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The objective is to test automated in vivo estimation of active and passive
skeletal muscle states using ultrasonic imaging. Current technology (electro-
myography, dynamometry, shear wave imaging) provides no general,
non-invasive method for online estimation of skeletal muscle states.
Ultrasound (US) allows non-invasive imaging of muscle, yet current compu-
tational approaches have never achieved simultaneous extraction or
generalization of independently varying active and passive states. We use
deep learning to investigate the generalizable content of two-dimensional
(2D) US muscle images. US data synchronized with electromyography of
the calf muscles, with measures of joint moment/angle, were recorded from
32 healthy participants (seven female; ages: 27.5, 19–65). We extracted
a region of interest of medial gastrocnemius and soleus using our prior
developed accurate segmentation algorithm. From the segmented images, a
deep convolutional neural network was trained to predict three absolute,
drift-free components of the neurobiomechanical state (activity, joint angle,
joint moment) during experimentally designed, simultaneous independent
variation of passive ( joint angle) and active (electromyography) inputs. For
all 32 held-out participants (16-fold cross-validation) the ankle joint angle,
electromyography and joint moment were estimated to accuracy 55 ± 8%,
57 ± 11% and 46 ± 9%, respectively. With 2D US imaging, deep neural
networks can encode, in generalizable form, the activity–length–tension
state relationship of these muscles. Observation-only, low-power 2D US ima-
ging can provide a new category of technology for non-invasive estimation
of neural output, length and tension in skeletal muscle. This proof of principle
has value for personalized muscle assessment in pain, injury, neurological
conditions, neuropathies, myopathies and ageing.
1. Introduction
There is a current unmet medical demand for personalized in vivo skeletal muscle
analysis. Muscle-related pain, injury and dysfunction represent an enormous
socio-economic cost, including the cost of medical treatment, work absence and
long-term decreased ability to perform activities of daily living which exceeds
that estimated for heart disease, cancer or diabetes [1,2]. This need arises in con-
ditions of pain/injury (work-related injury, neck–back–leg pain and injury),
arthritic conditions, neurological conditions (dystonia, motor neuron disease),
myopathies (myositis), neuropathies (nerve injury, spinal cord injury) and
changes associated with ageing (motor unit loss) [3,4]. Work-related upper limb
and neck musculoskeletal disorders are among the most common occupational
disorders around the world [5]. Personalized assessment requires available,
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non-invasive, accurate, objective measurement of function and
condition for skeletal muscles throughout the body [2–4,6,7].

Themechanical functionofmuscle is todeliver force.Muscle
comprises muscle fibres embedded within a collagenous endo-
mysial network [8]. This dynamic three-dimensional (3D)
structure, observable by ultrasound (US) as shape and texture
[7], transmits muscle force along the distributed curvilinear
path between the origin and insertion of each muscle [3,4].
We hypothesize that the dynamic state of skeletal muscle is
encoded by the three-dimensional collagenous structure, and
is observable by two-dimensional (2D) US images [3,4].

Intrinsicmuscle properties are driven by twomain indepen-
dent inputs: active neural drive and length (origin–insertion
distance), which determine the dynamic state of muscle (elec-
tronic supplementary material, figure A). The state is termed
‘neurobiomechanical’ because the state vector comprises one
neural (activity) and two biomechanical (length, tension) com-
ponents, defined here as (activity, joint angle, joint moment)
[9]. Neural drive causes metabolically active contraction in
muscle fibres. This internally generated pattern of tension con-
tracts the internal collagenous structure, which shortens the
muscle tissue and stretches the tendon tissue connecting
muscle to bone. Joint angle reflects external forces (gravita-
tional, contact, inertial) imposed on muscle. External force
stretches the collagenous structure passively from outside and
lengthens both the muscle and tendon. Because of the different
active versus passive force transmission patterns, we hypoth-
esize that the three components (activity, length, tension) are
encoded instantaneously and independentlywithin the collage-
nous structure and in a formgeneralizable between individuals.

If correct, this hypothesis provides the basis for a new
approach to acquire information from muscle. Particularly sig-
nificant is the potential to measure neural output from deep
muscles. Also significant is the potential to use the intrinsic col-
lagen-encoded activity–length–tension relationship tomeasure
length and tension simultaneously using observation alone.

Current technology provides no general, non-invasive
solution for measuring specific muscle states. Magnetic reson-
ance (MR) allows low-frame-rate (less than 10 Hz) imaging of
musculoskeletal structures in inactive supine posture or limited
movement [10]. Electromyography (EMG), subject to many
well-known problems [11], can measure only the neural
component excluding the biomechanical (length, tension). Non-
invasive, surfaceEMGis limited to superficialmuscles, excluding
general access to deep clinically important muscles in the neck,
trunk and limbs. Intramuscular EMG can provide invasive
measurement. Clinical neurophysiologists typically use needles
and avoid deep muscles to prevent thoracic or spinal puncture.
Dynamometry provides non-invasive measurement of joint
moment and cannot provide muscle-specific measurement.

