-
scriptome data generated by CRISPR-'® and siRNA-based" TF
knockdowns, we predicted DE target genes with promoters that
contain ChIP-seq peaks for these same TFs.

Methods

To identify genes with similar tissue-wide expression patterns,
we formally define tissue-wide gene expression profiles and pair-
wise similarity measures between profiles of different genes.
A general ML framework relates features extracted from the
organization of TFBSs in these genes to their tissue-wide expres-
sion patterns. Since protein-coding (PC) sequences represent
the most widely studied and best understood component of the
human genome'’, positives and negatives for deriving ML clas-
sifiers of predicted DE direct TF target genes encoding proteins
(TF targets, below) were obtained from CRISPR- and siRNA-
generated knockdown data.

Similarity between GTEX tissue-wide expression profiles of
genes

We used data from the Genotype-Tissue Expression (GTEx,
version 6p) project which measured expression levels for each
gene in 53 tissues, in different numbers of individuals (5 to
564). For each tissue population, the median expression value
is given in RPKM (Reads Per Kilobase of transcript per Million
mapped reads) for each gene”. Data are available on Zenodo®'.
To capture the tissue-wide overall expression pattern of a
gene instead of within a single tissue, the tissue-wide expres-
sion profile of a gene was defined as its median RPKM across
GTEx tissues, which is described by a 53-element vector
(Equation 1). Note that different isoforms whose expression
patterns may significantly differ from each other cannot be
distinguished by this approach.

EP* =[MEV,*, MEV,,---,MEV:] (in RPKM) (1)
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where EP* is the tissue-wide expression profile of Gene A, MEV;"
is the median expression value of Gene A in Tissue 1, MEV,'
is the median expression value of Gene A in Tissue 2, etc.

To discover other genes whose tissue-wide expression profiles
are similar to a given gene, we computed the Bray-Curtis Simi-
larity (Equation 2) between the tissue-wide expression profiles
of all gene pairs. Relative to other similarity measures (Table 1,
Additional file 17%), this function exhibits desirable properties,
including: 1) being bounded between 0 and 1, 2) achieving maxi-
mal similarity of 1, if and only if two vectors are identical, and
3) larger values having a larger impact on the resultant similarity
value.

53 53
Lif > MEVA= 3" MEVS =0
i= i=
. 53
SImBray—Curris(EPA’EPB) = 2.7 |MEV‘A - MEViB | (2)
1- 1551 , otherwise
> (MEV} +MEV?)
i

Prediction of genes with similar tissue-wide expression
profiles

The framework for predicting whether the tissue-wide expres-
sion profile of a gene resembles a particular gene is indicated in
Figure 1 (panels A and B). The genomic locations of all DHSs
in 95 cell types from the ENCODE project[23; hg38 assem-
bly] were filtered for known promoters™; these sequences were
then scanned for TFBSs using 94 iPWMs corresponding to
the primary binding motifs for 82 TFs’. Data are available on
Zenodo”'. Heterotypic TFBS clusters were detected with the IDBC
algorithm by specifying a minimum threshold of 0.1*R__
for the R, values of individual TFBS elements in potential clus-
ters; this eliminated weak binding sites detected with iPWMs
corresponding to false positive, non-functional TFBSs’.

The seven information density-related ML features (Additional
file 1°°) derived from each TFBS cluster included: 1) The
distance between this cluster and the transcription start site
(TSS), 2) The length of this cluster, 3) The information con-
tent of this cluster (i.e. the sum of R, values of all TFBSs in this
cluster), 4) The number of binding sites of each TF within this
cluster, 5) The number of strong binding sites (R, > Rmmw)
of each TF within this cluster, 6) The sum of R, values of bind-
ing sites of each TF within this cluster, and 7) The sum of

Table 1. Comparison between metrics in measurement of
similarity between GTEXx tissue-wide expression profiles of

genes.

Similarity metric

Bray-Curtis v; [0,1]
Euclidean V; (0,1]
Cosine V; [0,1]

Pearson correlation®

Spearman correlation®

x; [-1,1]
x; [-1,1]

Property 11,% Property 21 Property 31

v v
v x
x v
X X
X X

fThe symbols \ and x, respectively, indicate that the similarity metric satisfies
and does not satisfy the property. £The interval in each cell indicates the range
in which the result computed by the similarity metric lies.
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positives criterion as negatives

Figure 1. The general framework for predicting genes with similar tissue-wide expression profiles and TF targets. Red and blue
contents are respectively specific to prediction of genes with similar tissue-wide expression profiles and prediction of TF targets. (A) An
overview of the ML framework. The steps enclosed in the dashed rectangle vary across prediction of genes with similar tissue-wide expression
profiles and TF targets. The step with a dash-dotted border that intersects promoters with DHSs is a variant of the primary approach.
In the IDBC algorithm (Additional file 1?%), the parameter I is the minimum threshold on the total information contents of TFBS clusters.
In prediction of genes with similar tissue-wide expression profiles, the minimum value was 939, which was the sum of mean information
contents (R,,,... values) of all 94 iPWMs; in prediction of direct targets, this value was the R, value of the single iPWM used to
detect TFBSs. The parameter d is the radius of initial clusters in base pairs, whose value, 25, was determined empirically. The seven ML
features derived from TFBS clusters are described in the Methods section. The performance of seven different classifiers was evaluated
with ROC curves and 10-fold cross validation (Additional file 1?%). (B) Obtaining the positives and negatives for identifying genes with
similar tissue-wide expression profiles to a given gene (Additional file 27°). (C) Obtaining the positives and negatives for predicting target
genes of seven TFs using the CRISPR-generated perturbation data in K562 cells (Additional file 3*). (D) Obtaining the positives and
negatives for predicting target genes of 11 TFs using the siRNA-generated knockdown data in GM19238 cells (Additional file 47).

R, values of strong binding sites (R, > R ) of each TF experiments using multiple guide RNAs for each of ten TFs in

sequence

within this cluster. K562 cells, resulting in a matrix of coefficients indicating the effect

of each guide RNA on each of 22,046 genes'®. Data are available on
Each of the Features 1-3 was defined in a gene as a vector, Zenodo®'. The coefficient of a guide RNA is defined as the log
whose size equalled the number of clusters in the gene pro- fold change in gene expression level'®. We previously derived

moter; each cluster was mapped to a single value in the vector. In ~ iPWMs for the primary binding motifs of 7 of the ten TFs
Features 4-7, each cluster itself was mapped to a vector corre-  (EGR1, ELF1, ELK1, ETS1, GABPA, IRF1, YY1)'. The frame-
sponding to binding sites for 82 TFs (Additional file 1?). If two  work for predicting TF targets (Figure 1A and 1C) was applied to
genes contained different numbers of clusters, the maximum these TFs. We defined a pOSitiVG TF target gene in a cell line as :

number of clusters among all instances was determined, and null
clusters were added to the 5 end of promoters with the smaller
numbers of clusters; this enabled all genes to exhibit the same
cluster counts. This allowed all genes to be used as training T . )
data for ML classifiers. Default parameter values for these exh1b1t1ng both mc.reased and decteased expression .le.v—
classifiers were used to generate ROC curves with a built-in f:ls for different guide RNAs, and increased the possibil-
MATLAB function (Additional file 122). ity that the gene was downregulated (or upregulated) by

the TF (Additional file 1*). and

1) The fold change in the expression level of this gene for
each of the guide RNAs of the TF was consistently
greater than (or is less than) 1, which eliminated genes

Prediction of TF targets 2) The average fold change in the expression level of this
Perturbed target gene expression after CRISPR-based mutation gene for all guide RNAs of the TF was greater than the
of TF genes. Dixit et al. performed CRISPR-based perturbation threshold ¢ (or is less than 1/¢), and
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3) The promoter interval (10 kb) upstream of a TSS of this
gene overlapped a ChIP-seq peak of the TF in the cell
line.

If the coefficients for all guide RNAs of the TF for a gene were
zero, the gene was defined as a negative (i.e. a non-target gene).
As the threshold & increases, the number of positives strictly
decreases. As € decreases, we have lower confidence that the posi-
tives were DE as a result of the TF perturbation. We balanced the
number of positives obtained against our confidence that they
were DE by evaluating different values of € (i.e. 1.01, 1.05 and
1.1; Additional file 1**). For each TF, all ENCODE ChIP-seq
peak datasets from the K562 cell line were merged to deter-
mine positives. Data are available on Zenodo”'. To avoid imbal-
anced datasets that significantly compromised the classifier
performance”’, the Bray-Curtis function was applied to com-
pute the similarity values in the tissue-wide expression profile
between all negatives and the positive gene with the largest aver-
age coefficient, and then negatives with the smallest values were
selected, resulting in the same number of positive and negative
genes (Figure 1C).

Because TFs may exhibit tissue-specific sequence preferences
due to different sets of target genes’, the K562 cell line-derived
iPWMs of EGR1, ELKI, ELF1, GABPA, IRF1, YY1 were used
to detect binding sites in DHS-intersected intervals; for ETSI,
we used the only available iPWM from GM12878°. Six features
(Features 1-5 and 7) were derived from each homotypic cluster
(i.e. Feature 6 became identical to Feature 3, because only bind-
ing sites from a single TF were used) (Figure 1A). The results of
10 rounds of 10-fold cross validation were averaged to evaluate
the accuracy of the classifier.

Target gene expression changes after siRNA-based knock-
down of TFs. Significant changes in expression of target genes
upon knockdown of 59 TFs in the GM19238 line were identified
from the probability of differences in expression level (P-value)
relative to the null hypothesis of no change'’. Data are available
on Zenodo®. DE genes with larger changes exhibited smaller
P-values. The distribution of ChIP-seq peaks were considered to be
evidence of TF binding to the promoters of these genes'’. Among
these 59 TFs, we have previously derived iPWMs exhibiting
primary binding motifs for 11 (BATF, JUND, NFE2L1, PAXS,
POU2F2, RELA, RXRA, SPI, TCF12, USFI, YY1)’. For this
reason, transcription targets of these TFs were predicted in the
GM19238 cell line (Figure 1A, D).

