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Purpose. We have focused on finding a classifier that best discriminates between tumour progression and regression based on
multiparametric MR data retrieved from follow-up GBM patients. Materials and Methods. Multiparametric MR data consisting
of conventional and advanced MRI (perfusion, diffusion, and spectroscopy) were acquired from 29GBM patients treated with
adjuvant therapy after surgery over a period of several months. A 27-feature vector was built for each time point, although not all
features could be obtained at all time points due to missing data or quality issues. We tested classifiers using LOPO method on
complete and imputed data. We measure the performance by computing BER for each time point and wBER for all time points.
Results. If we train random forests, LogitBoost, or RobustBoost on data with complete features, we can differentiate between tumour
progression and regression with 100% accuracy, one time point (i.e., about 1 month) earlier than the date when doctors had put a
label (progressive or responsive) according to established radiological criteria. We obtain the same result when training the same
classifiers solely on complete perfusion data. Conclusions. Our findings suggest that ensemble classifiers (i.e., random forests and
boost classifiers) show promising results in predicting tumour progression earlier than established radiological criteria and should
be further investigated.

1. Introduction

GBM is the most common and malignant intracranial tumor
[1], representing as much as 30% of primary brain tumors
with increasing incidence in some geographic regions [2].
The patients have a median survival of only 10 to 14 months
after diagnosis with only 3 to 5% of patients surviving more
than three years. Recurrence is universal, and, at the time
of relapse, the median survival is only five to seven months
despite therapy [3].

The current standard of care is surgical resection followed
by radiotherapy and concomitant and adjuvant temozolo-
mide (TMZ) chemotherapy [4].

Magnetic resonance imaging (MRI) is the most widely
used medical imaging technique for identifying the location
and size of brain tumours. However, conventional MRI has
a limited specificity in determining the underlying type of
brain tumour and tumour grade [5, 6]. More advanced MR
techniques like diffusion-weighted MRI, perfusion-weighted
MRI, and chemical shift imaging (CSI) are promising in the

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 842923, 13 pages
http://dx.doi.org/10.1155/2015/842923

http://dx.doi.org/10.1155/2015/842923


2 BioMed Research International

characterization of brain tumours as they give potentially
more physiological information [7–9].

Diffusion-weighted imaging (DWI) and diffusion kur-
tosis imaging (DKI) visualize the tissue structure and are
useful for assessing tumour cellularity, because they give
information about the movement of the water inside differ-
ent tissues including biological barriers. Typical parameters
related to diffusion are apparent diffusion coefficient (ADC),
mean diffusivity (MD), mean kurtosis (MK), and fractional
anisotropy (FA). MD is a general parameter that accounts for
the mean diffusivity in all directions, MK might be a specific
parameter for tissue structure [10], and FA is a general index
of anisotropy, with a value of zero corresponding to isotropic
diffusion and a value of one corresponding to diffusion only
in one direction.

Perfusion-weighted MRI (PWI) provides measurements
that reflect changes in blood flow, volume, and angiogenesis.
Hypervascularity due to glioma-induced neoangiogenesis
may show up as high relative cerebral blood volume (rCBV)
while necrosis of different tissues may show up as low rCBV
[11].

MR spectroscopy provides information aboutmetabolites
present in normal and abnormal tissues [12]. This informa-
tion can be represented as metabolite maps using CSI.

We have studied patients with GBM that had the tumour
surgically removed and afterwards were treated according to
two different protocols developed for evaluating dendritic cell
immunotherapy: HGG-IMMUNO-2003 [13–16] and HGG-
IMMUNO-2010 [13].

The focus of our paper is finding a map between the
multiparametric MR data acquired during the follow-up of
the patients and the relapse of the brain tumour after surgery,
as described by the clinically accepted RANO criteria [17].
In order to do this, we test different families of classifiers
on multiparametric MR data, starting from simple ones, for
example, 𝑘-nearest neighbours (𝑘-NN) and linear discrimi-
nant analysis (LDA), and moving to nonlinear classifiers, for
example, random forests and neural networks, using a total
of 27 features extracted from PWI, DKI, and CSI data.

2. Materials and Methods

2.1. Study Setup. There are 29 patients included in this study,
out of which 16 patients were treated according to the HGG-
IMMUNO-2003 protocol [13–16] and 13 patients according
to the HGG-IMMUNO-2010 protocol [13].

Patients that were treated according to the HGG-
IMMUNO-2003 protocol are patients with relapsed GBM
that received immune therapy as the sole treatment strategy.

Patients that were treated according to the HGG-
IMMUNO-2010 protocol are patientswith primaryGBMthat
had surgery. For the follow-up treatment after surgery the
patients were split into two groups.The first group consisting
of 6 patients who received radiochemotherapy and the
immune therapy vaccine. The second group consisting of the
remaining 7 patients who received just radiochemotherapy
for the first six months after surgery, and after those six
months all 7 patients received radiochemotherapy plus the

immune therapy vaccine.We refer to the first group as “HGG-
IMMUNO-2010 vaccine” and to the second group as “HGG-
IMMUNO-2010 placebo.”

All 29 patients were offered monthly MRI follow-up, but
after six months under immune therapy all patients switched
to a three-monthly schedule.

The local ethics committee approved this study and
informed consent was obtained from every patient before the
first imaging time point.

Based on radiological evaluation of the follow-up MRI
scans using the current guidelines for response assessment of
high grade glioma [17], each patient was assigned to one of
two clinical groups:

(i) patients with progressive disease during follow-up
which exhibit an increase of ≥25% in the sum of
the products of perpendicular diameter of enhancing
lesions compared to the smallest tumour measure-
ment obtained either at baseline or best response,

(ii) patients with complete responsewith disappearance of
all measurable and nonmeasurable disease sustained
for at least 4 weeks.