US allows non-invasive imaging of skeletal muscle to full
anatomical depth (5–6 cm in the spine [7], up to 17 cm for the
diaphragm [12]). Perturbation methods, such as supersonic
shear wave imaging and shear wave elastography (SWE)
[13,14], induce a shearwaveandmeasure its propagation through
muscle [13]. Using multiple assumptions, the combination of a
known stress with an observed strain pattern provides non-
invasive estimates of regional stiffness within cross-sectional
areas of specific muscles [14,15]. There are limitations to SWE.
Transmissionpowersafety regulations limitdepthof theadequate
shear wave to 3–4 cm [16], which excludes the deepest muscles.
SWE does not resolve active from passive force. Correlations
with measured force are subjective, requiring calibration to
person-specific maximum voluntary contraction (MVC). SWE
has a maximum sampling rate of 1 Hz [14]. Standard frame-
rate (25–100 Hz), B-mode imaging is clinically ubiquitous,
non-invasive, low cost and portablewithminimal exclusion cri-
teria, but does not reveal the tension state of skeletalmuscle [16].

In summary, there is an unmet need for a non-invasive
estimation of skeletal muscle states. We ask the reader to view
electronic supplementary material, video S1, which shows a
US recording of the calf muscles undergoing simultaneous,
independent change in active and passive input. From any
single image, by comparisonwith any image selected as a base-
line, could the reader estimate the instantaneous absolute
activity, joint angle and jointmoment? This paper demonstrates,
by proof of principle, that using deep learning (DL) and stan-
dard observation-only 2D US, three components of the
dynamic neurobiomechanical state (activity, joint angle, joint
moment) can be recovered directly from US images of muscle
from people outside the training set.
2. Context of technical contribution
Several authors have highlighted the nonlinear relationship
between muscle image features (muscle thickness, length)
and a singly varying external input such as EMG or joint
angle (e.g. [17–19]). With respect to skeletal muscle, research
has focused on computational extraction of predefined, or
partially defined, intuitive low-resolution features such as
pennation angle, fascicle length, muscle shearing, fascicle cur-
vature, muscle thickness and cross-sectional area [17,20–40].
Common limitations are lack of fully automated segmentation
of muscles and features, manual initialization of analysis, con-
founding effect of non-muscle structures such as blood vessels
and cumulative drift arising from feature-tracking methods
[18,21,23,29,39–41].Muscle is a complex 3D time-varying struc-
ture in which features leave or enter the image plane; hence,
features are inherently impossible to track using pure feature-
tracking methods [42,43]. Regulated tracking [23,43] is closely
related to feature engineering. Some presupposition about
the information content is made and a technique is developed
tomeasure and use that information to regulate spurious track-
ing points. However, consistent features suitable for regulation
are generally lacking.

The intrinsic encoding and estimation of more than one
simultaneously varying component (activity, joint angle,
joint moment) has never been demonstrated. Currently, no
method has demonstrated automated robust (multiple held-
out participants) generalization to new participants and no
method extracts the complete state in general conditions
where the inputs (activity, joint angle) vary independently.

The development [44–54] of DL provides a framework for
encoding the content of US images in relation to measured
data (EMG, angle, moment). DL is a technique for building arti-
ficial neural network (ANN) representations of data in a layer-
wise fashion, where each layer models increasingly abstract/
complex features of thedata.DL facilitatesmodelling of complex
featureswithout a priori assumptions of the descriptive features.
ANNs can learn nonlinear functions to map data (images) to
labels (EMG, moment, joint angle). Even without many (or
any) labels (which may often be the case with respect to deep
muscles) features can be extracted using generative models
such as restricted Boltzmann machines [44,55], deep belief net-
works [56], deep (variational) autoencoders/autoassociators
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Figure 1. Experimental set-up. The participant stood upright on a foot pedal system (yellow), while strapped (red) at the chest to a backboard and observed an
oscilloscope at eye level. A US probe (green) was attached to the left calf to image the gastrocnemius medialis (GM) and soleus (SO) muscles (right: greyscale). A
wireless EMG sensor was attached to GM and to SO at standard locations (http://www.seniam.org/). By contracting their calf muscles, the participant matched the
GM EMG feedback signal (blue) to the target signal (red) presented on the oscilloscope. A pedal signal (red) rotated the pedals and ankle joint angle at the
rotational axis (blue arrows).
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[46,57–59], or more recently generative adversarial networks
(GANs) [60]. These features can be either analysed directly
(using statistics or distance metrics) or re-mapped to relatively
few labels. If large volumes of labelled data exist, a convolu-
tional neural network (CNN) can be trained directly on the
data to predict the labels, which can be continuous or discrete.
CNNsworkwell for understanding the content of static images
[48] or speech [61], and more recently deep residual networks
(ResNet) have surpassed human-level performance [62] on the
ImageNet image recognition competition. CNNs have also
demonstrated the ability to track local motion [63], which
means that, unlike standard feature tracking, a CNN can
measure the dynamic state (two temporally different frames)
of local features, while simultaneously having access to the
static state (or pose) information. Use of historical states, per-
haps with recurrent or long short-term memory networks,
can also be valuable. For this investigation of a new hypothesis
(that the instantaneous collagen structure encodes states), we
avoided temporal ANN models since they cloud the issue,
are comparatively difficult and time-consuming to train and
would complicate generalization to different US acquisition
rates (e.g. ultrafast US > 1000 Hz versus standard 25–100 Hz).