For ML training, we defined a positive (i.e. a target gene) for a
TF, if the P-value of this gene was < 0.01, and the promoter
interval up to 10 kb upstream of a TSS overlapped one or more
ChIP-seq peaks of the TF in GMI12878. Other genes with
P-values > 0.01 exhibited insufficient support for being TF
targets and were labeled as negatives.

The iPWMs from GM19238 were used to detect binding sites
for all TFs except for RELA, RXRA and NFE2L1. The iPWM
from the GM19099 line was used for RELA, and for RXRA
and NFE2L1, the only available iPWMs were derived from
HepG2 and K562 cells, respectively. The DHSs in GM19238
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were first remapped to the hg38 assembly using liftOver, prior to
being intersected with known promoters®. Data are available on
Zenodo®!.  Although the knockdowns were performed in
GM19238, GM12878 and GM19099 are also lymphoblastic cell
lines, with GM19099 and GM19238 both being derived from
the Yoruban population. For this analysis, the iPWMs derived
in GM12878 and GM19099 were more appropriate sources
of accessible TFBSs than those from HepG2 and K562, since
GM12878 and GM 19099 are more likely comparable to GM 19238
than HepG2 and K562. ML results were evaluated by averaging
cross validation, as described above.

Mutation analyses on promoters of TF targets

To understand the significance of individual binding sites on
the regulatory state of TF targets, we evaluated the effects of
sequence changes in TFBSs that altered the R, values of these
sites, the definition of TF clusters, and whether consequen-
tial IDBC-related changes impacted the prediction of TF target
genes. For example, mutations were sequentially introduced into
the strongest binding sites in TFBS clusters of the EGR1 target
gene, MCM7, to determine the threshold for cluster formation
and whether disappearing clusters disabled MCM7 expression.
For one target gene of each TF from the CRISPR-generated per-
turbation data, effects of naturally occurring TFBS variants
present in dbSNP” were also evaluated to explore aspects of
TFBS organization that enabled both clusters and promoter activ-
ity to be resilient to binding site mutations. This was done by
analyzing whether the occurrence of individual or multiple sin-
gle nucleotide polymorphisms (SNPs) lead to the loss of binding
sites and the corresponding clusters, and resulted in changes in
the predictions for these targets.

Results

The Bray-Curtis Function can accurately quantify the
similarity between tissue-wide gene expression profiles

We computed the similarity values (Equation 2) between the
tissue-wide expression profiles of the glucocorticoid recep-
tor (GR or NR3CI) gene and all other 18,812 PC genes to find
genes with related profiles. NR3C1 is an extensively character-
ized TF with many known direct target genes™. As a constitutively
expressed TF activated by glucocorticoid ligands, the protein
mediates up-regulation of anti-inflammatory genes by binding as
homodimers to glucocorticoid response elements. Transcription
of proinflammatory genes is down-regulated by complexing
with other activating TFs (e.g. NFKB and AP1), thereby eliminat-
ing their ability to bind and activate targets’’. NR3C1 can bind
its own promoter forming an auto-regulatory loop, which also
contains functional binding sites of 11 other TFs (e.g. SP1, YY1,
IRF1, NFKB) whose iPWMs have been developed and/or mutual
interactions have been described previously*". The tissue-wide
expression profile of NR3C1 comprises all different splicing and
translational isoforms (GRo~A, GRo-B, GRo-C, GRo-D, GRp,
GRY, GRO). However, the profile averages out tissue-specific
preferences of some isoforms, for example, GRa-C isoforms
are significantly higher in the pancreas and colon, whereas lev-
els of GRo-D are highest in spleen and lungs®. We found that
SLC25A32 and TANK have the greatest similarity in expression
to NR3C1 (0.880 and 0.877 respectively), based on their overall
similar expression patterns across the 53 tissues (Figure 2).
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Figure 2. GTEXx tissue-wide expression profiles of NR3C1, SLC25A32 and TANK. Visualization of the expression values (in RPKM) of
these genes across 53 tissues from GTEx. For each gene, the colored rectangle belonging to each tissue indicates the valid RPKM of all
samples in the tissue, the black horizontal bar in the rectangle indicates the median RPKM, the hollow circles indicate the RPKM of the
samples considered as outliers, and the grey vertical bar indicates the sampling error. A comparison of the panels shows that the overall
expression patterns of the three genes across the 53 tissues resemble each other (e.g. all three genes exhibit the highest expression levels

in lymphocytes and the lowest levels in brain tissues).

The Decision Tree classifier performed best in prediction of
genes with similar tissue-wide expression profiles

Several ML classifiers (Naive Bayes, Decision Tree (DT), Random
Forest and Support Vector Machines (SVM) with four different
kernels) were evaluated to determine how well TFBS-related

features could predict genes with tissue-wide expression pro-
files similar to NR3CI. Their performance were compared using
ROC curves, for complete promoters or for accessible promoter
sequences that were first intersected with DHSs (Figure 3). DT
exhibited the largest AUC (area under the curve) under both
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Figure 3. Comparison between the performance of different classifiers in prediction of genes with similar tissue-wide expression
profiles to NR3C1. (A) ROC curves and AUC of seven classifiers without intersecting promoters with DHSs. (B) ROC curves and AUC of
seven classifiers after intersecting promoters with DHSs. The Decision Tree classifier exhibited the largest AUC under both scenarios, and
inclusion of DHS information significantly improved other classifiers’ AUC except for Naive Bayes.

scenarios, and was one of two most stable classifiers (i.e.
AAUC < 0.01), with the other being the SVM with RBF kernel.
Consistent with previous findings'®"*?, inclusion of DHS infor-
mation significantly improved AUC values of the other classifiers
with the exception of Naive Bayes. In many instances, all
TFBSs in a contiguous DHS interval formed a single binding
site cluster.

The Decision Tree classifier was predictive of TF target
genes

Based on its performance in distinguishing genes with NR3CI-
like tissue-wide expression profiles, the DT classifier was used
to predict TF targets respectively based on the CRISPR-'° and
siRNA-generated'* perturbation data. Performance was assessed
with 10 rounds of 10-fold cross validation (Tables 2 & Table 3).
Gini importance values were also used to assess the relative con-
tribution of the six ML features to the predictive power of the
classifier (Additional file 5°°). For the CRISPR-perturbed TFs in
the K562 cell line, clustering Features 1-3, particularly the TFBS
cluster information densities (Feature 3), were most important.
The TFBS-level Feature 5 comprising the distribution of strong
binding sites accounts for the largest contribution to classifier
performance for the 11 siRNA-perturbed TFs in the GM19238
cell line. To assess the value of all ML features in capturing the
distribution and composition of CRMs in promoters, all but
one (TFBS counts) were sequentially removed, and the impact
on accuracy of the classifier was determined. In each instance,

classifier performance decreased, except for CRISPR-perturbed
GABPA, IRFI1 and YY1 upon inclusion of DHS information
(Additional file 57°).

The DT classifier predicted TF targets with greater sensitivity
and specificity, after eliminating TFBSs in inaccessible promoter
intervals in the CRISPR-generated knockdown data (Table 2).
Specifically, predictions for EGR1, ELK1, ELF1, ETS1, GABPA,
and IRF1 were more accurate than for YY1, which itself represses
or activates a wide range of promoters by binding to sites over-
lapping the TSS (Table 2). Accordingly, perturbation results
showed that YY1 has ~4-22 fold more PC targets in the K562
cell line than the other TFs (¢ = 1.05). Binding of YY1 more sig-
nificantly impacts the expression levels of target genes. The ratio
of the PC targets at € = 1.1 vs € = 1.01 was 0.334, which signifi-
cantly exceeded those of other TFs in this study (0.017-0.082;
Additional file 3°%). This is consistent with the extensive interac-
tions of this factor with many other TF cofactors in K562 cells,
and its central role in specifying erythroid-specific lineage
development’.

We found that promoters of most TF targets contain accessible,
likely functional binding sites that are significantly correlated
with changes in gene expression levels. Despite a high accu-
racy of target recognition, sensitivity did not exceed specificity,
except for IRF1 (Table 2), due to a relatively large number of
false negative genes. Promoters of non-targets are either devoid of
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Table 2. The Decision Tree classifier performance for predicting TF targets using
the CRISPR-generated knockdown data.

Excluding DHS informationt}

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

TF
EGR1 0.58 0.62 0.60
ELF1 0.59 0.65 0.62
ELKA1 0.59 0.59 0.59
ETS1 0.59 0.6 0.59
GABPA 0.55 0.57 0.56
IRF1 0.54 0.55 0.54
YY1 0.50 0.51 0.51

Including DHS information{

0.78 0.81 0.80
0.83 0.87 0.85
0.80 0.81 0.81
0.81 0.81 0.81
0.72 0.75 0.74
0.76 0.64 0.70
0.45 0.69 0.57

1The average performance of 10 rounds of 10-fold cross validation when setting eto 1.05 is
indicated. The accuracy of each individual round is indicated in Additional file 5. The CRISPR-
generated knockdown data were obtained from Dixit et al.’®.

Table 3.The Decision Tree classifier performance for predicting TF targets using
the siRNA-generated knockdown data.

Excluding DHS informationt

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Including DHS information+

TF
BATF 0.96 0.97 0.96
JUND 0.86 0.90 0.88

NFE2L1 092 0.95 0.94
PAX5 0.96 0.97 0.96

POU2F2  0.97 0.97 097
RELA 0.95 0.96 0.96
RXRA 0.93 0.91 0.92

SP1 0.98 0.98 0.98
TCF12 0.98 0.98 0.98
USF1 0.97 0.98 0.97

YY1 1 1 1

0.85 1 0.93
0.80 1 0.90
0.71 0.93 0.82
0.88 0.98 0.93
0.89 0.99 0.94
0.83 0.97 0.90
0.84 0.95 0.89
0.89 0.99 0.94
0.86 0.99 0.93
0.83 0.98 0.90
0.55 0.99 0.77

1The average performance of 10 rounds of 10-fold cross validation is indicated. The
accuracy of each individual round is shown in Additional file 5%°. The siRNA-generated
knockdown data were obtained from Cusanovich et al.”*.

accessible binding sites, or these sites are non-functional. In
these instances, the classifier was unable to distinguish between
likely functional binding sites in targets and non-functional
sites in non-targets. In vivo co-regulation mediated by interact-
ing cofactors, which was excluded by the classifier, assisted in
distinguishing these non-functional sites that do not significantly
affect gene expression'*.