Based on this assessment, each MRI time point for
each patient was considered to be labeled or unlabeled as
follows: labeled as “responsive” for all time points at and after
the moment when the patient was considered as “complete
response”; labeled as “progressive” for all time points at and
after the moment when the patient was considered as “pro-
gressive disease”; or “unlabeled” for all time points preceding
the decision moment.

2.2. MRI Acquisition and Processing. Magnetic resonance
imaging was performed on a clinical 3 Tesla MR imaging sys-
tem (PhilipsAchieva, Best,Netherlands), using a body coil for
transmission and a 32-channel head coil for signal reception.
The imaging protocol consisted of diffusion kurtosis imaging,
dynamic susceptibility weighted contrast-MRI (DSC-MRI),
and MR spectroscopy, combined with standard anatomical
imaging (T1-weighted MRI after contrast administration,
T2-weighted MRI, and FLAIR (fluid attenuated inversion
recovery) MR images).

2.2.1. Anatomical Magnetic Resonance Imaging. MR images
were acquired as previously described [9, 18, 19]. In
brief, an axial spin echo T2-weighted MR image (TR/TE:
3000/80msec, slice/gap: 4/1mm, field of view (FOV): 230 ×
184mm2, turbo factor (TF): 10, and acquisition matrix: 400 ×
300), an axial fluid-attenuated inversion recovery (FLAIR)
image (TR/TE/IR: 11000/120/2800msec, slice/gap: 4/1mm,
and acquisition matrix: 240 × 134), and a T1-weighted 3D
spoiled gradient echo scan (fast field echo-FFE, TR/TE:
9.7/4.6msec, flip angle: 8∘, turbo field echo factor: 180, acqui-
sition voxel size: 0.98 × 0.98 × 1mm3, 118 contiguous parti-
tions, and inversion time: 900msec) after contrast adminis-
trationwere acquired as high-resolution anatomical reference
images.

Regions of interest (ROI) were manually drawn around
the solid contrast-enhancing region if present, avoiding areas
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Figure 1: Delineations on T1 MR image postcontrast. Green—
necrosis, red—CE, and blue—ED.

of necrosis (N) or cystic components such as the surgical
cavity. A second ROI was manually drawn around the entire
lesion (TO), that is, contrast enhancement (CE) and per-
ilesional oedema (ED). The ROI containing the perilesional
oedema was obtained by extracting the contrast-enhancing
portion from the total lesion. Finally, a separate ROI was
drawn around the contralateral normal appearing white mat-
ter (NAWM) to standardize the hemodynamicmeasurements
of DSC-MRI.

The manual delineations were drawn by a radiologist
(SVC) with 5 years experience of MR imaging of brain tum-
ours. An example of delineations on T1 post contrast image
can be seen in Figure 1, where green is the necrosis, red is CE,
and blue is ED.

2.2.2.Magnetic Resonance Spectroscopy. A2D-CSI short echo
time protocol was used as validated in [20]. The volume of
interest (VOI) is positioned on the slice of the transverse
reconstruction of the T1-weighted 3D-FFE sequence with the
largest section of contrast enhancement. The slice thickness
of the VOI is 10mm and the VOI is 80 × 80 × 10mm3, with
each voxel being 5 × 5 × 10mm3 (16 × 16 voxels in total). If the
contrast-enhancing lesion was smaller than 2 cm3 or the con-
trast enhancement is located in areas with large susceptibility
differences, for example, the basal forebrain or the anterior
temporal lobes, a single voxel (SV) technique was performed
(TR/TE: 2000/35msec, minimal volume: 1 cm3).

MR spectra were processed using the MATLAB 2010b
environment (MathWorks, MA, USA) with SPID graphical
user interface [21] as described in detail in [20].

Ninemetabolites were quantified using the AQSES-MRSI
quantification method [22]: N-acetyl aspartate (NAA), glu-
tamine (Gln), glutamate (Glu), total creatine (Cre), phospho-
rylcholine (PCh), glycerophosphorylcholine (GPC), myo-
inositol (Myo), and lipids (Lips) at 0.9 and 1.3 ppm, referred to

as Lip1 and Lip2, respectively. Glu + Gln and PCh + GPC
were reported as Glx and tCho (total choline), respectively.
For each metabolite, AQSES-MRSI reported metabolite con-
centrations in institutional units and their error estimates
as Cramer-Rao lower bounds (CRLBs) [23]. After quan-
tification, good quality voxels were selected based on the
CRLBs and spectral quality assessment as recommended by
Kreis (FWHMofmetabolites <0.07–0.1 ppm, no unexplained
features in the residuals, no doubled peaks or evidence for
movement artifacts, symmetric line shape, no outer volume
ghosts or other artifacts present) [24]. CRLB lower than 20%
for tCho, NAA, Glx, Cre, and Lips and CRLB lower than
50% for Myo were considered sufficient. From these repre-
sentative voxels, the mean metabolite ratios as proposed by
Kounelakis et al. were calculated [25] over the CE region:
NAA/tCho, NAA/sum, tCho/sum, NAA/Cre, Lips/tCho,
tCho/Cre, Myo/sum, Cre/sum, Lips/Cre and Glx/sum (10
parameters). The sum represents the sum of the concentra-
tions of all quantified metabolites.