We use DL (CNNs) to map individual frames with a
contextual reference frame (prior) to absolute (drift-free) states
measured by other means (ankle angle, muscle EMG). This
work is not a study of different CNN architectures. This work
tests, for the first time, whether or not the three components of
the absolute neurobiomechanical state can be estimated using
DL. This work is informed by our own prior investigation [64],
combined with developments in the field [62,65].
3. Methods
3.1. Experimental design and overview of methods
We test the hypothesis that US images alone contain the infor-
mation required to model the state of muscle and to resolve
that state into the two independent inputs which created it. We
identify the two main independent inputs as muscle activity
and joint angle. We select two muscles, gastrocnemius medialis
(GM) and soleus (SO), for which both inputs can be manipulated
and measured to provide ground truth. We design apparatus
and a protocol, which allows us to vary each input indepen-
dently and simultaneously, to create a dataset of muscle US
images populating the space of possible neurobiomechanical
states. We investigate a form of supervised learning (CNNs) for
their potential to learn, with minimal overfitting, the temporal
variation of biomechanical states and we use 16-fold cross-
validation providing genuine held-out test results for all 32 of
our participants to test our hypothesis.

3.2. Data acquisition
Thirty-two healthy participants (seven female; ages 19–65, mean
27.5) stood upright on a programmable/controllable foot pedal
system while strapped at the chest to a backboard (figure 1).

Joint angle refers to plantar-flexion/dorsiflexion of the ankle
joint. The participant was restrained, maintaining a straight leg
and standing flatfoot on the pedal system. Joint angle is measured
by rotation of the pedals from horizontal. The calf muscles deliver
force through the Achilles tendon. This force rotates the foot rela-
tive to the shin. Joint moment is the rotational effect of the
combined muscle forces acting around the joint axis of rotation.
For the range of motion studied, ankle moment is approximately
proportional to the summed calf muscle force. We measured
ankle moment using a calibrated strain gauge mounted on the
under-side of the foot pedals.

EMG is the electrical activity arising from the active contrac-
tion of the muscle fibres. Surface rather than intramuscular
electrodes provide the best global measure of muscle activity
[66,67] and so this electrical activity is recorded from the skin
surface above the muscle using electrodes (Trigno, Delsys Inc.,
USA). We recorded electromyographs from the GM muscle
belly, EMG from SO at its medial superficial location, ankle
joint angle and ankle joint moment, all at 1000 Hz. EMG data
were rectified and low-pass filtered to below 10 Hz.

Using a US scanner (Aloka Prosound SSD 4000+; probe
7.5 MHz, width × depth 5.9 × 5.5 cm), we imaged GM and SO
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Figure 2. Image segmentation and region extraction pipeline. The fully automatic region extraction process occurs prior to neural network training and testing. Left:
a pair of US images is shown, where the ref image represents the reference image; the reference image accompanies a test image as part of a single input to the
neural network. Middle: yellow lines show the automatic segmentation of individual muscles, from which bounding boxes (black rectangles) are positioned on the
centroid oriented orthogonal to the main axis of each muscle. Right: a 128 × 256-pixel region is extracted from the raw images. For each muscle, the label vector
(muscle EMG, joint angle, joint moment) equals the values temporally aligned to the test frame, subtracted from the values temporally aligned to the
reference frame.
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simultaneously in their longitudinal fascicle plane. The imaging
location, angle and depth were chosen to includewithin-plane fas-
cicle collagen content of both muscles, but optimized for GM. The
probewas strapped to the participant tomaintain constant location
during movement [18]. US was recorded at 25 Hz using a frame
grabber (DT 3120; Data Translation). We used Simulink (Matlab,
R2013a; The MathWorks Inc., Natick, MA) to interface with the
laboratory equipment (pedal system and EMG). For video syn-
chronization, a hardware trigger was used to initiate the start of
each trial.

3.3. Tasks
Three distinct tasks were designed to explore the state–function
space of muscle.

3.3.1. Isometric
The pedal systemwas fixed at a neutral angle (flat feet), and partici-
pants observed an analogue oscilloscope. On the oscilloscope, we
displayed, side by side, a dot representing the amplitude of their fil-
tered GM EMG signal, and a dot representing the amplitude of a
fabricated (target) signal (see §3.2). Participants were asked to con-
tract their calf muscles by pushing down their toes in order to
match their EMG with the target signal, while simultaneously
keeping their foot in full contact with the static pedals.

3.3.2. Passive
Participants observed an analogue oscilloscope. On the oscillo-
scope, we displayed, side by side, a dot representing the
amplitude of their filtered GM EMG signal and a dot representing
the zero amplitude target. Participants were asked to monitor and
minimize any EMG activity by relaxing their muscles. The pedal
systemwas driven using a fabricated signal (see §3.4). Participants
were asked to allow their ankle to rotate and keep their feet in full
contact with the moving pedals.

3.3.3. Combined
The pedal system was fixed at a neutral angle (flat feet) and par-
ticipants observed an analogue oscilloscope. On the oscilloscope,
we displayed, side by side, a dot representing the amplitude of
their filtered GM EMG signal and a dot representing the ampli-
tude of a fabricated (target) signal (see 3.4). The pedal system
was simultaneously driven using a different fabricated signal
(see §3.4). Participants were asked to contract their calf muscles
by pushing down their toes in order to match their EMG with
the target signal, while simultaneously keeping their foot in
full contact with the static pedals.

Trials were 190 s in length; this consisted of 10 s of neutral
standing (i.e. no signals were used to move the pedals or the
dot on the screen), followed by 180 s of trial. Data ranges are
shown in §4.3.

3.4. Designing the labels
Two signals (active contraction, passive joint rotation) were
designed to manipulate the two independent muscle inputs.
Both signals were derived from the following bases.

Active contraction (target dot on the screen to guide calf
muscle contraction). (1) For the first 10 s signal a was used, and
every 10 s thereafter we alternated between signals a and b.
(2) After 30 s signal c was used, and every 30 s thereafter either
signal a or b was used depending on the first rule.