As the minimum differential expression threshold & increased,
the accuracy of the classifier for all the TFs monotonically
increased, as expected (Figure 4). In general, more signifi-
cantly DE genes have been associated with a higher number of
TFBSs in their promoters'’. Thus, at greater & there are larger

differences in the values of ML features derived from TFBS
clusters between direct targets and non-targets.

Some TF target genes also display similar tissue-wide
expression profiles to the TFs, themselves

To determine how many TF targets have similar tissue-wide
expression profiles, we intersected the set of targets with the set
of 500 PC genes with the most similar tissue-wide expression
profiles for each TF (Table 4, Additional file 6°%). For exam-
ple, the B lymphocyte expression profiles of TFs PAXS and
POU2F2 are similar to their respective targets, /L2/R and CD86.
The intersected targets for YY1 include 21 and 7 nuclear
mitochondrial genes (e.g. MRPL9 and MRPSI10, which are
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Figure 4. Accuracy of the Decision Tree classifier when using
three different values for. Each accuracy value was averaged from
10 rounds of 10-fold cross validation. The minimum threshold € of the
average fold change in gene expression levels (for all guide RNAs)
of the TF was determined for fold changes: 1.01, 1.05 and 1.1. The
accuracy value of each individual round is indicated in Additional
file 5%, As € increased, accuracy for all seven TFs monotonically
increased.

F1000Research 2019, 7:1933 Last updated: 11 APR 2019

subunits of mitochondrial ribosomes), respectively, in the K562
and GM19238 cell lines™. YY1 is known to upregulates a large
number of mitochondrial genes by complexing with PGC-1o in
C2C12 cells*, and genes involved in the mitochondrial respira-
tory chain in K562 cells'®. Our results are consistent with the
idea that YY1 may broadly regulate mitochondrial function
within all 53 tissues, in addition to the erythrocyte, lymphocyte
and skeletal muscle cell lines.

Between 0.4%-25% of genes with similar tissue-wide expres-
sion profiles to the TFs are actually their targets (Table 4). The
majority are non-targets whose promoters contain non-functional
binding sites that lack co-regulation by corresponding cofac-
tors. For YY1 and EGRI1, we contrasted the flanking cofactor
binding site distributions and strengths in the promoters of the
most similarly expressed target genes (YY1: MRPL9, BAZIB;
EGR1: CANX, NPMI) with non-target genes (YY1: ADNP,
RNF25; EGR1: GUCY2F, AWATI). In these target gene promot-
ers, strong and intermediate TFBSs recognized by SP1, KLFI,
CEBPB formed heterotypic clusters with adjacent YY1 sites.
Additionally, TFBSs of SP1, KLF1, and NFY tended to be present
adjacent to EGRI binding sites (Additional file 7). These pat-
terns contrasted with enrichment of CTCF and ETV6 binding
sites in gene promoters of YY1 and EGR1 non-targets (Additional
file 7%°). Previous studies have reported that KLF1 is essential for
terminal erythroid differentiation and maturation®. Direct physi-
cal interactions between YY1 and the constitutive activator SP1
synergistically induce transcription®®, through activating CEBPB
which promotes differentiation and suppresses proliferation

Table 4. Intersection of TF targets and 500 protein-coding genes with the most similar tissue-

wide expression profiles.

L 2l e Nl;?g:trsd intg:':ztg:on
EGR1 169 12
ELF1 78 5
ELKA1 112 4
ETS1 K562 267 15
GABPA 513 25
IRF1 457 10
YY1 1752 127
1040 61
BATF 186 21
JUND 44 2
NFE2L1 58 4
RELA 247 13
RXRA  GM19238 181 3
SP1 1595 81
TCF12 655 20
USF1 301 21
PAX5 918 86
POU2F2 532 26

Targets among the most similar 10 genes§

None
None
GNL1(8™M)
None
TAF1(1sY)
None

MRPLI(2™), BAZ1B(6"), ENYZ(7"), NUB1(8™"),
USP1(9"), HNRNPR(10™)

MEDA4(1%Y), SURF6(3), BAZ1B(6™)
None
None
None

HMG20B(9")
None
None
None
None

IL21R(8™)
CD86(3)

§The rank of each target in the list of similar genes in the descending order of Bray-Curtis similarity values is shown

in the brackets immediately following the target.
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of K562 cells by binding the promoter of the G-CSFR gene
encoding a hematopoietin receptor’’. EGR1 and SP1 synergis-
tically cooperate at adjacent non-overlapping sites on EGRI
promoter but compete for binding at overlapping sites*, whereas
occupied CTCF binding sites often function as an insulator
blocking the effects of cis-acting elements and preventing gene
activation by mediating long-range DNA loops to alter topo-
logical chromatin structure”*. ETV6, a member of the ETS
family, is a transcriptional repressor required for bone marrow
hematopoiesis and associated with leukemia development*'.

Transcription factor binding site clusters buffer against
expression changes from mutations in single sites

These results and previous studies indicate that the promoters
of direct target genes contain multiple binding site clusters. We
used our ML models of TFBS organization to investigate the
effects of mutations in individual binding sites on the predicted
expression of TF targets. We hypothesized that alternative TF
clusters in the same promoter might stabilize and compensate
for the loss of a mutated TF cluster, enabling mutated promoters
to retain some capacity to regulate gene transcription upon TF
binding. First, we introduced artificial variants into binding
sites in silico in the promoter of the target gene MCM7 of EGR1
and examined the effect on the output of the ML classifier
(Figure 5). In the K562 line, MCM7 is upregulated by EGRI.
Knockdown of MCM7 has an anti-proliferative and pro-
apoptotic effect on K562 cells* and the loss of EGR1 increases
leukemia initiating cells®, which suggests that EGR1 may act as
a tumor suppressor in K562 cells through the MCM7 pathway.

The strongest binding site (at position chr7:100103347[hg38],

- strand, R, = 12.0 bits) in the promoter was eliminated by a
G->A mutation, resulting in the loss of Cluster 1 (Figure 5),

I_I: A binding site of EGR1

Cluster 2

F1000Research 2019, 7:1933 Last updated: 11 APR 2019

which consists of two sites (the other site at chr7:100103339,
-, 4.3 bits). The other two clusters comprising weaker
binding sites of intermediate strength (chr7:100102252, +, 7.0
bits; chr7:100102244, +, 1.3 bits; chr7:100101980, +, 8.9 bits;
chr7:100101977, +, 2.2 bits; chr7:100101984, +, 1.9 bits) were
still predicted to compensate for this mutation, so that the promoter
maintains the capacity to induce MCM?7 expression (Figure 5).
Adjacent sites within the same TFBS cluster, which may
individually not have sufficient affinity to strongly bind TFs
and activate transcription, are capable of stabilizing binding to
adjacent sites’. Weaker sites can direct TF molecules to strong
sites and extend the duration of physical association, termed the
funnel effect’. Binding stabilization between adjacent sites and
the funnel effect enable CRMs comprised of information-dense
clusters to be robust to mutations in individual binding sites™**. In
this example, Clusters 2 and 3 were also respectively removed by
G->T and C->G mutations abolishing the strongest site in either
cluster, altering the prediction of the classifier, that is, EGR1
is expected to fail to induce MCM7 transcription (Figure 5).
The remaining four sparse weak sites do not form a cluster and
cannot completely supplant the disrupted strong sites.

We then examined the predicted impacts of natural SNPs on
binding site strengths, clusters and predicted the regulatory
state of the promoter for a direct target of each of the seven
TFs from the CRISPR-generated perturbation data (Table 5).
We found that a single SNP (e.g. 1996639427 of EGR1) could
affect the strengths of multiple binding sites within a cluster
(Table 5). Apart from SNPs that are predicted to abolish binding
(Figure 5), leaky variants that are expected to merely weaken
TF binding are also common (Table 5). Neither mutations
that abolish TFBSs nor leaky SNPs in flanking weak bind-
ing sites would be expected to inactivate TFBS clusters

T: An EGR1 molecule \//X Is / is not a DE target of EGR1

Cluster 3 |4’

GAGGGGGAGTG—GAGGGAGAGTG

L

| 7.0 bits 1.3 bits

R

ui-u v/

1.9 bits 8.9 bits 2.2 bits

Cluster 3

!
L

4.3 bits

GTGGTGGCGGG—-GTTGTGGCGGG

|

— Vv

CGGGAGGCGGG—CGGGAGGGGGG

Ui

! 1.9 bits 8.9 bits 2.2 bits

4.3 bits

1.3 bits

- X

1.9 bits 2.2 bits

Figure 5. Mutation analyses on the target MCM7 of EGR1. This figure depicts the effect of a mutation in each EGR1 binding site cluster
of the MCM?7 promoter on the expression level of MCM7, which is a target of the TF EGR1. The strongest binding site in each cluster were
abolished by a single nucleotide variant. Upon loss of all three clusters, only weak binding sites remained and EGR1 was predicted to no
longer be able to effectively regulate MCM7 expression. Multiple clusters in the promoters of TF targets confer robustness against mutations

within individual binding sites that define these clusters.
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Table 5. Mutation analyses on promoters of TF targets.

