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We analyze the steady laminar incompressible boundary-layer

magnetohydrodynamic impacts on the nanofluidic flux over a static and

mobile wedge in the existence of an applied magnetic field. The

Falkner–Skan wedge flow model is taken into consideration. Reynolds’

model is considered to introduce temperature-dependent viscosity. As in

real life, most fluids have variable viscosity. The executive partial differential

equations are converted into a set-up of ordinary differential equations by

means of a similarity conversion. Numerical solutions are computed for the

converted set-up of equations subjected to physical boundary conditions. The

specific flow dynamics like velocity profile, streamlines, temperature behavior,

and coefficient of local skin friction are graphically analyzed through numerical

solutions. It is concluded that the laminar boundary-layer separation from the

static and moving wedge surface is altered by the applied external electric field,

and the wedge (static or moving) angle improves the surface heat flux in

addition to the coefficient of skin friction. Furthermore, it is found that the

methanol-based nanofluid is a less-efficient cooling agent than the water-

based nanofluid; therefore, the magnitude of the Nusselt number is smaller for

the water-based nanofluid. It is also observed that the addition of only 1% of

these nanoparticles in a base fluid results in an enhancement of almost 200% in

the thermal conductivity.
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Introduction

The fluid mechanical aspects of the boundary layer on the static and mobile wedges

(Falkner–Skan flow) have received a lot of attention from researchers and scientists of

fluid mechanics mainly because of their applications in diverse situations such as natural

flow, mechanical flow, biological flow, and transport of fluids in industries. The laminar

boundary-layer flow impacts for a fixed wedge engaged in the viscous incompressible fluid

were first reported by Falkner and Skan (1931). It was the extension of Prandtl’s concept

on the applications of boundary layers. In the review of the laminar boundary-layer flow
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over a wedge set at an angle (m π), where the flow in the direction

of the wedge is represented bym > 0 and the flow opposite to the

wedge direction is represented by m < 0 and m � 0, the Falkner

and Skan problem reduces to the Blasius problem (i.e., flow

through a wedge shape reduces to flow through a flat plate). They

have used similarity transformation to convert the set-up from

partial to ordinary differential equations. Thereafter, this work

has been extended bymany researchers (Tuncer and Keller, 1971;

Tsung and Lin, 1987; Asaithambi, 1997; Hsing et al., 1997; Yih,

1998; Zaturska and Banks, 2001; Kuo, 2005; Ishak et al., 2006;

Hartree, 2008). Hartree (2008) conveyed the numerical

computations on the flow dynamics over a wedge. Tuncer and

Keller (1971) numerically interpreted the boundary-layer

problem of Falkner–Skan by means of a parallel shooting

technique. Tsung and Lin (1987) investigated the laminar

forced convection heat transfer over a wedge and discussed

the effects of the Prandtl number. Asaithambi (1997) provided

solutions to the Falkner–Skan problem by means of the finite

difference numerical technique. Hsing et al. (1997) interrogated

the characteristics of heat convection and fluid flow for the

second-grade fluids over the wedge. Yih (1998) reported the

forced convection effects on the boundary-layer flow over a

wedge and discussed the uniform suction and blowing effects.

Zaturska and Banks (2001) provided novel solution works for

different ranges of wedge angle parameters (i.e., 37.844 < β <∞,

β = 37.844, 14.533<β < 37.844, 1<β < 14.533, and β = 1). Kuo

(2005) applied a differential transform method (DTM) to solve

the boundary-layer flow problem over a wedge and discussed the

velocity and shear-stress fields. In continuation of the

aforementioned studies on flow dynamics for a fixed and

mobile wedge, Ishak et al. (2006) extended for micropolar

fluids; Yang and Lan (2007) for velocity and shear-stress

functions; Matsson (2008) for suction and blowing; Yang and

Lan (2011) for the non-existence of the reversed flow; and

Tiegang et al. (Fang et al., 2012) with algebraic decay

consideration on the Falkner–Skan flow.

The motivation behind the huge intriguing research on the

topic of nanofluids in recent years is due to an open range of

practical applications in both the engineering and

pharmaceutical industries. The dispersion of nano-scale

particles in a base fluid provides the combination of the

nanofluid and in most cases nanotubes, nanofibers,

nanosheets, nanowires, or droplets being used for this

purpose. It is experimentally (Murshed et al., 2005; Wang and

Mujumdar, 2007; Yu and Xie, 2012; Mahian et al., 2013; Bianco

et al., 2015) proved that the addition of only 1% of these

nanoparticles in a base fluid results in an enhancement of

almost 200% in the thermal conductivity. Some of the most

recent applications of nanofluids are reported by Tripathi and

Bég (2014) and Akbar et al. (2016a). The carbon nanotube (CNT)

is one of the nanoparticles which can be dispersed in base fluids,

and it has a wide range of applications in various disciplines. The

dispersion of the CNT in base fluids and its effects on the

enhancement of thermal conductivity were analyzed through

an experimental study performed by Kim and Peterson (2007).