Passive joint rotation (pedal angle). (1) For the first 20 s signal a
was used, and every 20 s thereafter we alternated between sig-
nals a and b. (2) After 60 s signal c was used, and every 60 s
thereafter either signal a or b was used depending on the first
rule. The signals were designed to produce transient correlations,
de-correlations and anti-correlations to maximize exploration of
the muscle input state space. The correlation of the two signals
was r = 0.33, p = 0 (Pearson) and r = 0.34, p = 0 (Spearman).
Pedal rotations ranged from 9.32° dorsiflexion to 13.79° plan-
tar-flexion with respect to the neutral angle. Pedal velocities
were distributed from approximately −10 to +10° s−1 (electronic
supplementary material, figure B).
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3.5. Segmentation and region extraction
To map muscle-specific EMG to a muscle-specific image, we
extracted regions of superficial (GM) and deep (SO) muscle
tissue (figure 2). Analysis of restricted, standardized regions
enabled us to maximize the spatial resolution while reducing the
computational dimensions and complexity. First, an expert
(R.J.C.) annotated the internal boundaries of the medial GM and
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±15 pixels. Then we sample a random rotation parameter (±5°) per muscle and rotate each pair of muscle images independently. Finally, we sample a random
translation parameter (±10 pixels) per muscle and translate each pair of muscle images independently. CNN pipeline: two CNNs with shared parameters and a dense
layer (FC) encode each muscle separately. In the final layer, four linear units connect to the FC layers of each CNN: the ankle moment and ankle joint angle units are
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SO muscles in 500 randomly selected images, of which 100 were
selected randomly for testing. After interpolating the annotations
to a standard 80-point vector, a principal component model was
constructed from the remaining 400 images. An active shape
model [68], constructed from just 10 principal components (>
99%), was used to guide a heuristic search with a large profile
search range (±30 pixels about the contour). No initial segmenta-
tion was used; the increased profile range was an ample aid to
match distant contours. The search was conducted at full resol-
ution ± 10 pixels about each contour point. For more details, see
[7]. The entire dataset (> 400 000 images) was segmented.

To standardize the image input, we extracted a rectilinear
region (x × y = 256 × 128 pixels≈ 29.4 × 14.6 mm; figure 2) about
the centroid of each muscle, orthogonal to the main axis of the
muscle. The main axis was calculated as the linear least-square
fit to mean segmentation over the whole trial sequence. This
region captures the muscle tissue rather than the tendon, which
connects muscle to bone.

3.6. Neural network architecture
Our primary concern was to choose an architecture for which the
model was large enough to minimize adequately the training
error. The second main concern was to maximize generalization
and minimize computation. Using our previous experience [64],
our strategy was to train a large model, with state-of-the-art
regularization (dropout) in multiple layers, while evaluating per-
formance on held-out validation data. Unlike our original study
[64], we additionally address the deep muscle (SO), and this
decision inspired a CNNarchitecturewherein a CNNmodel is cre-
ated and applied permuscle, and theweightswere shared between
models as a regularizer (figure 3). We are not the first to use this
type of architecture [69], though the application of it is novel.

The learning objectives are different for each of the muscle-
specific CNN models. The muscle-specific EMG should be pre-
dicted from the relevant muscle to ensure that the estimation of
muscle activity came from the target muscle. However, the ankle
angle and ankle moment should be estimated from the states of
both muscles combined. To meet this objective, information/
gradient flow was gated using a binary mask for the relevant
learning objectives (figures 2 and 3). Data augmentation was
implemented online at the input to each CNN (figure 3).

3.7. Online data augmentation
To aid convergence as well as generalization, local contrast nor-
malization (LCN) was applied to each image via a graphics
processing unit (GPU) with a local field of 31 square pixels
(figure 3). During training, to help prevent overfitting and account
for (intra/inter)-participant variation in muscle region extraction,
linear transformations (rotation and translation) were applied to
the reference image and the target image per muscle. The same
transformation was applied between reference and target
images, but not between muscles (i.e. each muscle had its own
transformation). Rotations and translations were randomly
sampled from a uniform distribution between −5° and 5° and
−16 and 16 horizontal/vertical pixels, respectively. Transform-
ations were carried out on a GPU using linear interpolation with
no extrapolation, where zeros filled the extra pixels (figure 3).
3.8. Training and cross validation
The input to the neural network was a pair of images, a reference
image (frame 1) and a target image (any frame within a trial), and
the labels. The labels for each input were the test frame-aligned
EMG, ankle angle and ankle moment minus the reference frame-
alignedEMG, ankle angle and anklemoment. Labelswere normal-
ized to unit standard deviation. The learning objective was to
predict the difference in the independent states of the muscles
between two images. To reduce bias in the input channel of the net-
work corresponding to the reference image, we doubled the
training set by swapping the reference and target frames. We ran-
domly sampled reference and target frames to increase further the
size of the training set. The final training set contained over 1
million pairs of images.

To train our models, we minimized the mean absolute error
(MAE) between the model output and the normalized labels
(EMG, joint moment, joint angle) using adaptive moment esti-
mation (ADAM: [70]) with alpha = 0.999 and beta 0.9 and a
learning rate of 5 × 10–5. To prevent saturating units [64], exponen-
tial linear units were used in all layers except the output layer,
which was linear. Prior to training, all biases were initialized to
0, and all weights were initialized using

var(w) ¼ 2
fan in

,

where w is the normal distributed weight vector of a single unit/
node and fan_in is the size of the input vector to that unit.