Sixty-six percent (66%) of all spectroscopic time points
are not included in this study. There are two reasons for this:
(1) quantification was not possible for all time points (MR
spectroscopy data was not acquired for all patients due to
patient movement) and (2) the rest of them did not pass the
quality control recommended by Kreis [24].

2.2.3. Dynamic Susceptibility Weighted Imaging (DSC-MRI).
Perfusion images were obtained using a standard DSC per-
fusion MR imaging protocol consisting of a gradient echo-
EPI sequence, TR/TE: 1350/30msec, section thickness/gap:
3/0mm, dynamic scans: 60, FOV: 200 × 200mm2, matrix:
112 × 109, number of slices: 23, and scan time: 1 minute 26
seconds. EPI data were acquired during the first pass follow-
ing a rapid injection of a 0.1mmol/kg body weight bolus of
megluminegadoterat (Dotarem, Guerbet, Villepinte, France)
via a mechanical pump at a rate of 4mL/sec, followed by a
20mL bolus of saline. Preload dosing was performed accord-
ing to Hu et al. in order to correct for T1-weighted leakage
(preload dose 0.1mmol/kg megluminegadoterat, incubation
time 10min) [26].

DSC data were analyzed using DPTools (http://www
.fmritools.org), as described in [18].

The mean values of the considered perfusion parameters
were retrieved in the CE, ED, and NAWM regions. We report
relative rCBV (rrCBV), relative rCBF (rrCBF), and relative
DR (rDR) of tumoural tissue by using the corresponding
parameter value in the contralateral NAWM as internal
reference.

Although quantification was possible for all time points,
after quality assessment done by visual inspection by SVC,
30% of them were not included in this study.

2.2.4. Diffusion Kurtosis Imaging (DKI). DKI data were
acquired according to the previously described protocol in
[18, 19] (SE-EPI-DWI sequence with TR/TE: 3200/90msec,
𝛿/Δ: 20/48.3msec; FOV: 240 × 240mm2, matrix: 96 ×
96, number of slices: 44, 1 signal average acquired, sec-
tion thickness/gap: 2.5/0mm, and 𝑏-values: 700, 1000, and
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2800 sec/mm2 in 25, 40, and 75 uniformly distributed direc-
tions, resp.) [27]. The DKI data were processed as described
in [18]. Fractional anisotropy (FA), mean diffusivity (MD),
and mean kurtosis (MK) were derived from the tensors [10,
28]. A nonlinear registration of the parameter maps to the
anatomical MR imaging data was performed to minimize
the local misalignment between the EPI distorted DKI data
and the anatomical data on which the ROIs were manually
positioned. MK, MD, and FA were determined in the CE and
ED regions.

Although quantification was possible for all time points,
after quality control according to [27], 44% of them were not
included in this study.

2.2.5. Summary of MRI Acquisition and Processing. In total,
from 29 patients, we have 178 data points of follow-up MR
imaging sessions, and each of these ones has 27 features:

(i) 3 volumes, contrast enhancement (CE), oedema (ED),
and necrosis (N)

(ii) 6 perfusion features, rrCBV, rrCBF, and rDR for CE
and ED

(iii) 6 diffusion features, MK, MD, and FA for CE and ED
(iv) 10 spectroscopic features, from CE—NAA/tCho,

NAA/sum, tCho/sum, NAA/Cre, Lips/tCho, tCho/
Cre, Myo/sum, Cre/sum, Lips/Cre, and Glx/sum

(v) a parameter (0 or 1) for total resection of the tumour
(vi) a parameter (0, 1, or 2) to describe the group of the

patient, HGG-IMMUNO-2003, HGG-IMMUNO-
2010 placebo, or HGG-IMMUNO-2010 vaccine.

Out of all 178 measurements, if we extract just the ones
with complete features, it will result in a subset of 18 patients
with 45 measurements. This implies that more than 75% of
the measurements have at least one feature missing. Five
features are always present: the three volumes, the parameter
for tumour resection, and the parameter for different groups.

2.3. Classifiers. We have used several supervised and semisu-
pervised classifiers, as presented in Table 1, with the goal of
testing whether the unlabeled data could have been reliably
labeled before the actual labeling was performed in the clinic
according to the RANO criteria.

The list of classifiers in Table 1 is representative for the
most important families of classification methods, starting
from simple classical methods such as linear discriminant
analysis (LDA) and 𝑘-nearest neighbour (𝑘-NN) up to more
complex nonlinear classifiers such as random forests and
neural networks.

Each classifier is based on a mathematical model, which
needs to be optimised on the basis of a training dataset. The
training set consists here of labeled data, that is, data at and
after a clinical decision has been made. The test set on which
we compare classifiers consists of data that have no label,
that is, time points before the decision of “progressive” or
“responsive” has been made.

All classifiers are implemented in MATLAB R2013a
(MathWorks, MA, USA). All classifiers except least squares

Table 1: Supervised and semisupervised classifiers tested in this
paper.

Supervised classifiers Handles missing values
Random forests ✓

Classification tree ✓

Boost ensembles ✓

Neural networks —
SVM —
LSSVM —
𝑘-NN —
dLDA —
Semisupervised classifiers
LDS —
SMIR —
S4VM —

support vector machines (LSSVMs) and the semisupervised
ones are part of the Statistics Toolbox and Neural Networks
Toolbox of MATLAB R2013a.
𝑘-NN [29] is one of the basic classifers in machine learn-

ing.The class label of a new testing point is given by the most
common class among its 𝑘 neighbours. We used the default
MATLAB R2013a (Statistics Toolbox) function “𝑘nnclassify”
to run a grid search for the best combination of number of
neighbours (𝑘) and type of distance. We varied 𝑘 between
1 and 11 and the distance was either “euclidean,” “cityblock,”
“cosine,” or “correlation.” We found the best results for the
combination of 3 neighbours and the “correlation” distance.