Normal Normal binding
TF Target  ojuster site’
GAGGGGGCATC
Cluster  (chr19:39540296, -,
7.22 bits)
EGR1
(Fosguence = EID2B GCGTGCGTGGG
12.2899 bits) (chr19:39540162,
+, 1.59 bits)
Cluster 2
of 2
GCGTGGGCGCT
(chr19:39540166,
+,9.72 bits)
GCGGAAGCGTG
ClUSer (chré:26286540, +
9.92 bits)
ELF1
( ,qsequem = HIST1H4H
11.2057 bits)
CAGGAGATGCG
C'Lfftgr 2 (chr6:26286483, -,
6.98 bits)

SNP ID®

rs538610162
(chr19:39540296C>G)

rs759233998
(chr19:39540294C>T)

rs974735901
(chr19:39540288T>A)

rs978230260
(chr19:39540287A>T)

1764734511
(chr19:39540162G>A)
(chr19:39540162G>C)

rs996639427
(chr19:39540170G>C)

rs1027751538
(chr19:39540174G>A)

rs887888062
(chr19:39540176T>A)

rs760968937

(chr6:26286547C>T)
(chr6:26286547C>A)

rs1000196206
(chr6:26286542G>C)

rs144759258
(chr6:26286543G>A)

rs966435996
(chr6:26286544A>G)

rs950986427
(chr6:26286548G>A)

rs373649904
(chr6:26286483G>A)

rs926919149
(chr6:26286480C>T)

rs751263172
(chr6:26286479T>G)

rs369076253
(chr6:26286473C>G)

rs751263172
(chr6:1044474314C>T)

Variant binding site®

CAGGGGGCATC
(chr19:39540286, -,
4.84 bits)

GAAGGGGCATC
(chr19:39540286, -,
0.06 bit)

GAGGGGGCTTC
(chr19:39540286, -,
6.90 bits)

GAGGGGGCAAC
(chr19:39540286, -,
5.31 bits)

ACGTGCGTGGG
(chr19:39540162,
+, -0.72 bit)

CCGTGCGTGGG
(chr19:39540162,
+, -0.79 bit)

GCGTGCGTCGG
(chr19:39540162,
+,-5.21 bits)

GCGTCGGCGCT
(chr19:39540165,
+, -0.85 bit)

GCGTGGGCACT
(chr19:39540166,
+, 5.16 bits)

GCGTGGGCGCA

(chr19:39540166
+, 10.94 bits)

GCGGAAGTGTG

chr6:26286540, +
10.71 bits

GCGGAAGAGTG
(chr6:26286540, +,
8.84 bits)

GCCGAAGCGTG
(chr6:26286540, +,
~6.26 bits)

GCGAAAGCGTG
(chr6:26286540, +,
-3.60 bits)

GCGGGAGCGTG
(chr6:26286540, +,
5.28 bits)

GCGGAAGCATG
(chr6:26286540, +,
8.28 bits)

TAGGAGATGCG
(chr6:26286473, -,
0.61 bit)

CAGAAGATGCG
(chr6:26286473, -,
-6.53 bits)

CAGGCGATGCG
(chr6:26286473, -,
1.24 bits)

CAGGAGATGCC
(chr6:26286473, -,
6.92 bits)

CAGGAAATGCG
(chr6:26286473, -
11.43 bits

Variant
cluster*

Abolished

Abolished

Cluster 1
of 2

Abolished

Cluster 2
of 2

Cluster 2
of 2

Abolished

Abolished

Cluster 2
of 2

Cluster 1
of 2

Cluster 1
of 2

Abolished

Abolished

Abolished

Cluster 1
of 2

Abolished

Abolished

Abolished

Cluster 2
of 2

Cluster 2
of 2

Classifier
output

Variant’ Wild-
type
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TF

ELK1

sequence —

11.9041 bits)

ETSH
( Rsequsnce =

10.0788 bits)

GABPA

( Rsequsnce

10.8567 bits)

Target

G0S2

TTC19

PLEKHB2

Normal
cluster

Cluster 1
of 2

Cluster 2
of 2

Cluster 1
of 1

Cluster 1
f 1

Normal binding
site®

CAGGGAAGACC
(chr1:209667969, -,
1.92 bits)

GAGGAAATGAG
(chr1:209667969, +,
8.14 bits)

CTGGAAGAGCA
(chr1:209673554, -,
5.91 bits)

CCAGAAGTCAA
(chr1:209673551, +,
7.44 bits)

GCAGGGAAAGG
(chr17:16022293, +,
7.92 bits)

ACAGGAAAGGG
(chr2:131112770, +,
10.36 bits)

TCTGGAAACTA
(chr2:131112760,
+, 1.53 bits)

SNP ID®

rs146048477
(chr1:209667961T>A)

rs887606802
(chr1:209667968T>C)

rs1021034916
(chr1:209667967C>T)

rs941962117
(chr1:209667974A>G)

rs896117033
(chr1:209673545G>A)

rs971962577
(chr1:209673546C>T)

rs1011969709
(chr1:209673554G>C)

rs1023312090
(chr1:209673561A>G)

rs1022234223
(chr17:16022296G>C)

1s968299415
(chr17:16022301A>T)

rs997328042
(chr2:131112771C>T)

rs1020720126
(chr2:131112773G>C)

rs185306857
(chr2:131112761C>A)

18772728699
(chr2:131112762T>A)

rs965753671
(chr2:131112769T>C)
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Variant binding site®

CAGGGAAGTCC

chr1:209667959, -
2.24 bits)

CGGGGAAGACC
(chr1:209667959, -,
-3.35 bits)

CAAGGAAGACC
(chr1:209667959, -,
-3.57 bits)

GAGGAGATGAG
(chr1:209667969, +,
4.11 bits)

CTGGAAGAGTA
(chr1:209673544, -,
3.95 bits)

CTGGAAGAACA
(chr1:209673544, -,
3.49 bits)

GTGGAAGAGCA
(chr1:209673544, -,
3.92 bits)

CCACAAGTCAA
(chr1:209673551, +,
-5.50 bits)

CCAGAAGTCAG

chr1:209673551, +
8.40 bits)

GCACGGAAAGG
(chr17:16022298, +,
-4.98 bits)

GCAGGGAATGG

chr17:16022293, +
10.01 bits

ATAGGAAAGGG
(chr2:131112770, +,
-3.68 bits)

ACACGAAAGGG
(chr2:131112770, +,
-4.16 bits)

TATGGAAACTA
(chr2:131112760,
+, -2.86 bits)

TCAGGAAACTA

chr2:131112760
+. 5.23 bits)

TCTGGAAACCA

chr2:131112760
+. 2.13 bits)

Variant
cluster*

Cluster 1
of 2

Cluster 1
of 2

Cluster 1
of 2

Abolished

Cluster 2
of 2

Cluster 2
of 2

Abolished

Cluster 2
of 2

Abolished

Cluster 1
of 1

Abolished

Abolished

Cluster 1
of 1

Cluster 1
of 1

Cluster 1
of 1

Classifier
output
Variant’ Wild-

type
VoA
\/
\/
\/
Vox oo
\/
\/
VoA
X X
\/
VoA
X
X X
N v
\/
\/
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Normal Normal binding
L7 T cluster site’
GAGAATGAAAGCA
(chr6:11093663, +,
12.56 bits)
IRF1
(B = SMIM13 ClUSETT
13.5544 bits)
AAGACCAAAGGCA
(chr6:11093641, +,
2.43 bits)
GCGGCCATCGGC
YY1 (chr16:66549797, -,
Cluster 1 10.06 bits)
( sequence = CKLF of 1

12.8554 bits)
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Classifier
. L . Variant output
SNP ID® Variant binding site®
s cluster’  varjant' Wild-
type
CAGAATGAAAGCA
(chr???ggggggéw) (chre:11093663,  CMSSTT
: +, 8.97 bits)
GGGAATGAAAGCA
ooy s O
: 9.65 bits)
GAGGATGAAAGCA
SRR ) (Gvoriossnis s Ot
: 8.0 bits)
GAGAAGGAAAGCA
(ch:g-1 1012(?9231686881T1>G) (chre:11093663, +, ST
: 9.36 bits)
GAGAATGAAGGCA
rs570723026 Cluster 1
X (chr6:11093663, +, voox
(chr6:11093672A>G) 6.01 bits) of 1 ,
GAGAATGAAAGCC
YR (chr6:11093663, +, C'Lfft‘f“ N
rs 10.47 bits
(chr6:11093675A>C) )
(chr6:11093675A>T) GAGAATGAAAGCA (o cior 1
(chr6:11093663, +, of 1 \
10.42 bits)
AAGACCAACGGCA
(chrrg-1101%%13%54398A3>0) (chre:11093641, +, ST
: -3.39 bits)
AAGACCAAAGCAG
(chi6 1700968006/ (cre:110086aT e CIERTT
: 0.90 bit)
AAAACCAAAGGCA
ol e O
: 7.06 bits)
CCGGCCATCGGC
rs865922947
¢ (chr16:66549785, -,  Cluster 1
(chr16:66549791G>A) 6.80 bits)
GCTGCCATCGGC
rs946037930
; (chr16:66549785, -,  Cluster 1
(chr16:66549794C>A) 8.02 bite)
GCGACCATCGGC
rs917218063 .
, (chr16:66549785, -,  Abolished x x
(chr16:66549793C>T) 5.47 bits)
GCGGCTATCGGC
rs928017336 .
: (chr16:66549785, -, Abolished  x
(chr16:66549791G>A) -3.62 bits)
GCCGCCCCCGTC
(chr16:66549792,
+, 1.34 bits)

SAll coordinates are based on the hg38 genome assembly. A bold italic letter in a binding site sequence indicates the base where a SNP occurs. For each
normal and variant binding site sequence, the genome coordinate of its most 5'-end base and its R, value are indicated. The negative R, value of a variant
binding site sequence implies this site is abolished. The SNPs strengthening binding sites and corresponding variant binding site sequences are underlined.

The impact on whether the occurrence of a single SNP resulted in the disappearance of the cluster containing it is shown; ‘Abolished’ indicates that the

cluster is eliminated by the existence of the variant allele.

After a single SNP occurred or multiple SNPs simultaneously occurred, the classifier produced a new prediction on whether the TF is still capable of

significantly affecting gene expression via the variant promoter.

(e.g. 1s1030185383 and rs5874306 of IRF1), whereas SNPs with
large reductions in R, values of strong sites are more likely to
abolish clusters (e.g. 1rs865922947, rs946037930, rs917218063
and 1s928017336 of YY) (Table 5). Multiple TF clusters enable
promoters to be resilient to the effects of these mutations; only

the complete inactivation of all clusters by concurrent effects
of multiple SNPs within TFBSs would be capable of making a
promoter to be unresponsive to TF binding (e.g. 1997328042,
rs1020720126 and rs185306857 of GABPA) (Table 5). Conversely,
a small number of SNPs capable of strengthening TF binding and
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reinforcing the regulatory effect of the TF were also observed
(e.g. rs887888062 of EGR1 and rs751263172 of ELF1) (Table 5).
In addition to deleterious mutations, potentially benign variants
may also be found in promoters, consistent with the expectations
of neutral theory™.