The train, test and validation errors were measured period-
ically during training to allow selection of optimal models using
test and validation errors. We used 16-fold cross-validation: for
each fold unique combinations of validation and test data were
used to assess performance of the model within the fold. Within
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each fold, a test set of one held-out participant (approx. 12 500
samples) and a validation set of one held-out participant
(approx. 12 500 samples) was created (where none of the test/vali-
dation participants were used in training). For each fold, the
validation set was used to choose the optimal test model and the
test set was used to select the optimal validation model. This pro-
cess yielded 16 unique neural networks with genuine held-out
results for all 32 participants. To regularize our models, we used
a dropout scheme similar to [65], where dropout was applied to
every layer with larger dropout rates in layers closer to the
output of the model. That dropout strategy circumvented the
need to try variations of dropout, requiring repeated training
and model evaluation as in [64]. As additional regularization
and detection of convergence, early stopping was used where
the model with the lowest test/validation error was taken after
both test and validation errors did not decrease for more than
eight error evaluations.

Errors are reported using MAE of all samples (i of n) for each
signal. To report accuracy of estimate Y in the context of time-
varying signal y, we use

Accuracy ¼ 100 – SMAPE,

where SMAPE (symmetric mean absolute percentage error) is

SMAPE ¼ 100%
n

Xn
i¼1

jYi � yij
ðjYij þ jyijÞ=2 :

3.9. Software and tools
All ANN and segmentation software was developed from first
principles by R.J.C. using C/C++ and CUDA-C (NVidia Corpor-
ation, California). No libraries other than std CUDA libraries
(runtime version 8.0 cuda.h, cuda_runtime.h, curand.h, curand_-
kernel.h, cuda_occupancy.h, and device_functions.h), the C++ 11
std library and OpenMP were used.
4. Results
4.1. Segmentation and region extraction
Our requirement for segmentation is accuracy within the data-
set rather than generalization. Croppingwellwithin themuscle
boundary and averaging over the sequence requires millimetre
rather than sub-millimetre accuracy. For the 100 randomly
selected test images, segmentation agreed with the manual
annotations to 0.3 mm2 (approx. 99% intersection over union)
and segmented at approximately 10 images per second.
4.2. Representative neural network output
The CNN estimates the neurobiomechanical state of a muscle
(EMG, moment, angle) for each frame independently of all
other frames (except the reference). The extended representa-
tive sequence from one participant shown in figure 4
illustrates there is no drift in the estimated state components.

Increased activity shortens muscle, stretches the tendon
and increases tension, whereas positive joint rotation (plan-
tar-flexion) shortens the muscle passively and decreases
muscle (and tendon) tension. Activity and positive joint
rotation both reduce strain in (shorten) the collagen structure
but have opposite effects on tension in the same collagen
structure. A key question is whether the CNN can resolve
these independent active and passive changes in muscle.

Consider figure 4; here we describe, qualitatively, the accu-
racy of the estimate in terms of the temporal pattern of states
between frames, the local timing of the estimated versus
actual pattern, the scale and the bias of the local pattern.
Figure 4 shows that the CNN captures the pattern of GM
EMG during isometric and combined conditions and correctly
shows no activity during passive joint rotation. The CNN esti-
mates change in GM activity independently from joint rotation
in isometric, passive and combined conditions. However, the
scale is too small, giving an estimated GM EMG of approxi-
mately 50% of the true signal. For the deep muscle SO, the
CNN distinguishes activity (combined, isometric) from the
passive inactive condition as elevated bias: the CNN also cap-
tures correctly the pattern of EMG activity during combined
conditions; however, the scale of the estimate is substantially
too low. The CNN correctly estimates isometric activity as
increasing moment, positive joint rotation as decreasing
moment, and alternating sign of joint moment during com-
bined conditions. However, again, the scale of the estimate is
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Figure 5. Zoom portion of a representative participant. The zoom shows approximately 40 seconds of contiguous data from a single participant during a trial
constructing combined, independent modulations of ankle joint angle and GM/SO EMG. The figure illustrates how the neural network has separated and modelled
the four independent signals in a representative case. The participant differs from that shown in figure 4. Units are mV, Nm and degrees for EMG, moment and joint
angle (JA), respectively. (Online version in colour.)

Table 1. Summary of neural network test results. This summarizes the results presented in electronic supplementary material, table A. We present the mean,
standard deviation, median, minimum and maximum values for symmetric mean absolute accuracy (100− SMAPE) and mean absolute error (MAE), calculated
over all 32 participants, for each of the four labels: EMG (GM/SO), ankle joint moment and ankle joint angle (JA). Samples are images per participant: the sum
reports all images tested from the complete dataset of 32 participants.

metric samples

100− SMAPE MAE

EMG EMG

GM (%) SO (%) moment (%) JA (%) GM (mV) SO (mV) moment (Nm) JA (°)

mean 12 594 56.90 45.91 46.97 54.57 3.06 2.61 6.11 2.50

standard deviation 2613 11.02 11.06 8.87 7.94 1.02 1.57 3.04 1.28

median 13 944 59.37 45.33 47.60 53.82 2.88 2.18 5.07 2.19

min 8058 35.61 24.26 27.49 43.33 0.59 0.55 2.58 1.06

max 14 971 72.45 69.06 61.54 67.30 5.84 7.56 15.97 6.17

sum 403 023 — — — — — — — —
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too low. The CNN captures the pattern of joint rotation and
absence of rotation, but at a scale that is too low.