Diagonal LDA (dLDA [30]) is a simple modification of
linear discriminant analysis, which implies that we use the
pseudoinverse of the covariance matrix instead of the actual
inverse. We used the default MATLAB R2013a implementa-
tion “classify” from the Statistics Toolbox.

SVMs [31, 32] are among the most popular machine
learning models because they are easy to understand: given
a training set with points that belong to two classes, we try
to find the best hyperplane to differentiate between the two
types of points.We can try this in the original space or we can
map the points to another space by using the kernel trick. We
used the default MATLAB R2013a (Statistics Toolbox) imple-
mentations “svmtrain” and “svmclassify.” We used different
types of kernel: linear, polynomial, radial basis function, and
multilevel perceptron.

Classification tree [33] is an algorithm commonly used in
machine learning. Like in a real tree there are leaves which
represent class labels and branches. At each node of a tree
a single feature is used to discriminate between different
branches. We used the default MATLAB R2013a (Statistics
Toolbox) implementation “classregtree.”

Neural networks [34–37] are built on interconnected
layers of artificial “neurons” that try to map an input vector
to its specific output. There are three types of layers: input,
hidden, and output. The weights between different neurons
are trained until a maximum number of iterations or a mini-
mum error is reached. We used the default MATLAB R2013a
(Neural Network Toolbox) implementation “net” with 10
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hidden neurons. We tested four types of neural networks:
pattern net, feed forward net, cascade forward net, and fit net.

Random forests [38, 39] are part of the ensemblemethods
for classification that use a collection of decision trees. Each
decision tree learns a rule and then it can classify a new point.
The new point is assigned to the class voted by the majority
of the decision trees. We used the default MATLAB R2013a
(Statistics Toolbox) implementation “TreeBagger” with 100
trees.

Boosting algorithms [40–43] start with a collection of
weak classifiers (e.g., decision trees) and with each iteration
they try to improve the overall classification by learning
what was misclassified at the previous step. We used the
default MATLAB R2013a (Statistics Toolbox) implementa-
tion “fitensemble” with 100 trees. We tested seven types
of boosting algorithms: AdaBoost, LogitBoost, GentleBoost,
RobustBoost, LPBoost, TotalBoost, and RUSBoost.

LSSVMs [44, 45] are a powerful machine learning tech-
nique. We downloaded LSSVMlab from [46] and followed
the instructions from [47] to tune the parameters. We used
different types of kernel: linear, polynomial, radial basis
function, and also the Bayesian approach on LSSVM.

The semisupervised classifiers used in this paper are low
density separation (LDS [48]), squared-loss mutual infor-
mation regularization (SMIR [49]), and safe semisupervised
support vector machine (S4VM [50, 51]). In the last years
there has been a steady increase in the use anddevelopment of
semisupervised classifiers, as they take into account informa-
tion from unlabeled data also, not just from labeled data.This
makes thempowerfulmachine learning tools.The implemen-
tation for semisupervised classifiers was downloaded from
[52–54].

Classifiers were tested first with all features described in
Section 2.2.5 taken as input, but then also by selecting subsets
of the available features as input, that is, only the features
pertaining to a single modality (perfusion, diffusion, and
spectroscopy). Additionally, classifiers were tested first on the
smaller dataset containing 45 time points with a complete set
of features and then on the larger dataset containing 178 time
points where missing values have been imputed according to
Section 2.4, presented below.

2.4. In-House Imputation Method. Some classifiers have
built-in strategies of handlingmissing values, but other classi-
fiers do not handlemissing values (see Table 1).This is whywe
developed our own in-house imputation method, so the
handling of missing values will be the same for all classifiers.

Ourmethod is based on the volumes of contrast enhance-
ment and oedema regions, in the sense that if the volume
of a tumour region is zero, that missing tissue is considered
healthy tissue. If we have values of any modality (perfusion,
diffusion, and spectroscopy) that are missing from CE or ED,
and the volume of CE or ED corresponding to that measure-
ment is zero, and then we assume that those missing values
belong to a normal type of tissue. For perfusion, because we
normalize every parameter to the normal appearing white
matter value, the missing values will be replaced by 1’s. For
diffusion and spectroscopy, the missing values will be

replaced by the average of the features taken over the mea-
surements which were labeled as responsive, because we con-
sider that these measurements are recorded from a healthy
tissue. If we have missing values without association to zero
volume for CE or ED, they will be replaced by the average
taken over all the labeled measurements.

2.5. Performance Indices

Leave One Patient Out (LOPO). Classifiers are trained on
labeled data from all patients except one who is the test
patient. Each patient in turn is selected as test patient. All
time points that belong to the test patient are classified inde-
pendently. Results for each classifier are averaged per time
point over all patients relative to the time point at which the
clinical decision was made.

This way of testing is intuitive from a medical point of
view and provides us with information about how good is the
classificationwhenwe approach the decision time. In this way
we can look at the temporal evolution of the classification for
each patient.

We compute the balanced error rate (BER) at each time
point before and after the decision, using the clinical decision
assigned to each patient as expected label for all time points
of this patient. BER is computed as

BER
𝑖
=
ERRresp
𝑖
+ ERRprog

𝑖

2
, (1)

where
ERRresp
𝑖
= (Number of responsive patients

misclassified as progressive)

× (Total number of responsive patients)−1 ,
ERRprog
𝑖
= (Number of progressive patients

misclassified as responsive)

× (Total number of progressive patients)−1 .
(2)

For each classifier we have a grand total of 17 time points,
due to the fact that there are patients with up to 6 time points
after the decision time point and there are others with up to 11
time points before the decision. In order to compare the clas-
sifiers by using just one error number instead of 17, we com-
pute a weighted average for each classifier’s time response.
This performancemeasurement is denoted by “weighted BER
(wBER)” in the Results section.