Discussion

In this study, the Bray-Curtis similarity function was initially
shown (for the NR3CI gene) to measure the relatedness of
overall expression patterns between genes across a diverse set
of tissues (Figure 2). A ML framework distinguished similar
from dissimilar genes based on the distribution, strengths and
compositions of TFBS clusters in accessible promoters, which
can substantially account for the corresponding gene expres-
sion patterns (Figure 1 & Figure 3). Using gene expression
knockdown data, the combinatorial use of TF binding profiles
and chromatin accessibility was also demonstrated to be predic-
tive of TF targets (Figure 4, Table 2 & Table 3). A binding site
comparison confirmed that coregulatory cofactors can be used
to distinguish between functional sites in targets and non-
functional ones in non-targets. Furthermore, in silico mutation
analyses on binding sites of targets suggested that the existence
of both multiple TFBSs in a cluster and multiple information-
dense clusters in the same promoter enables both the cluster and
the promoter to be resilient to mutations in individual TFBSs
(Figure 5, Table 5).

The DT classifier improved after intersecting promoters with
DHSs in prediction of TF targets with the CRISPR-generated
knockdown data (Table 2). This intersection eliminated noisy bind-
ing sites that are inaccessible to TF proteins in promoters'**!-*;
specifically, it widened discrepancies in feature vectors between
positives and negatives. If the 10 kb promoter of a gene instance
does not overlap DHSs, its feature vector will only consist of
0; the percentages of negatives whose promoters do not over-
lap DHSs considerably exceeded those of positives (Additional
file 8%?), which led to an excess of negatives with feature vec-
tors containing only O after intersection. This explains why these
negatives are not DE targets of the TFs in the K562 and
GM19238 cell lines, because their entire promoters are not
open to TF molecules; other regulatory regions besides the
proximal promoters (e.g. intronic enhancers®) still enable the
TFs to effectively control the expression of the positives
with inaccessible promoters. Compared to the other six TFs,
the poorer performance of the classifier on YY1 (Table 2) is
attributable to its smaller percentage of negatives with inaccessible
promoters (Additional file 8**) and the larger number of functional
binding sites in the K562 cell line.

Mutation analyses revealed that some deleterious TFBS muta-
tions could be compensated for by other information-dense
clusters in the same promoter (Figure 5, Table 5)>'; thus,
predicting the effects of mutations in individual binding sites
might not be sufficient to interpret downstream effects without
considering their context. Though other TFBS clusters may
compensate and maintain gene expression, the promoter will
likely exhibit lower levels of activity than the wild-type promoter,
which is a recipe for achieving natural phenotypic diversity*.
Few published studies in molecular diagnostics have specifically
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examined the effects of naturally occurring variants within
clustered TFBSs. IDBC-based ML provides an alternative
approach to predict deleterious mutations that impact (i.e. repress
or abolish) transcription of target genes and result in abnormal
phenotypes, and to minimize false positive calls of TFBS
variants that alone would be expected to have little or no impact.

Apart from these TFs, the Bray-Curtis Similarity metric can be
directly applied to identify the ground-truth genes with over-
all similar tissue-wide expression patterns to any other gene
whose expression profile is known. Previous applications of this
index include: a) measurement of the ecological transfer of spe-
cies abundance from dense to sparse plots®, b) comparative
difference analyses of species quantities between reference
and algorithm-derived metagenomic sample mixtures (https:/
precision.fda.gov/challenges/3/view/results) and ¢) improvement of
friend recommendations in geosocial networks by using it to
compare users’ movement history*”".

These results stimulate questions about the biological signifi-
cance of genes sharing a common expression pattern, including
the similarity between other regulatory regions besides proximal
promoters in terms of TFBSs and epigenetic markers. This ML
framework can also be applied to predict target genes for other
TFs and in other cell lines, depending on the availability of
corresponding knockdown data.

There are a number of limitations of our approach. The
Bray-Curtis function seems unable to accurately measure the
similarity between the tissue-wide expression profiles of a gene
(e.g. MIR23A) without any detectable mRNA in any tissues and
genes that are expressed in at least one tissue (e.g. ubiquitously
expressed NR3C1 and stomach-specific PGA3). Intuitively, PGA3
is more similar to MIR23A than NR3CI; however, the Bray-Curtis
similarity indicates that both PGA3 and NR3CI are equally
dissimilar to MIR23A. The finite number of TFs analyzed is
another possible limitation in the prediction of genes with similar
expression profiles. This was due to a lack of iPWMs for
other TFs that were knocked down. Given that 2000-3000
sequence-specific DNA-binding TFs are estimated to be encoded
in the human genome’!, the CRMs of many genes under
concerted regulation by different TFs will likely reveal complex
circuitry that is currently unknown. For example, the iPWMs for
several TFs (CREB, MYB, NFI1, GRF1) that bind to the NR3CI
gene promoter to activate or repress its expression could not
be successfully derived from ChIP-seq data’*. Regarding the
CRISPR-generated knockdown data, positives were inferred
to be direct targets by intersecting their promoters with corre-
sponding ChIP-seq peaks. This may not be completely accurate,
due to the presence of noise peaks that do not contain true
TFBSs*>*. Small fold changes in the expression levels of DE
targets could arise from inefficient knockdown due to subop-
timal guide RNAs or to limitations of perturbing only a single
allele encoding the TF*. Finally, the framework presented
considers only the 10 kb interval proximal to the TSS. This
could not capture long range enhancer effects beyond this point;
a potential way of remediating this would be to incorporate
correlation-based approaches that have successfully incorporated
multiple definitions of promoter length®.
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Conclusions

We have developed a ML framework with a combination of
information theory-based TF binding profiles of the spatial
distribution and information contents of TFBS clusters, ChIP-seq
and chromatin accessibility data. This framework distinguishes
tissue-wide expression profiles of similar vs dissimilar genes
(originally defined by the Bray Curtis function) and identified TF
targets. Functional binding sites in target genes that significantly
alter expression levels upon direct binding are at least partially
distinguished by TF-cofactor coregulation from non-functional
sites in non-targets. Finally, in-silico mutation analyses sug-
gested that the presence of multiple information-dense clusters
in a target gene promoter is capable of mitigating the effects of
deleterious mutations that can significantly alter TF-regulated
expression levels.

bioRxiv
An earlier version this article is available from bioRxiv: https://
doi.org/10.1101/283267.

Data availability

Underlying data

The median RPKM, TSS coordinate, DNase I hypersensitivity
and ChIP-seq data were respectively obtained from the GTEx
Analysis V6p release (www.gtexportal.org), Ensembl Biomart
(www.ensembl.org) and ENCODE (www.encodeproject.org). The
CRISPR- and siRNA-generated knockdown data were obtained
from the supplementary information files of Dixit et al.'® and
Cusanovich et al.". The source datasets generated and/or analysed
by this framework, along with sample results and compiled soft-
ware are available from Zenodo. DOI: https://doi.org/10.5281/
zenodo.1707423%!.

Data are available under the terms of the Creative Commons
Zero “No rights reserved” data waiver (CCO 1.0 Public domain
dedication).

Extended data
Additional files are available from Zenodo. DOI: https://doi.
org/10.5281/zenodo.2611953%,

Additional file 1. The mathematical definitions of the four other
similarity metrics, the workflow of the IDBC algorithm, an
example feature vector, the mathematical definitions of five sta-
tistical variables to measure classifier performance, the default
parameter values of classifiers in MATLAB, and histograms
visualizing the first two criteria for selecting positives from
the CRISPR-generated knockdown data.

Additional file 2: The lists of positives and negatives in the ML
classifiers to predict genes with similar tissue-wide expression
profiles to NR3C1.

Additional file 3: The lists of positives and negatives in the DT
classifier to predict TF targets based on the CRISPR-generated
knockdown data.
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Additional file 4: The lists of positives and negatives in
the DT classifier to predict DE direct targets based on the
siRNA-generated knockdown data.

Additional file 5: The performance of the DT classifier using
only TFBS counts, accuracy of each round of 10-fold cross
validation, and Gini importance values of the ML features.

Additional file 6: The list of the most similar 500 PC genes to
each TF in terms of tissue-wide expression profiles, and the inter-
section of these 500 genes and target genes of the TF.

Additional file 7: Cofactor binding sites adjacent to YY1 and
EGRI sites in the promoters of their targets and non-targets.

Additional file 8: The percentages of positives and negatives
whose promoters do not overlap DHSs for the CRISPR-perturbed
TFs.

Data are available under the terms of the Creative Commons
Zero “No rights reserved” data waiver (CCO 1.0 Public domain
dedication).

Software availability

Source code implementing the ML framework, including
generating the figures in this article, is available at: https:/
bitbucket.org/cytognomix/information-dense-transcription-
factor-binding-site-clusters/.

Archived source code at time of publication: https:/doi.
org/10.5281/zenodo.1892051%.

License: GNU General Public License 3.0.
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Most of the comments were addressed. | still have reservations about point #2 from my previous report -
the authors just repeated that their approach fits the definition of a distance metric (which is true), but |
think that many biologists would find it counter-intuitive that two genes with very different gene expression
*patterns* over different tissues, but with the same mean expression value would be considered 'closer'
than two genes that have the same "pattern” of gene expression across tissues but very different raw
gene expression values.

However, | now suggest that the authors consider writing a follow-up paper about this, rather than address
this point within this manuscript.
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https://doi.org/10.5256/f1000research.18988.r42457

? Nicolae Radu Zabet
School of Biological Sciences, University of Essex, Colchester, UK

In this manuscript, Ru and Rogan use Bray-Curtis Similarity and several machine-learning algorithms to
identify genes that have similar expression patterns. They use transcription factor binding sites within
promoter regions and DNA accessibility data to train their models. This is a very important question and
the authors propose an interesting mechanistic approach to address it. Nevertheless, there are several
limitations that need to be addressed.

Specific comments:

1. While the grammar is at a good level, the way the information is presented makes the text very
difficult to read. Some sentences are very long and there are many notations. One suggestion is to
move some of the less important parts in the Supplementary Material.