Figure 5 illustrates the ability of the CNN to extract simul-
taneous, independent changes in components of the
neurobiomechanical state in both the superficial and the deep
muscles. The CNN captures correctly the distinct, independent
pattern and scale of EMG in GM and SO muscles. The CNN
captures correctly the distinct, independent patterns and
scales of joint rotation, activity and joint moment. While pat-
tern and scale are correct in all quantities, there is a temporal
error, decreasing through time, between US image-derived
estimates and the synchronized electrically recorded signals.
This temporal error reduces the accuracy reported for these
CNN estimates.

To summarize, the CNN separates the independent signals.
During passive conditions the neural network was robust at
predicting little to no active EMG, but a good proportion of
passive motion. During isometric conditions, the CNN
predicted little to no passive motion, but a good proportion
of active EMG. The reported accuracy is adversely affected
mostly by errors in amplitude of prediction and also by some
time-varying temporal misalignment.
4.3. Summary of neural network performance
For each muscle, and using just a single frame referenced to a
common baseline frame, the neural network estimated mean-
ingful values of all three signals (EMG, joint moment, joint
angle). The MAE values for GM EMG, SO EMG, joint
moment and joint angle were 3.1 ± 1.0 mV, 2.6 ± 1.6 mV, 6.1
± 3.0 Nm and 2.5 ± 1.3°, respectively (table 1). In context,
these errors represent 0.58, 0.56, 0.54 and 0.71 of the standard
deviation of each signal, and 0.0056, 0.029, 0.056, 0.11 of the
functional range of each signal where the ranges were
50 mV, 90 mV, 109 Nm and 23°, respectively (table 2). These
results summarize 12 600 ± 2600 (mean ± s.d.) samples



Table 2. Label statistics. Table shows the distribution of labels recorded
over all 32 participants. Negative joint angle represents dorsiflexion
(decrease in angle between foot and shin referenced from flatfoot, i.e. 90°).
Positive angle represents plantar-flexion (increase in angle between foot
and shin referenced from 90°).

EMG

GM
(mV)

SO
(mV)

moment
(Nm) JA (°)

mean 5.62 4.67 16.92 1.24

standard deviation 5.32 4.70 11.30 3.51

median 2.74 2.87 15.23 0.66

min 0.0026 0.0021 −14.77 −9.32
max 50.21 89.58 94.35 13.79
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tested per participant and 403 023 samples in total, tested
using cross-validation.

Accuracy, as a percentage of the time-varying signal, was
56.9 ± 11%, 45.9 ± 11%, 47.0 ± 8.9% and 54.6 ± 7.9%, respectively
(table 1). Performance varied across all 32 participants, with
coefficients of variation in accuracy of 19%, 24%, 19% and
15%, respectively (table 1). There were no individuals for
whom estimation of any signal failed (i.e. accuracy < 0 or
equivalently error larger than signal). Results for all 32 individ-
uals are shown in electronic supplementary material, table A.

Some very high individual accuracies were recorded for
GM EMG with three participants at over 70% and 13 at
over 60%. There were only four participants with accuracy
less than 40%. While accuracy was lowest for SO EMG, accu-
racy for several participants approached 70%. Estimation of
ankle angle was the most stable, with a high average accuracy
of 55% and the lowest standard deviation at 7.9%.
5. Discussion
5.1. The main finding
For two muscles, this investigation tests the hypothesis that
three components (activity, length, tension) of the dynamic
muscle state are encoded instantaneously within the 3D col-
lagenous structure and are observable in generalizable form
by 2D US images. We used novel data collection to generate
403 023 images from 32 participants containing independent
and combined modulation of passive joint rotation and
active neural input to the muscle state. We used deep
CNNs to test whether the complex nonlinear muscle state is
encoded in 2D US images. Our results from 32 genuinely
held-out participants reveal that, to approximately 50% accu-
racy (table 1), the absolute values of EMG of each of the
superficial and deep muscles, the ankle joint angle and the
ankle joint moment are each encoded objectively, in general-
izable form, in 2D US images of the GM and SO calf muscles.

5.2. Technical discussion
This article demonstrates the successful application of CNNs to
predict continuous state variables rather than classify objects.
This is US medical imaging analysis of physiological function
rather than anatomical structure. A survey of the literature
indicates many papers applying CNNs to classification but
few applying CNNs to regression. There are only a few pub-
lished investigations of the architectures, hyperparameters
and results of the application of CNNs to regression and of
the application of CNNs to modelling of complex systems
such as skeletal muscle. Our use of DL to test a scientific
hypothesis is novel. If the CNN can encode the neurobiome-
chanical state from US images of muscle, it demonstrates that
the state is encoded objectively within that muscle tissue.

This application is challenging and hence the neural net-
work’s ability to predict the absolute labels is surprisingly
robust. The prediction of active and passive states from single
images removes the possibility of signal drift. The CNN
resolves active and passive states even when they vary inde-
pendently and incoherently (figure 5, EMG (GM) and JA at
20–45 s). The encoding of this information in the US image is
not trivial or intuitive. To illustrate the achievement, observe
the motion of the muscle in electronic supplementary material,
video S1, and note that from a single frame and a reference frame
the active and passive states of each muscle are estimated to
approximately 50% accuracy.