We use two sets of weights:

(i) one for the temporal response—the classifier should
perform better when we approach the labeling time
point and after it:

𝑊
𝑡

𝑖
= 1, if 𝑖 ≥ decision time point,

𝑊
𝑡

𝑖
= 1 −
0.5

11
⋅ 𝑖, if 𝑖 < decision time point

(3)
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Table 2: Detailed BER results for each time point for the best 6 classifiers when using the leave-one-patient-out method on complete features
for all MR modalities. The decision moment marked by bold font. Some time points do not have results because there were no complete
measurements.

BER Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
𝐿 + 5 — — — — — —
𝐿 + 4 — — — — — —
𝐿 + 3 0 0 0 0 0 0

𝐿 + 2 0 0 0 0 0 0

𝐿 + 1 0 0 0 0 0 0

L 0 0.1 0.217 0 0 0.1
𝐿 − 1 0 0.125 0 0 0 0.125

𝐿 − 2 0.25 0.25 0.5 0.25 0.25 0.25

𝐿 − 3 0.5 0.5 1 0.5 0.5 0.25

𝐿 − 4 1 1 1 1 1 0.5

𝐿 − 5 0.25 0.25 0.25 0.25 0.25 0.25

𝐿 − 6 0.5 0 0 0.5 0.5 0

𝐿 − 7 1 0 1 1 1 0

𝐿 − 8 — — — — — —
𝐿 − 9 0 0 0 0 0 0

𝐿 − 10 — — — — — —
𝐿 − 11 0 0 1 0 0 0

wBER 0.148 0.172 0.276 0.148 0.148 0.136

Table 3: Detailed BER results for each time point for the best 6 supervised classifiers when using the leave-one-patient-out method on
imputed features for all MR modalities. The decision moment marked by bold font.

BER Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
𝐿 + 5 0 0 0 0 0 0

𝐿 + 4 0 0 0 0 0 0

𝐿 + 3 0 0 0 0 0 0

𝐿 + 2 0.125 0.25 0.125 0.125 0.125 0

𝐿 + 1 0.171 0.071 0.071 0.171 0.171 0.071

L 0.105 0.022 0.149 0.188 0.105 0.359
𝐿 − 1 0.214 0.065 0.130 0.3 0.192 0.192

𝐿 − 2 0.444 0.417 0.194 0.444 0.472 0.5

𝐿 − 3 0.418 0.382 0.282 0.418 0.418 0.482

𝐿 − 4 0.475 0.413 0.388 0.475 0.413 0.475

𝐿 − 5 0.688 0.438 0.563 0.688 0.688 0.688

𝐿 − 6 0.368 0.467 0.3 0.567 0.567 0.567

𝐿 − 7 0.375 0.375 0.75 0.5 0.75 0.625

𝐿 − 8 0.5 0.333 0.583 0.5 0.75 0.333

𝐿 − 9 0.333 0.333 0.833 0.333 0.833 0.5

𝐿 − 10 0.5 0.75 0.75 0.5 1 0.75

𝐿 − 11 0.5 0.5 1 0.5 0.5 0.5

wBER 0.294 0.216 0.242 0.335 0.325 0.352

Table 4: Weighted BER for the best 6 supervised classifiers when using the leave-one-patient-out method with complete features for each
MR modality separately.

Weighted BER Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
Perfusion 0.148 0.256 0.220 0.148 0.148 0.193
Diffusion 0.358 0.259 0.255 0.367 0.367 0.349
Spectroscopy 0.571 0.561 0.600 0.609 0.623 0.629
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Table 5: Weighted BER for the best 6 supervised classifiers trained on imputed features from each MR modality separately.

Weighted BER Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
Perfusion 0.294 0.311 0.275 0.289 0.265 0.282
Diffusion 0.277 0.327 0.322 0.277 0.277 0.380
Spectroscopy 0.412 0.401 0.423 0.423 0.408 0.415

Table 6: wBER comparison between our in-house method of
imputingmissing values and built-in imputation strategy of different
supervised classifiers.

Weighted BER Our method Built-in method
Random forests 0.294 0.423
AdaBoost 0.324 0.333
LogitBoost 0.335 0.241
GentleBoost 0.308 0.245
RobustBoost 0.325 0.296
LPBoost 0.256 0.369
TotalBoost 0.289 0.323
RUSBoost 0.308 0.361
Decision tree 0.346 0.651

(ii) one for patient population—the time points with
more patients get a higher weight (see Table 14 from
the Appendix):

𝑊
𝑝

𝑖
=
Number of patients at time point 𝑖

Total number of patients
. (4)

The equation of wBER is

wBER =
∑𝑊
𝑝

𝑖
⋅ 𝑊
𝑡

𝑖
⋅ BER
𝑖

∑𝑊
𝑝

𝑖
⋅ 𝑊𝑡
𝑖

. (5)

3. Results and Discussion

3.1. Results

3.1.1. LOPO When Using All Modalities. Table 7 from the
Appendix shows how different classifiers perform on com-
plete and on imputed features when using all MRmodalities.

We selected the best 6 classifiers (marked by bold font in
Table 7) and present their detailed BER results for each time
point in Table 2.