They observed that the addition of only 1% SWNT results in a

thermal conductivity increase of 10%, while only 3.5% was

achieved in the case of aluminum oxide. Some other

experimental studies (Sastry et al., 2008; Garg et al., 2009)

examining thermal conductivity and heat transfer

performance are also reported. Furthermore, Kamali and

Binesh (2010) presented a numerical study on fixed heat flux

consequences of the addition of multi-wall nanotubes. They used

the finite volume method (FVM) and considered the power law

model of viscous fluids for base fluids. Most recently, Chai et al.

(2016) used TEM imaging and FTIR analysis for the MWCNT

structure and chemical compound. They have concluded that the

hydrogenated oil containing multi-wall carbon nanotubes has a

9.8% increase in thermal conductivity at a concentration of

100 ppm, while an increase of 7.2% and 4.5% is noted at a

concentration of 50 ppm and 25 ppm, respectively. There are

many applications of MHD flows in the field of science and

engineering. The combined effects of MHD and the nanofluid

flow have huge applications in science, technology, and

industries. Most recently, Chamkha (1996), Thameem Bash,

Sivaraj, Takhar et al. (1999), Chamkha et al. (2006), Akbar

et al. (2016b), Akbar et al. (2016), Akbar et al. (2016d),

Animasaun et al. (2019), Kumaran et al. (2019), Thameem

Basha et al. (2019), Ashraf et al. (2020), Basha et al. (2020),

Hamad et al. (2022), and Rasool et al. (2022) reported the study

of MHD, and the nanofluid flow is reported in the literature.

In all the aforementioned studies, the study of the nanofluid

flow through a static and movable wedge is not reported.

However, considering the immense count of practical

applications in flow over the wedge, few investigators (Yacob

et al., 2011a; Yacob et al., 2011b; Khan and Pop, 2013; Dennis

et al., 2015; Khan et al., 2015) have reported. Yacob et al. (2011a)

solved the Falkner–Skan problem by means of the Keller-box

numerical technique for a fixed and mobile wedge, considering

copper, titania, and alumina nanofluids. A higher coefficient of

skin friction is observed for Cu–water than for other cases. In

other studies, Yacob et al. (2011b) further extended their analysis

by means of multiple numerical solution techniques like Keller

box, shooting, and the Runge–Kutta–Fehlberg method. Khan

and Pop (2013) investigated the boundary layer impacts on a

mobile wedge with the nanofluid flow. Khan et al. (2015)

extended their model by considering various effects like

radiations, MHD, and chemical reactions on the boundary

layer over a wedge. Daub et al. (Dennis et al., 2015)

experimentally studied the effects of a mobile wedge on the

shockwave boundary layer. Most recently, some important works

(Javaherdeh and Ashorynejad, 2014; Malvandi et al., 2014;

Sheikholeslami and Ganji, 2015; Kasmani et al., 2016; Madaki

et al., 2016; Salama, 2016; Akram et al., 2020) have reported on

the flow over the wedge moving in the second-grade nanofluid,

highlighting the impacts of the Cu–water combination of
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nanofluids over a mobile wedge, the homotopy asymptotic

technique for the Falkner–Skan flow problem. The fluid

transport in composite membranes used in water desalination

is presented in recent articles (Ezaier et al., 2022a; Ezaier et al.,

2022b; Ezaier et al., 2022c).

Motivated by the aforementioned studies and findings, we

extend the work of Kuo (2005), Khan et al. (Yacob et al., 2011a),

Yacob et al. (2011b), and Khan and Pop (2013) for the static and

movable wedge to study the heat transfer properties of different

nanofluids, that is, the water-based copper nanofluid and

methanol-based copper nanofluid. The viscosity of the fluid is

assumed to be temperature-dependent, and the effect of the

magnetic field is also included. Similarity transformation is

used to change a set of PDEs to a set of ODEs; then, the

Runge–Kutta method is employed for the numerical solution.

A comparative analysis is presented between the results of the

current study and the previously published literature in the

limited cases in the tabular form, and it is shown that a good

agreement with existing results is noted. This study is applicable

in aerodynamics and hydrodynamics, especially in enhancing oil

refinement, industrial usage in geothermal sciences, generators

working on MHD principles, multiple bearings and pumps,

control effects on boundary layers, etc.

Formulation of the problem

The numerical computations are performed for the

boundary-layer impacts on a fixed or a mobile wedge flow

problem considering the nanofluids’ case of copper

nanoparticles and two different base fluids, that is, methanol

and water. The geometrical diagram of this wedge flow problem

is presented in Figure 1. A thermal equilibrium condition is

maintained for the nanoparticles, and a temperature-dependent

viscosity is conceded. The free stream velocity is considered to be

u(x) = U∞ xm, while the mobile wedge has a velocity u(x) = Uwx
m.