The necessity of the reference frame is to reduce bias and
promote generalization between participants. We anticipate a
reference frame would not be necessary to generalize to new
motions within the same participant. Within a participant,
generalization is relevant to prosthetics, where a system is
trained on person-specific actions to control a prosthetic
limb [32,33]. Our existing evidence suggests that a within-
participant system would be more accurate than a general
system [71].

Several sources of error limit the accuracy of this general-
ized system to approximately 50% (table 1).

(i) Temporal misalignment between US images and
measured signals occurs and is variable (figure 5, cf.
8–10 s and 40–45 s). EMG and joint moment signals
contain more of their power at higher frequencies and
are thus more sensitive to temporal misalignment.
Substantial temporal misalignment is a known
phenomenon related to image timing in clinical US
interfaces [72]. While clinical US interfaces such as the
onewe used give no control over image timing, accurate
image timing is possible using low-level US systems
[72]. For this study, misalignment means the reported
accuracy is less than it would be if temporal alignment
were always correct (figure 5).

(ii) Un-encoded variation between participants: contrary to
our hypothesis, some variation between participants is
intrinsically not encoded within the US images. Vari-
ation between participants in limb strength, muscle
mass, muscle cross-sectional area, depth of fat layer,
electrical electrode–skin–muscle impedance, electrode
placement and location of the foot on the footplate are
not available to the CNN. These variables alter themap-
ping between the US image and measured signals
(EMG, joint angle, joint moment). Our results provide
the first benchmark of the generalizable content of US
images. Injecting some prior knowledge into the
system such as anthropometric data may improve accu-
racy. Within a participant, generalization would avoid
these issues and may show higher accuracy.

(iii) Imperfect ground truth: the measured signals have
limited accuracy. Imperfect placement of EMG
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electrodes, partial sampling of the whole muscle
volume, crosstalk from adjacent muscles, electrical
noise and interference, foot placement, slight knee
flexion, heel raising and toe curling limit accuracy of
EMG, joint angle and joint moment signals.

(iv) US probe placement: US acquires a single plane from a
3Dmuscle structure. The extent towhich generalization
depends upon the specific plane imaged is uncertain.
More data are required to test the effect of variation in
probe placement.

Given the uncertainties listed above, it remains remark-
able that, from a single 2D US image referred to a baseline
image, absolute values of each component of the neurobio-
mechanical state can be estimated on new participants to a
benchmark accuracy of approximately 50%.

Our empirical demonstration provides the first proof of
principle that the estimation of specific muscle states in deep
muscle is possible in general conditions of combined/isolated
active and passive changes. The deep SO gave EMG accuracy
comparable within 10% to the superficial GM. While we
placed the probe to acquire GM and SO within a single
image, one plane is not optimal for both muscles. We chose
to optimize for GM. Thus, our benchmark for SO represents
a lower limit to what is possible for this muscle.
5.3. Application to other muscles
In this investigation, we chose muscles for their suitability to
test our hypothesis that muscle states are encoded in their col-
lagen structure and are observable by US. This investigation
required the muscles to be observable by US and required the
main inputs of EMG and passive joint rotation to be measure-
able. This investigation also required it to be possible to
control the two inputs experimentally to produce a dataset
covering the space of single and simultaneous combined,
independent variation of neural activity and passive joint
rotation. The calf muscles are a relatively well-understood
muscle group with access to control and measure these labels.

However, the significance of this investigation lies in the
potential to measure neural output more generally from deep
muscles. The significance lies also in the potential to measure
tension generally from individual muscles rather than joint
moments. Here the CNN was trained to predict joint moment,
which is measurable. However, the prediction was derived
from an image of muscle, which means that information, in
essence muscle tension, is encoded within the muscle.

Following our test of principle, the practical question
becomes how to acquire the labels and training data to train
a system on more general muscle groups? In principle,
though with greater practical difficulty, it is possible to record
EMG with needles/wires from deep muscles inaccessible via
surface electrodes. This could give training labels for muscle
in a complex system like the neck, back or forearm. It is also
possible to use unsupervised learning (like Bayesian GAN
[73]) on a large data collection of US only, and reserve super-
vised learning for a smaller data collection of US with EMG
labels. Another possibility is to measure dynamometric or kin-
ematics signals (e.g. head torque), and predict those signals
directly from the image, in such a way that the network
learns a spatial localization mapping from the labels to the
image (like class activation mapping [74]). Combined with an
accurate segmentation [7,75], an activity map of generated
head force could provide an estimated muscle-specific contri-
bution to gross head rotational force.
5.4. Scientific and clinical significance
For twomuscles (GM, SO), we present the first generalized pre-
diction of independent components of the neurobiomechanical
state of skeletal muscle (activity, joint rotation, joint moment)
directly from standard frame-rate (25 Hz) 2D, B-mode US
under general conditions of independently varying inputs
(figures 4 and 5). This result reports a scientific discovery. Pre-
viously, it was unknown whether muscle tissue encodes,
simultaneously, the activity, origin–insertion length and tension
state of the muscle. Skeletal muscle tissue is relatively generic
between muscles. The US images of GM and SO are similar to
many or most muscles viewed longitudinally in the plane of
their fascicles. Generally, muscles connect to bone via a series
tendon; however, specific architecture differs between muscles.
GM and SO are pennate (fibres are at an angle to the force-gen-
erating axis), whereas some muscles are parallel (fibres are
parallel to the force-generating axis, e.g. biceps). Thus, the
specific encodingof activity, origin–insertion length and tension
state within the collagen structure will differ between muscles.
We predict that the discovery of state encoding in the collagen
structure will generalize to other muscles. We predict that
specific systems should be trained on specificmuscles, although
some generalization between muscles may be possible.