2. On page 3 in the introduction, the authors claim that signal strength of ChlP-seq peaks are not
strictly proportional to TF binding strength. This is not always true and we showed in' that in fact
the number of TF molecules controls the height of the ChIP-seq peak.

3. On page 5, itis not clear why the authors talk of Features 1-3, since it seemed they had 7 features.
The way the machine learning information is presented should be improved.

4. The authors test Naive Bayes, Decision Tree, Random Forest and SVM. | was wondering if they
consider also Neural Networks. They don’t need to implement that now, but they should at least
mention what was behind their selection for the machine-learning algorithms.

5. One of the main findings is that DNA accessibility improves predictions, because it masks potential
TF binding sites. This is something that was previously showed in the context of TF binding to the
genome by us and other scientists (e.g. References 1,2,3).

6. Figure 4 needs re-plotting (e.g. x axis labels do not fit the figure).

7. Inthe discussion, none of the statements are referred back to any of the figures in the results
section. This makes the reading difficult.

8. The lower performance for YY1 needs to be better explained. The authors claim that this could be
explained by lower percentage of negatives in inaccessible promoters. Are there other examples of
TFs displaying similar features? What is their performance?

9. One of the main limitations of the manuscript is that the authors use only 82 TFs and claim that
there are no iPWM for others. Have they tried to use MotifDB
(https://bioconductor.org/packages/release/bioc/html/MotifDb.html), which has approximately
1000 PWMs for human TFs?

10. When talking about the accuracy of the ChIP-seq signal, they could also reference this paper®.

References
1. Zabet NR, Adryan B: Estimating binding properties of transcription factors from genome-wide binding
profiles.Nucleic Acids Res. 2015; 43 (1): 84-94 PubMed Abstract | Publisher Full Text
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Drosophila development.PLoS Genet. 2011; 7 (2): e1001290 PubMed Abstract | Publisher Full Text

3. Simicevic J, Schmid AW, Gilardoni PA, Zoller B, Raghav SK, Krier I, Gubelmann C, Lisacek F, Naef F,
Moniatte M, Deplancke B: Absolute quantification of transcription factors during cellular differentiation
using multiplexed targeted proteomics.Nat Methods. 2013; 10 (6): 570-6 PubMed Abstract | Publisher Full
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4. Teytelman L, Thurtle DM, Rine J, van Oudenaarden A: Highly expressed loci are vulnerable to
misleading ChlP localization of multiple unrelated proteins.Proc Natl Acad Sci U S A. 2013; 110 (46):
18602-7 PubMed Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly
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I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Author Response 25 Mar 2019
Peter Rogan, University of Western Ontario, Canada

Comment 1: While the grammar is at a good level, the way the information is presented makes the
text very difficult to read. Some sentences are very long and there are many notations. One
suggestion is to move some of the less important parts in the Supplementary Material.

Response: The manuscript has been extensively edited to improve clarity of the presentation.
Sentence lengths have been reduced. Duplicate terms and text have been eliminated. All
abbreviations have been defined. Two paragraphs have been moved to the Supplementary
Methods. The revised manuscript has been shortened by 400 words and approximately 2 pages.
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Comment 2: On page 3 in the introduction, the authors claim that signal strength of ChiP-seq
peaks are not strictly proportional to TF binding strength. This is not always true and we showed in
1 that in fact the number of TF molecules controls the height of the ChIP-seq peak.

Response: In (1), it was discovered that signal strengths of ChlP-seq peaks are not strictly
proportional to strengths (R; values) of the strongest TFBSs contained in the peaks. The finding in
(2) provides a complementary explanation about the determinants of signal strengths of ChIP-seq
peaks, which is that ‘the number of TF molecules controls the height of the ChIP-seq peak’.
Therefore, this sentence is revised to “Because signal strengths of ChlP-seq peaks are not strictly
proportional to strengths of the contained strongest TFBSs and are instead controlled by TFBS
counts [3, 10], representing...”.

Comment 3: On page 5, it is not clear why the authors talk of Features 1-3, since it seemed they
had 7 features. The way the machine learning information is presented should be improved.
Response: In this sentence, we would like to make it easier for readers to understand the
generation of classifier predictors, by explaining how the seven high-level features were
transformed to low-level predictors that were directly input into the classifiers. Therefore, this
sentence was revised to “Each of the Features 1-3 was defined in a gene as a vector, whose size
equals the number of clusters in the gene promoter; each cluster was mapped to a single value in
the vector. In Features 4-7, each cluster itself was mapped to a vector corresponding to binding
sites for 82 TFs (Additional file 1).” Also, Section 5 of Additional file 1 gives a specific example
about the predictor vector of a gene instance.

Comment 4: The authors test Naive Bayes, Decision Tree, Random Forest and SVM. | was
wondering if they consider also Neural Networks. They don’t need to implement that now, but they
should at least mention what was behind their selection for the machine-learning algorithms.
Response: We did not select Neural Networks due to two considerations. First, it requires much
more data to train than traditional machine learning algorithms, as in at least thousands if not
millions of labeled samples (3). In this study the numbers of both positives (i.e. protein-coding
genes with similar tissue-wide expression profiles to NR3C1) and negatives (i.e. dissimilar genes)
are 500, which is insufficient to apply Neural Networks. Second, it is more computationally
expensive than traditional algorithms (4).

Comment 5: One of the main findings is that DNA accessibility improves predictions, because it
masks potential TF binding sites. This is something that was previously showed in the context of
TF binding to the genome by us and other scientists (e.g. References 1,2,3).

Response: Accordingly, in this revision, the last sentence of the second subsection of the Results
section was revised to “Consistent with previous findings (2, 5, 6), inclusion of DHS information
significantly improved AUC values of the other classifiers with the exception of Naive Bayes.”. And
in the second paragraph of the Discussion section, the second sentence was revised to “This
intersection eliminated noisy binding sites that are inaccessible to TF proteins in promoters (2, 5,
6),...”

Comment 6: Figure 4 needs re-plotting (e.g. x axis labels do not fit the figure).
Response: In this revision, Figure 4 was replotted to fix this issue.

Comment 7: In the discussion, none of the statements are referred back to any of the figures in the
results section. This makes the reading difficult.
Response: In the first paragraph of the Discussion section of this revision, references to the
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figures in the Results section were added to the following sentences, “In this study, the Bray-Curtis
similarity function was initially shown (for the NR3C1 gene) to measure the relatedness of overall
expression patterns between genes across a diverse set of tissues (Figure 2). A ML framework
distinguished similar from dissimilar genes based on the distribution, strengths and compositions
of TFBS clusters in accessible promoters, which can substantially account for the corresponding
gene expression patterns (Figures 1 & 3). Using gene expression knockdown data, the
combinatorial use of TF binding profiles and chromatin accessibility was also demonstrated to be
predictive of TF targets (Figure 4, Tables 2 & 3). A binding site comparison confirmed that
coregulatory cofactors can be used to distinguish between functional sites in targets and
non-functional ones in non-targets. Furthermore, in silico mutation analyses on binding sites of
targets suggested that the existence of both multiple TFBSs in a cluster and multiple
information-dense clusters in the same promoter enables both the cluster and the promoter to be
resilient to mutations in individual TFBS (Figure 5, Table 5).”

In the third paragraph, references to the figures in the Results section were added to the following
sentence, “Mutation analyses revealed that some deleterious TFBS mutations could be
compensated for by other information-dense clusters in the same promoter (Figure 5, Table 5)”

Comment 8: The lower performance for YY1 needs to be better explained. The authors claim that
this could be explained by lower percentage of negatives in inaccessible promoters. Are there
other examples of TFs displaying similar features? What is their performance?

Response: In this sentence, all the seven CRISPR-perturbed TFs were split into two sets; one
consisting of only YY1, the other consisting of the remaining six TFs. This sentence was comparing
the performances of the Decision Tree classifiers on these two TF sets. Seen from Table 3, the
classifier's performance on YY1 was markedly lower than that on the other six TFs after
intersecting promoters with DHS sites, which is due to the fact that YY1 has a smaller percentage
of negatives with inaccessible promoters.

To make this clearer, in this revision, this sentence was revised to “Compared to the other six TFs,
the poorer performance of the classifier on YY1 (Table 2) is attributable to ...”

Comment 9: One of the main limitations of the manuscript is that the authors use only 82 TFs and
claim that there are no iPWM for others. Have they tried to use MotifDB
(https://bioconductor.org/packages/release/bioc/html/MotifDb.html), which has approximately
1000 PWMs for human TFs?

Response: We selected to use these 94 iPWMs of 82 TFs that were derived from ENCODE
ChlP-seq datasets using entropy minimization in (1), since we want to ensure the high quality of
the iPWMs used in the analyses.

Compared to the MotifDB PWMs, the reliability and accuracy of these iPWMs were extensively and
independently validated using four methods, including detection of experimentally proven binding
sites, explanation of effects of characterized SNPs, comparison with previously published motifs
and statistical analyses.

These iPWMs were used to scan for 803 experimentally confirmed TFBSs, and there was
complete concordance between these true binding sites and those detected with the iPWMs, both
in terms of their locations and relative strengths (1). And these iPWMs were further used to explain
the experimentally observed effects of 153 SNPs on binding site strengths, based on the changes
in the R, values. For 130 SNPs (~85.0%), the predictions of the iPWMs and the experimental
observations are completely concordant; for 16 SNPs (~10.5%), the predicted and observed
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experimental findings are concordant, but the extents of these changes differ (e.g. TF binding is
predicted to only be weakened, but binding was completely abolished in experiments); for only 7
SNPs (~4.6%), the predicted and observed experimental changes were discordant.

The PWMs in MotifDB are not information theory-based (i.e. not iPWMs). Instead, they are given in
the form of count matrices or frequency matrices. The performance of the iPWMs that used in the
present study has been shown to outperform other PWM-based approaches for binding site
detection and quantification (7).

Comment 10: When talking about the accuracy of the ChIP-seq signal, they could also reference
this paper®.