Table 3 shows the detailed BER results for each time point
for the best 6 classifiers (marked by bold font in Table 7) when
using data with imputed features.

3.1.2. LOPO When Using Each Modality. Table 4 shows how
the best 6 supervised classifiers (marked by bold font in
Table 7) perform on complete features when using each MR
modality separately.

Tables 8, 9, and 10 from theAppendix list the performance
of the best supervised classifiers (marked by bold font in
Table 7) when using, respectively, perfusion, diffusion, or
spectroscopy data separately, considering complete features
only.

Table 7: Weighted BER for supervised and semisupervised classi-
fiers trained on complete and imputed data. We marked the best 6
classifiers by bold font.

Weighted BER Complete
features

Imputed
features Average

dLDA 0.172 0.216 0.194
SVM-lin 0.276 0.242 0.259
SVM-poly 0.285 0.334 0.310
SVM-rbf 0.493 0.520 0.507
SVM-mlp 0.136 0.352 0.244
Bayesian
LSSVM 0.371 0.469 0.420

LSSVM-lin 0.452 0.280 0.366
LSSVM-poly 0.462 0.362 0.412
LSSVM-rbf 0.408 0.320 0.364
Random forests 0.148 0.294 0.221
AdaBoost 0.505 0.324 0.415
LogitBoost 0.148 0.335 0.242
GentleBoost 0.296 0.308 0.302
RobustBoost 0.148 0.325 0.237
LPBoost 0.505 0.256 0.381
TotalBoost 0.505 0.289 0.397
RUSBoost 0.281 0.308 0.295
Classification
tree 0.268 0.346 0.307

3-NN
(correlation) 0.357 0.428 0.392

Pattern net 0.449 0.288 0.366
Feed forward
net 0.399 0.411 0.405

Cascade
forward net 0.586 0.485 0.535

Fit net 0.535 0.350 0.443
LDS 0.442 0.534 0.488
SMIR 0.278 0.436 0.357
S4VM 0.456 0.473 0.465

Table 5 shows how the best 6 classifiers (marked by bold
font in Table 7) performon imputed features when using each
MR modality separately.

Tables 11, 12, and 13 from the Appendix list the perfor-
mance of the best supervised classifiers (marked by bold font
in Table 7) when using, respectively, perfusion, diffusion, or
spectroscopy data separately, considering imputed features
only.
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Table 8: Detailed BER results for each time point for the best 6 supervised classifiers when using the leave-one-patient-out method on
complete perfusion features.The decisionmomentmarked by bold font. Some time points do not have results because there were no complete
perfusion measurements.

BER on perfusion Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
𝐿 + 5 — — — — — —
𝐿 + 4 — — — — — —
𝐿 + 3 0 0 0 0 0 0
𝐿 + 2 0 0 1 0 0 0
𝐿 + 1 0 0 1 0 0 0
L 0 0.217 0.05 0 0 0.05
𝐿 − 1 0 0.187 0.187 0 0 0.187
𝐿 − 2 0.25 0.25 0.375 0.25 0.25 0.25
𝐿 − 3 0.5 0.5 0.5 0.5 0.5 0.5
𝐿 − 4 1 1 1 1 1 0.5
𝐿 − 5 0.25 0.25 0.25 0.5 0.5 0.5
𝐿 − 6 0.5 0.5 0.5 0.5 0.5 0.5
𝐿 − 7 1 1 1 1 1 1
𝐿 − 8 — — — — — —
𝐿 − 9 0 0 0 0 0 0
𝐿 − 10 — — — — — —
𝐿 − 11 0 0 0 0 0 0

Table 9: Detailed BER results for each time point for the best 6 supervised classifiers when using the leave-one-patient-out method on
complete diffusion features.The decisionmoment marked by bold font. Some time points do not have results because there were no complete
diffusion measurements.

BER on diffusion Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
𝐿 + 5 — — — — — —
𝐿 + 4 — — — — — —
𝐿 + 3 0 0 0 0 0 1

𝐿 + 2 0 0.25 0 0 0 0.5

𝐿 + 1 0 0 0 0 0 0

L 0.217 0.1 0.1 0.217 0.217 0.267
𝐿 − 1 0.562 0.25 0.125 0.562 0.562 0.562
𝐿 − 2 0.5 0.25 0.5 0.5 0.5 0.375
𝐿 − 3 0.5 0.75 0.75 0.5 0.5 0.25
𝐿 − 4 0.5 1 0.5 0.5 0.5 0.5
𝐿 − 5 0.25 0.25 0.5 0.5 0.5 0
𝐿 − 6 0.5 0 0.5 0.5 0.5 0
𝐿 − 7 0 0 0 0 0 0
𝐿 − 8 — — — — — —
𝐿 − 9 1 1 1 1 1 0
𝐿 − 10 — — — — — —
𝐿 − 11 1 1 1 1 1 0

3.1.3. In-House Imputation Strategy versus Built-In Imputation
Strategy. Table 6 shows howdifferent classifiers performwith
our in-house imputation of missing values (Section 2.4)
versus the built-in imputation strategy of missing values for
the classifiers marked in Table 1.

3.2. Discussion. A first conclusion that we can draw from
a comparative analysis of the different classifiers is that we

obtain the lowest error when training classifiers on data with
complete features and not on data with imputed features, no
matter the imputation method (our in-house method or the
built-in method). In order to improve the performance of
classifiers, improving the quality of the data would help.

The lowest error when using complete features is around
0.14 (SVM-mlp—0.136), while if we use imputed features the
lowest error is 0.216 (dLDA). The best classifiers on complete
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Table 10: Detailed BER results for each time point for the best 6 supervised classifiers when using the leave-one-patient-out method on
complete spectroscopy features. The decision moment marked by bold font. Some time points do not have results because there were no
complete spectroscopy measurements.