This scientific discovery has technological significance.
Muscle activity is an amplified version of neural output or
motor command delivered by peripheral nerves from the
spinal cord to the muscle [76]. Non-invasive measurement of
activity in deep muscles is currently impossible. In science,
we need activity, particularly from deep muscles in the neck,
back, lower and upper limbs, to understand how control of
themuscular system is organized.Muscular control is hierarch-
ical and synergistic in nature, and currently that science is
immature simply because we cannot measure activity easily
in all the important deepmuscles [6]. Inmedicine, healthy con-
trol of muscles breaks down for many possible reasons. In
myopathies or injury, the muscle is inflamed or diseased and
delivers inadequate output from neural drive. In neuropathies,
neural drive to the muscle is inadequate, for example from
breaks in the peripheral nerves or spinal cord injury, or from
demyelination of upper (central) or lower (peripheral) motor
neurons. In neurological conditions control of muscles is disor-
dered, e.g. dystonia, Parkinson’s disease or cerebellar ataxia,
resulting in abnormal patterns and timing of activity. Measure-
ment of activity can discriminate myopathies from
neuropathies from neurological conditions and localize the
impairment. In the clinic, staff rely routinely on manual palpa-
tion and very rarely on needle EMG since that is an expert skill
in very short supply. Our US approach, developed to its poten-
tial, could provide easy discrimination between these
conditions and assessment of abnormal muscle activity. In
rehabilitation, prostheses are controlled where possible using
available activity signals from muscles. While it is possible to
control prostheses directly from brain interfaces, peripheral
neural output provides better quality signals since these are
already pre-processed motor signals, and muscle activity is
simply an amplified version of peripheral neural output [76].
There is current interest in using wearable US to drive prosthe-
tic devices [32,33].
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5.4.1. Muscle tension
Measurement of individual muscle force requires a strain
gauge to be inserted surgically in series with the individual
muscle, typically in the tendon joining that muscle to bone
[77]. For surgery, orthopaedics, rehabilitation and biomecha-
nics the force of individual muscles is needed to determine
the contribution that individual muscles make to joint
moments and joint stability as to whether the balance
between muscles is correct and whether surgical correction,
physiotherapy or altered training is required. In this study,
we have validated the CNN estimation of the force state
using a joint moment. However, the estimate was derived
from muscle tissue, and thus our results demonstrate the
principle that force can be estimated directly from muscle
tissue. This study provides objective evidence to justify surgi-
cal implantation of strain gauges to provide muscle-specific
force labels.

5.4.2. Muscle stiffness
Currently, observational US can only measure muscle strain,
and because stress is unknown US cannot measure mechan-
ical properties such as force or stiffness. The results
published here reveal that analysis of the full biomechanical
state (length and tension) is possible using observational ima-
ging. Muscle force and stiffness are a consequence of intrinsic
muscle properties operating on the inputs (neural command
and joint rotation). The proof of concept demonstrated in
this paper is that multi-layered neural networks with DL
methods (convolutions, pooling, dropout, etc.) can model
directly from US images the intrinsic muscle properties
and the independent inputs, which together determine the
mechanical output. This result is possible because the col-
lagenous structure of skeletal muscle is observable, and
also because muscle activity and passive joint rotation
create different patterns of strain within the structure [9].
Force generated internally by activity within individual
motor units has a different strain pattern from the force
transmitted externally into the muscle between origin and
insertion. Bypassing human preconception, ANNs can
learn those dynamic nonlinear patterns and provide
spatio-temporal representations of the muscle state for our
scientific and diagnostic benefit.

These results imply that perturbation methods (e.g. SWE)
may not be required to measure the biomechanical state. In
practice, further development will be required to translate this
proof of principle into technology applicable to all muscles of
medical interest. Standard US machines are more available
and cheaper than shear wave imaging machines and they
input less acoustic power to the patient. For dynamic structures
as complex as skeletal muscle, data-driven modelling of muscle
properties usingDL should bemore accurate thanusing generic
stress–strain relationships and assumptions of material proper-
ties to interpret shear wave velocity maps.
6. Conclusion
Currently, there is an unmet need for technology to provide
non-invasive assessment of skeletal muscle state in general
conditions. Limitations in current technology (EMG, dyna-
mometry, SWE) mean that many important muscles (e.g.
deep muscles in the neck, back, thorax/abdomen and
limbs) are inaccessible to full diagnostic analysis. This
paper demonstrates an approach which can contribute
new assessment of the muscle system.

We have presented a novel experiment for the generation of
hundreds of thousands of accurately labelledmuscle US images
for modelling functional muscle states using US. We have
demonstrated that skeletal muscle encodes three components
of the neurobiomechanical state within its tissue structure,
observable by US. We have presented the first generalized pre-
diction of muscle-specific EMG, joint angle and joint moment
from standard frame-rate B-mode 2D US images. Existing
methods rely on simple measures in isolated cases (isometric
only, or passive only)which do not generalize.We have demon-
strated the efficacy of CNNs to this domain, which encourages
the application of DL to skeletal muscle US. This approach has
potential applications for clinical assessment, monitoring of
treatment, biofeedback for behavioural therapy and interfacing
with prosthetics in a large range of conditions of substantial
socioeconomic impact as stated in the Introduction.
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