Response: In this revision, the reference was added to the following sentence in the last
paragraph of the Discussion section, “Regarding the CRISPR-generated knockdown data,
positives were inferred to be direct targets by intersecting their promoters with corresponding
ChIP-seq peaks. This may not be completely accurate, due to the presence of noise peaks that do
not contain true TFBSs 3: 5051 »

References:
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Daphne Ezer
The Alan Turing Institute for Data Science, London, UK

| think that this is an interesting paper that should be published. Often, gene expression patterns are
clustered and TF binding sites are used as features to build a classifier for identifying the cluster to which
those genes belong or similar schemes such as clustering TFs and gene expression together- see
Clements et al' and Berman et al°. However, a biologist may want to identify what TFs regulate a specific
gene of interest. They could then use the 'Bray-Curtis Similarity' index to find a set of genes whose
expression pattern is similar to their gene of interest. Then, they can use the pipeline presented here to
identify features that are predictive of this kind of gene expression pattern.

They also create a scheme to test how different combinations of features from different experiments
influence their predictions.

| think that the text would garner much more interest if it focused more on the research questions that are
being addressed. The method details are discussed in depth, but the big picture is hard to find amidst the
details.

Main points:

1. One of the main things that bothers me about the Bray-Curtis Similarity metric is that it seems to
assume that tissues are independently sampled. However. we see from Fig.1 that there are many
brain samples that seem to (at least in the three genes shown) have similar gene expression
values. Is there a lot of covariance between gene expression values in pairs of tissues? If so, is
there a way to adjust this metric to acknowledge stratification of the tissues. | don't think that the
whole paper needs to be re-written with a new metric, but it would be nice if the authors address
this directly.

2. Another issue | have is with this metric is that it uses RPKM gene expression values in the
Bray-Curtis Similarity metric. Imagine that two genes have extremely high gene expression values
in some tissue (like the brain) and low values in another tissue (like the pancreas). However, one of
these genes is always expressed at 10 times the level of the other gene. Lets say that a third gene
has almost no change of gene expression value across the tissues but has a mean RPKM that is
similar to the first gene's mean RPKM. Would the Bray-Curtis Similarity metric say that gene 1 and
2 are more similar? Or gene 1 and 37 If gene 1 and 3, then this might be resolved by comparing
z-scores or otherwise normalising gene expression values across tissues.

3. Every time a machine learning method is named, it should be clear: (1) what are the input features
(i) what are the labels -- i.e. what is being classified (iii) what is the cross-validation or
training-testing-validation scheme. Since there are so many machine learning things being done, it
is hard sometimes to make sense of what is being done in each specific case.

4. For the method described in (B) in Fig 1: Does it necessarily make sense to compare the 'most
similar' to the 'least similar'? Genes that have exactly the opposite gene expression pattern to the
one you are interested might be tightly regulated by a different set of TFs. You might be picking up
this signal instead of the one you care about! This might be an even bigger issue since you are
using raw gene expression values-- genes that are very highly or very lowly expressed in all tissues
might always come up in your negative set.

5. Biologists don't just want good classifiers, they want feature selection! Can you show the Gini
scores of the features in a supplemental table?

Smaller changes:
1. Is all the code for generating every figure available online? Let's help make research reproducible.
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2. If you have 10 values (from cross validation), why don't you show them all in Figure 4 so we can
evaluate the spread.

3. "Our in-silico mutation analyses revealed that some deleterious TFBS mutations could be
compensated for by other information-dense clusters in the same promoter?; thus, predicting the
effects of mutations in individual binding sites might not be sufficient to interpret downstream
effects without considering their context." This is something that me and my collaborators have
recently studied®. Don't feel pressure to add this citation-- | just thought it would be interesting for
you to read! (Also, thanks for discussing IDBC in this paper-- | hadn't heard of it before but it would
be relevant to my research.)

4. It would be great if you discussed how Bray-Curtis is used in other fields in the Discussion.

5. Better subsection names in the results section - emphasizing the biological conclusions rather than
what was done.
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Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
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If applicable, is the statistical analysis and its interpretation appropriate?
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Are all the source data underlying the results available to ensure full reproducibility?
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Are the conclusions drawn adequately supported by the results?
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| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Peter Rogan, University of Western Ontario, Canada

Comment 1: One of the main things that bothers me about the Bray-Curtis Similarity metric is that
it seems to assume that tissues are independently sampled. However. we see from Fig.1 that there
are many brain samples that seem to (at least in the three genes shown) have similar gene
expression values. Is there a lot of covariance between gene expression values in pairs of tissues?
If so, is there a way to adjust this metric to acknowledge stratification of the tissues. | don't think
that the whole paper needs to be re-written with a new metric, but it would be nice if the authors
address this directly.

Response: There are 13 brain tissues among all the 53 tissues investigated by GTEx. Admittedly,
genes tend to exhibit closer expression values between some of these brain tissues; for example,
seen from Figure 2, the NR3C1 gene has close, low expression values in multiple brain tissues
(Amygdala, Anterior cingulate cortex (BA24), Caudate (basal ganglia), etc).

To investigate how much this covariance can influence similarity values between tissue-wide
expression profiles of genes computed by the Bray-Curtis function, using the brain tissues as an
example, we retained only one brain tissue and removed all other brain tissues at one time, and
recomputed the Bray-Curtis similarity values between NR3C1 and all other protein-coding genes.
Thus, there are 13 variant cases due to the presence of 13 brain tissues. Then we compared the
resultant set of 500 most similar genes in each variant case to that when all 53 tissues were used
(given in Additional file 2).

All of the top 100 most similar genes when using all 53 tissues were among the top 500 genes in
every variant case. The top 200 genes when using all 53 tissues differed by 0-3 genes from the top
500 genes in variant cases. The top 500 genes when using all 53 tissues differed by approximately
22% (112-117) from top 500 genes in variant cases. This suggests that the increased number of
brain tissues does not significantly influence the results of the Bray-Curtis metric for the most
similar genes but does affect results at lower similarity threshold.

Especially, in all 14 cases (i.e. the 13 variant cases and using all 53 tissues), the three most similar
genes to NR3C1 are the same (SLC25A32, TANK, CDC27). Therefore, this covariance between
these brain tissues is not a dominant factor in identifying genes with similar tissue-wide expression
profiles to a particular gene using the Bray-Curtis Function.

On the other hand, the situation is also present that a gene has closer expression values between
two tissues from two different organs, than between two more similar tissues from the same organ.
For example, both the Cerebellar Hemisphere (CH) tissue and the Amygdala tissue are from the
brain; the Visceral Adipose (VA) tissue and the Adrenal Gland (AG) tissue are not. Seen from
Figure 2, for the NR3C1 gene’s expression, there is a larger difference between CH and
Amygdala. Instead, CH is closer to VA, whereas Amygdala is closer to AG.

Despite well established developmental lineages for these tissues, we prefer not to make
assumptions regarding the covariance in expression values between similar tissues from the same
organ. The null hypothesis should not discriminate between tissues or weight them differently,
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without explicit prior information about tissue-specific expression, which is what we are trying to
measure. For this reason, when computing similarity values between tissue-wide expression
profiles of genes using the Bray-Curtis Function or other metrics, it may be more appropriate to
assign the same weight to every tissue and treat every tissue equally.

Comment 2: Another issue | have is with this metric is that it uses RPKM gene expression values
in the Bray-Curtis Similarity metric. Imagine that two genes have extremely high gene expression
values in some tissue (like the brain) and low values in another tissue (like the pancreas).
However, one of these genes is always expressed at 10 times the level of the other gene. Lets say
that a third gene has almost no change of gene expression value across the tissues but has a
mean RPKM that is similar to the first gene's mean RPKM. Would the Bray-Curtis SImilarity metric
say that gene 1 and 2 are more similar? Or gene 1 and 3? If gene 1 and 3, then this might be
resolved by comparing z-scores or otherwise normalising gene expression values across tissues.

Response:

Gene 1 and 3 will be more similar according to Bray-Curtis Similarity. The inference is as follows:
Assume that there are two tissues t, and t,. The expression values of Gene 1 in the two tissues are
[a, b] (b>>a>0), the expression values of Gene 2 are [10a, 10b], and the expression values of
Gene 3 are [(a+b)/2, (a+b)/2].

Then the Bray-Curtis similarity value between Gene 1 and Gene 2 is:

simge (G1,G2) = 2/11.

The Bray-Curtis similarity value between Gene 1 and Gene 3 is:

simgq (G1,G3) = (3a+b)/(2a+2b).

Thus, simgs (G1,G3) > simg (G1,G2).

However, this is not unreasonable. In other words, this is not a problem, thus it does not need to be
resolved. There is no ground-truth relationship between simg- (G1,G2) and simg (G1,G3). The
reason is described below.

When measuring the similarity between two vectors, there are two factors to be considered: 1. the
sizes of the vectors (i.e. the distance between the two vectors), 2. the directions of the vectors (i.e.
the angle between the two vectors). In this context of measuring similarity between tissue-wide
expression values of genes (each gene is mapped to a vector), both factors matter.

It is stated in the Methods section that Bray-Curtis Similarity satisfies three desirable properties. In
fact, Property 2 (achieving the maximal similarity value 1 if and only if two vectors are identical)
ensures Factor 1 to be considered, and Property 3 (larger values having a larger impact on the
resultant similarity value) ensures Factor 2 to be considered.

Thus, Table 1 shows that Bray-Curtis Similarity is more appropriate than the other five metrics,
which is exactly due to the fact it takes both factors into account. In contrast, Euclidean Similarity
does not take vectors’ directions into account; Cosine Similarity, Pearson Correlation and
Spearman Correlation do not take the sizes of the vectors into account.

Thus, to be able to infer a ground-truth similarity relationship, on both Factor 1 and Factor 2 the
intuitive comparison results must be concordant. In Example 1 (see Additional File 1), the angle
between Gene A and Gene C is identical to that between Gene B and Gene C, and the distance
between A and C is larger than that between B and C; thus, sim (A,C) < sim (B,C). Similarly, the
distance between A and D is identical to that between E and F, and the angle between A and D is
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larger than that between E and F; thus, sim(A,D) < sim(E,F).

But in this case, the distance between Gene 1 and Gene 2, i.e. 9*sqrt(a® + b), is larger than that
between Gene 1 and Gene 3, i.e. (b-a)/sqrt(2), but the angle between Gene 1 and Gene 2 (i.e. 0) is
smaller than that between Gene 1 and Gene 3 (>0). Thus, a ground-truth similarity relationship is
unable to be inferred.