BER on spectroscopy Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
𝐿 + 5 — — — — — —
𝐿 + 4 — — — — — —
𝐿 + 3 0 0 0 0 0 0

𝐿 + 2 1 0.75 0.75 1 1 1

𝐿 + 1 1 1 1 1 1 0

L 0.55 0.583 0.632 0.6 0.55 0.583
𝐿 − 1 0.562 0.562 0.813 0.5 0.562 0.687
𝐿 − 2 0.625 0.625 0.25 0.625 0.75 0.875
𝐿 − 3 0.25 0.5 0.25 0.5 0.5 0.25
𝐿 − 4 0.5 0.5 1 0.5 0.5 1
𝐿 − 5 0.5 0.5 0 1 1 1
𝐿 − 6 0.5 0 0.5 0.5 0.5 0.5
𝐿 − 7 0 0 1 0 0 0
𝐿 − 8 — — — — — —
𝐿 − 9 1 1 1 1 1 0
𝐿 − 10 — — — — — —
𝐿 − 11 1 1 1 1 1 0

Table 11: Detailed BER results for each time point for the best 6 supervised classifiers when using the leave-one-patient-out method on
imputed perfusion features. The decision moment marked by bold font.

BER on perfusion Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
𝐿 + 5 0 0 0 0 0 0
𝐿 + 4 0 0 0 0 0 0
𝐿 + 3 0 0.25 0 0 0 0.25
𝐿 + 2 0.125 0 0 0.125 0 0.125
𝐿 + 1 0.171 0.071 0.071 0.171 0.071 0
L 0.127 0.109 0.043 0.127 0.043 0.109
𝐿 − 1 0.130 0.196 0.152 0.214 0.130 0.279
𝐿 − 2 0.444 0.528 0.472 0.389 0.444 0.417
𝐿 − 3 0.418 0.464 0.418 0.373 0.418 0.281
𝐿 − 4 0.475 0.475 0.475 0.412 0.475 0.512
𝐿 − 5 0.687 0.687 0.687 0.625 0.687 0.562
𝐿 − 6 0.567 0.567 0.567 0.567 0.567 0.567
𝐿 − 7 0.5 0.5 0.5 0.5 0.5 0.5
𝐿 − 8 0.5 0.5 0.5 0.5 0.5 0.5
𝐿 − 9 0.333 0.5 0.5 0.333 0.333 0.333
𝐿 − 10 0.5 0.5 0.5 0.5 0.5 0.25
𝐿 − 11 0.5 0.5 0.5 0.5 0.5 0

features are ensemble classifiers (random forests and boosting
algorithms), dLDA, and SVM, while the best classifiers on
imputed features are dLDA, SVM-lin, and random forests.

If we compare the results of single MR modalities when
training classifiers on data with complete features, we can say
that the use of spectroscopy only leads to the worst results
with a minimum error of 0.561. The single use of perfu-
sion generates better results than using only diffusion data,
especially when using ensemble methods (random forests,
LogitBoost, and RobusBoost), with a minimum error of
0.148 compared to 0.255. When using imputed features, the
minimum error almost doubles.

An interesting aspect when looking at detailed measure-
ments on complete features (Table 2) is the fact that we have
error equal to zero (perfect classification), one time point
before the actual labeling according to the RANO criteria,
when using random forests, LogitBoost, or RobustBoost.This
means that we can predict the patient outcome (progressive,
responsive) with 100% accuracy one time point (i.e., about 1
month in our study) earlier than the actual clinical decision
was made. When looking at each MR modality separately
(Tables 8, 9, and 10) we notice that the same result could have
been obtained by using solely the perfusion data.This is a very
important finding, mainly because perfusion is very fast to
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Table 12: Detailed BER results for each time point for the best 6 supervised classifiers when using the leave-one-patient-out method on
imputed diffusion features. The decision moment marked by bold font.

BER on diffusion Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
𝐿 + 5 0 0 0 0 0 0
𝐿 + 4 0 0 0 0 0 0
𝐿 + 3 0 0 0 0 0 0.25
𝐿 + 2 0 0.125 0 0 0 0
𝐿 + 1 0.1 0.243 0.243 0.1 0.1 0.314
L 0.105 0.297 0.192 0.105 0.105 0.420
𝐿 − 1 0.254 0.257 0.257 0.254 0.254 0.424
𝐿 − 2 0.361 0.25 0.25 0.361 0.361 0.278
𝐿 − 3 0.282 0.473 0.473 0.282 0.282 0.436
𝐿 − 4 0.45 0.637 0.637 0.45 0.45 0.387
𝐿 − 5 0.562 0.5 0.562 0.562 0.562 0.437
𝐿 − 6 0.433 0.367 0.533 0.433 0.433 0.433
𝐿 − 7 0.5 0.5 0.5 0.5 0.5 0.75
𝐿 − 8 0.667 0.167 0.667 0.667 0.667 0.667
𝐿 − 9 0.667 0.667 0.667 0.667 0.667 0.5
𝐿 − 10 0.75 0.75 0.75 0.75 0.75 0.75
𝐿 − 11 1 0.5 1 1 1 1

Table 13: Detailed BER results for each time point for the best 6 supervised classifiers when using the leave-one-patient-out method on
imputed spectroscopy features. The decision moment marked by bold font.