Thus, the result given by Bray-Curtis Similarity, i.e.simgs (G1,G3) > simgs (G1,G2), is not
unreasonable.

Comment 3: Every time a machine learning method is named, it should be clear: (1) what are the
input features (ii) what are the labels -- i.e. what is being classified (iii) what is the cross-validation
or training-testing-validation scheme. Since there are so many machine learning things being
done, it is hard sometimes to make sense of what is being done in each specific case.

Response: In the module to predict genes with similar tissue-wide expression profiles to a
particular gene, to make these points clearer, the following changes were made:

(i) Using the red color Figure 1A shows that seven features were derived from TFBS clusters. In
addition, in the legend of Figure 1A, the following sentence was added “The seven ML features
derived from TFBS clusters were described in the Methods section.” The second paragraph of the
second subsection of the Methods section details the seven features; its first sentence was revised
to “The seven information density-related ML features derived from each TFBS cluster included ...”

(i) The first sentence of the ‘Prediction of genes with similar tissue-wide expression profiles”
subsection of the Methods section was revised’ to ‘The framework for predicting whether the
tissue-wide expression profile of a gene resembles a particular gene is indicated in Figure 1A, B.”,
so that it is clear that the two labels are ‘similar to the particular gene’ and ‘dissimilar to the
particular gene’. In addition, Figure 1B also indicates that 500 most similar genes and 500 most
dissimilar genes were selected as positives and negatives.

(iii) The last step (‘Performance evaluation’) of Figure 1A was revised to ‘Performance evaluation
(ROC curve/10-fold cross validation)’; the red color indicates that ROC curves were used to
validate the classifiers in this module. In addition, the last sentence of the legend of Figure 1A was
revised to “The performance of ML classifiers was evaluated with ROC curves and 10-fold cross
validation”.

The last sentence of the second subsection of the Methods section was revised to “This allowed all
genes to be used as training data for ML classifiers. Default parameter values for these classifiers
were used to generate ROC curves in MATLAB?”, and also the first sentence of the corresponding
second subsection of the Results section was revised to “Several ML classifiers (Naive Bayes,
Decision Tree (DT), Random Forest and Support Vector Machines (SVM) with four different
kernels) were evaluated to determine how well TFBS-related features could predict genes with
tissue-wide expression profiles similar to NR3C1. Their performance were compared using ROC
curves...”. Thus, it is now clear that ROC curves were used to validate the classifiers and all
instances were used as training data (i.e. there were no test sets).

In the module to predict TF target genes, to make these points clearer, the following changes were
made:
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(i) Using the blue color Figure 1A shows that six features were derived from TFBS clusters. Also,
the penultimate sentence of the last paragraph of the “Using gene expression in the
CRISPR-based perturbations” subsection of the Methods section states “Six features (Features
1-5 and 7) were derived from each homotypic cluster (i.e. Feature 6 became identical to Feature 3,
because only binding sites from a single TF were used) (Figure 1A).”. Combining with the detailed
descriptions about what the features are in the second paragraph of the previous subsection, it is
clear that these six features (Features 1-5 and 7) were used.

(i) The last sentence of the first paragraph of the ‘Using gene expression in the CRISPR-based
perturbations” subsection of the Methods section was revised to “We defined a positive TF target
gene in a cell line as:...” And the sentence in the fifth paragraph was revised to “If the coefficients
of all guide RNAs of the TF for a gene are zero, the gene was defined as a negative (i.e. a
non-target gene).” Thus it is clear that the two labels are “TF target genes” and “non-target genes”.
Combining with the last sentence of the first paragraph of the Methods section, ‘Since
protein-coding (PC) sequences represent the most widely studied and best understood component
of the human genome [19], positives and negatives for deriving machine learning classifiers for
predicting DE direct TF target genes that encode proteins (TF targets, below) were obtained from
CRISPR- and siRNA-generated knockdown data’, it is clear that the ‘target genes’ here stands for
‘PC, direct, DE target genes’.

(iii) As stated above, the last step (‘Performance evaluation’) of Figure 1A was revised to
‘Performance evaluation (ROC curve/10-fold cross validation)’; the blue color indicates that 10- fold
cross validations were used to validate the classifiers in this module. In addition, the last sentence
of the legend of Figure 1A was revised to “The performance of ML classifiers was evaluated with
ROC curves and 10-fold cross validation”. The last sentence of the last paragraph of the “Using
gene expression in the CRISPR-based perturbations” subsection of the Methods section was
revised to “The results of 10 rounds of 10-fold cross validation were averaged to evaluate the
accuracy of the classifier.” Thus it is clear that the validation scheme is 10-fold cross validation.

Comment 4: For the method described in (B) in Fig 1: Does it necessarily make sense to compare
the 'most similar' to the 'least similar'? Genes that have exactly the opposite gene expression
pattern to the one you are interested might be tightly regulated by a different set of TFs. You might
be picking up this signal instead of the one you care about! This might be an even bigger issue
since you are using raw gene expression values-- genes that are very highly or very lowly
expressed in all tissues might always come up in your negative set.:

Response: Yes, it makes sense. As stated in the above response to Comment 3, in this module to
predict genes with similar tissue-wide expression profiles to a particular gene, the two labels are
‘similar to the given gene’ and ‘dissimilar to the given gene’. Therefore, it makes the most sense
that the most similar genes were selected as positives and the most dissimilar genes were
selected as negatives.

The first sentence of the last paragraph of the Background section, “...the distribution and
composition of cis-regulatory modules in promoters substantially determines gene expression
profiles..., is exactly the underlying rationale why this machine learning framework is able to
distinguish between “similar genes” and “dissimilar genes”. In other words, “similar genes” and
“dissimilar genes” have different expression patterns, presumably because they have different
organizations and compositions (i.e. different TF sets) of TFBSs in their promoters. Therefore, the
potential fact that “similar genes” and “dissimilar genes” are regulated by different TF sets was
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exactly what we expected to see and validate.

Comment 5: Biologists don't just want good classifiers, they want feature selection! Can you show
the Gini scores of the features in a supplemental table?:

Response: In the module to predict TF target genes based on CRISPR- and siRNA-generated
knockdown data, to assess the relative importance of the six features to the Decision Tree
classifiers, we computed their Gini importance values, which are added to Additional file 5.

For the seven CRISPR-perturbed TFs in the K562 cell line, the cluster-level Features 1-3,
especially Feature 3 capturing the information density of TFBS clusters, have the largest
contribution to the classifiers’ predictive power. By contrast, for the 11 siRNA-perturbed TFs in the
GM19238 cell line, the binding site-level Feature 5 capturing the spatial distribution of strong
TFBSs has the largest contribution.

Accordingly, in this revision, this observation is described in the second and third sentences of the
first paragraph of the third subsection of the Results section.

Comment 6: Is all the code for generating every figure available online? Let's help make research
reproducible.

Response: As stated in the Software availability section, the code that implemented this machine
learning framework and produced all the results has been deposited at
https://bitbucket.org/cytognomix/information-dense-transcription-factor-binding-site-clusters/src
and https://doi.org/10.5281/zenodo.1892051. The input of the code to derive the figures is directly
taken from the output of the ML framework code. There are no intermediate steps or variable
required to generate the figures in MATLAB.

The code for generating the figures is used to visualize the results. in this revision, we also
deposited the MATLAB code for generating all the figures at
https://bitbucket.org/cytognomix/information-dense-transcription-factor-binding-site-clusters/src

Comment 7: If you have 10 values (from cross validation), why don't you show them all in Figure 4
so we can evaluate the spread.

Response: To avoid making Figure 4 too complicated, in this revision, the accuracy values of all
individual rounds of 10-fold cross validations in prediction of TF target genes were added to
Additional file 5. Accordingly, the legends of Table 2, Figure 4 and Table 3 were revised to indicate
this.

Comment 8: "Our in-silico mutation analyses revealed that some deleterious TFBS mutations
could be compensated for by other information-dense clusters in the same promoter(2); thus,
predicting the effects of mutations in individual binding sites might not be sufficient to interpret
downstream effects without considering their context." This is something that me and my
collaborators have recently studied3. Don't feel pressure to add this citation-- | just thought it would
be interesting for you to read! (Also, thanks for discussing IDBC in this paper-- | hadn't heard of it
before but it would be relevant to my research.)

Response: In this revision, this publication has now been referenced (number 47) in the
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manuscript.

Comment 9: It would be great if you discussed how Bray-Curtis is used in other fields in the
Discussion.

Response:The following sentences were added to the penultimate paragraph, “Previous
applications of this index include: a) measurement of the ecological transfer of species abundance
from dense to sparse plots 48 and comparative difference analyses of species quantities between
reference and algorithm-derived metagenomic sample mixtures (
https://precision.fda.gov/challenges/3/view/resulis). b) improvement of friend recommendation in
geosocial networks by using it to compare users’ movement history 49 50 ”

Comment 10: Better subsection names in the results section - emphasizing the biological
conclusions rather than what was done.

Response: In the Results section of this revision, the title of each subsection was revised as
follows, now summarizing the primary conclusion from this subsection.

The title of the first subsection was revised from ‘Similarity between GTEXx tissue-wide expression
profiles of genes’ to ‘The Bray-Curtis Function can accurately quantify the similarity between
tissue-wide gene expression profiles’.

The title of the second subsection was revised from ‘Prediction of genes with similar GTEx
tissue-wide expression profiles’ to ‘The Decision Tree classifier performed best in prediction of
genes with similar tissue-wide expression profiles’.

The title of the third subsection was revised from ‘Prediction of TF targets” to ‘The Decision Tree
classifier was predictive of TF target genes’.

The title of the fourth subsection was revised from ‘Intersection of genes with similar tissue-wide
expression profiles and TF targets’ to ‘Some TF target genes also display similar tissue-wide
expression profiles to the TFs, themselves.

The title of the fourth subsection was revised from ‘Mutation analyses on promoters of direct

targets’ to ‘Transcription factor binding site clusters buffer against expression changes from
mutations in single sites’.
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