BER on spectroscopy Random forests dLDA SVM-lin LogitBoost RobustBoost SVM-mlp
𝐿 + 5 0 0 0 0 0 0
𝐿 + 4 0 0 0 0 0 0
𝐿 + 3 0 0 0 0 0 0.25
𝐿 + 2 0.25 0.25 0.125 0.25 0.25 0.25
𝐿 + 1 0 0 0 0 0 0
L 0.562 0.504 0.609 0.587 0.543 0.569
𝐿 − 1 0.293 0.337 0.380 0.315 0.293 0.359
𝐿 − 2 0.389 0.389 0.389 0.389 0.389 0.389
𝐿 − 3 0.436 0.436 0.381 0.436 0.436 0.336
𝐿 − 4 0.55 0.55 0.612 0.55 0.55 0.55
𝐿 − 5 0.687 0.687 0.562 0.687 0.687 0.687
𝐿 − 6 0.433 0.433 0.533 0.6 0.433 0.433
𝐿 − 7 0.75 0.75 0.875 0.75 0.75 0.75
𝐿 − 8 0.667 0.667 0.667 0.667 0.667 0.667
𝐿 − 9 0.667 0.167 0.667 0.667 0.667 0.667
𝐿 − 10 0.75 0.75 0.25 0.75 0.75 0.75
𝐿 − 11 1 1 1 0.5 1 1

measure (2-3 minutes) and it has the lowest rate of missing
data, which makes it reliable. Our study is not the only
one that shows that perfusion parameters are very reliable
when it comes to differentiating between tumour tissues and
other tissues. Multiple studies (among others Barajas Jr. et al.
[55] and Hu et al. [56]) prove that perfusion parameters
are strongly correlated with tumour progression and overall
survival. The main reason behind this strong correlation is
the fact that tumours grow very fast, so they require large
amounts of nutrients to develop, which is reflected in the
angiogenesis of the tumour. This increase in angiogenesis is
visualised and measured using perfusion imaging.

When comparing the two methods of imputing missing
values, our in-house method (Section 2.4), and the classifier-
dependent built-in strategies, the difference between them
is not important with respect to the performance of the
classifiers.

Usingmachine learning for classification of brain tumoral
tissue is a field with an increasing amount of work.

In [57] Hu et al. use a support vector machine approach
on multiparametric MRI (perfusion, diffusion, and anatom-
ical MRI) to automatically differentiate between radiation
necrosis voxels and progressive tumour voxels coming from
patients with resected GBM.They optimize a one-class SVM
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Table 14: Number of samples for each time point. The decision
moment marked by bold font.

Number of complete
samples

Number of imputed
samples

𝐿 + 5 0 2
𝐿 + 4 0 2
𝐿 + 3 1 3
𝐿 + 2 3 8
𝐿 + 1 1 12
L 13 29
𝐿 − 1 9 29
𝐿 − 2 6 24
𝐿 − 3 3 16
𝐿 − 4 2 13
𝐿 − 5 2 12
𝐿 − 6 2 8
𝐿 − 7 1 6
𝐿 − 8 0 5
𝐿 − 9 1 4
𝐿 − 10 0 3
𝐿 − 11 1 2

based on the area under receiver operator curve from 6000
training voxels manually delineated from 8 patients and then
tested on manually delineated voxels from 8 new patients.
Their results show that perfusion and diffusion have a high
discrimination rate between radiation necrosis and tumour
progression.

In [55] Barajas Jr. et al. use perfusion MR imaging to
investigate which parameters can be used to differentiate
between recurrent GBM and radiation necrosis. Their study
was based on 57 patients, they used Welch 𝑡 test to compare
measurements between groups, and they found that all perfu-
sion parameters (relative CBV, peak height, and percentage of
signal intensity recovery) are strongly correlated with tumour
progression.

In [56] Hu et al. use perfusion metrics on contrast
enhancement lesions (CBV mean, mode, maximum, width,
and a new thresholding metric called fractional tumor bur-
den (FTB)) to see how they correlate to overall survival (OS).
Their studywas based on 25 patients with recurrentGBMand
found that all parameters are strongly correlated with OS.

In [58]Weybright et al. used chemical shift imaging (CSI)
to differentiate voxels with tumour recurrence and radiation
injury. Their study was based on 29 patients and they had
high quality data for 28 of them (97%). They found that
the Cho/NAA and Cho/Cr ratios may be the best numerical
discriminators between tumour recurrence and radiation
injury.

Although we cannot compare our results directly to
the ones from the studies presented before due to different
approaches on classifying different tissues, it is becoming
more obvious that a learning algorithm based on multi-
parametric MR data will evolve in the near future and will

help clinicians in differentiating between progressive tumoral
tissue and other types (necrotic or normal).

4. Conclusions

In this paperwe compare different supervised and semisuper-
vised classifiers. We train them on multiparametric MR data
with complete and imputed features. The data was acquired
from 29 patients selected from follow-up studies of GBM.
We investigate the leave-one-patient-out testing method and
come to the conclusion that the same label according to
the RANO criteria could have been put earlier with at least
one month with 100% accuracy, if we train random forests,
LogitBoost, or RobustBoost on data with complete features.
More interesting is the fact that the same result is achieved by
the same classifiers using only complete perfusion data.

For future work we plan on using the temporal evolution
of the featureswhen classifying differentMR sessions and also
allowupdating the class labels in time.Moreover, we are going
to try newmethods of processing the rawMRdata to improve
the quality of it.

Appendix

In Tables 7–14 we use balanced error rate (BER) andweighted
balanced error rate (wBER) to present the performance of the
classifiers. BER and wBER are numbers between 0 and 1, 0
being perfect classification and 1 being total misclassification.
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