The range of m value varies between 0 and 1. Here, the effect of

the applied magnetic field of strength B0 is considered, but the

effect of the induced magnetic field and Hall currents are not

taken into consideration due to the low-magnetic Reynolds

number and the smaller frequency of atom–electron collision

(Krishna and Chamkha, 2019; Krishna et al., 2020). The current

problem is interpreted for a Cartesian system of coordinates.

The pertinent equations that govern this physical flow

problem are given as (See Refs (Tsung and Lin, 1987; Ishak

et al., 2006))

zu

zx
+ zv

zy
� 0, (1)

u
zu

zx
+ v

zu

zy
� Ue

dUe

dx
+ 1
ρnf

z

zy
(μnf(T) zuzy) − σB2

0

ρnf
(u − Ue),

(2)

u
zT

zx
+ v

zT

zy
� αnf

z2T

zy2
+ μnf(T)(ρCp)nf(zuzy)

2

. (3)

The relevant boundary conditions are imposed in the forms:

Static wedge

u � 0, v � 0, T � Tw, at y � 0,
u � Ue(x), v → 0, T → T∞, as y → ∞ .

} (4)

Moving wedge

u � uw(x) � ax, v � 0, T � Tw, at y � 0,
u � Ue(x), v → 0, T → T∞, as y → ∞ .

} (5)

The characteristics of the nanofluid model are taken

(Kim and Peterson, 2007; Sastry et al., 2008; Garg et al.,

2009; Kamali and Binesh, 2010; Akbar et al., 2016a; Chai

et al., 2016) as follows:

μnf � μ0e
−αθ(1 − φ)2.5, (6a)

αnf � knf(ρcp)nf, ρnf � (1 − φ)ρf + φρs, (6b)

(ρcp)nf � (1 − φ)(ρcp)f + φ(ρcp)s, (6c)(ργ)nf � (1 − φ)(ργ)f + φ(ργ)S, (6d)

knf � kf⎛⎝ks + 2kf − 2φ(kf − ks)
ks + 2kf + 2φ(kf − ks)⎞⎠. (6e)

The following similarity variables are introduced to convert

the problem into a set-up of ordinary differential equations as

determined in Ishak et al. (2006):

η �

(m + 1)a

2]f

√
y, θ � T − T∞

Tw − T∞
,ψ �


2]fxUe(x)

m + 1

√
f(η), (7)

Here, ψ denotes the stream function and can be interpreted as u =

zψ/zy and v = −zψ/zx.

FIGURE 1
Geometry of the physical problem.
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The following viscosity model known as Reynold’s model is

considered (Akbar et al., 2016b):

μf(θ) � e−(αθ) � 1 − (αθ) + O(α2), (8)

On substituting (6, 7, and 8) into (2) to (4) with boundary

conditions (4 and 5), the converted set-up of ordinary differential

equations is given as follows:

(1 − (αθ)(1 − φ)2.5f‴ + −αθ′f″(1 − φ)2.5 + ⎡⎢⎢⎣⎛⎝1 − φ + φ
ρs
ρf
⎞⎠{ff″ + ( 2m

m + 1
)

(1 − f′2)} +M2(1 − f′)⎤⎥⎥⎦ � 0,

(9)

(knf
kf

)θ″ + Pr⎛⎜⎝1 − φ + φ
(ρcp)s(ρcp)f⎞⎟⎠(fθ′) + Ec

(1 − (αθ)(1 − φ)2.5(f″)2[ ] � 0.

(10)

Static Wedge

f(0) � 0, f′(0) � 0, f′(∞) � 1,
θ(0) � 1, θ(∞) � 0.

(11)

Moving Wedge

f(0) � 0, f′(0) � λ, f′(∞) � 1,
θ(0) � 1, θ(∞) � 0,

(12)

where Pr � (μcp)f/kf is the Prandtl number and λ � Uw/U∞ is

the constant moving wedge parameter, β � 2m/m + 1, which

corresponds to β � Ω/π for a total wedge angle Ω.

The coefficient of skin friction cfx along the x-direction and

Nux Nusselt number is given as follows:

cfx �
μnf(T)
ρfu

2
w

(zu
zy

)
y�0

, Nux � −xknf
kf(Tw − T∞)(zTzy)y�0

. (13)

Eq. 13 in non-dimensional form is

(Rex)1/2cfx �
μf(θ(0))f″(0)(1 − φ)2.5 , (Rex)1/2Nux � −knf

kf
θ′(0). (14)

Numerical illustration

The shooting technique is utilized to numerically compute

the solutions of Equations 9, 10 with boundary conditions

(11 and 12). This boundary value problem is initially

transformed into an initial value problem; then, initial guesses

are set up for f″(0) and θ′(0). Finally, the Runge–Kutta

technique of the fourth order is considered to numerically

interpret the solutions. Mathematics software Maple is used

for the simulation. A better approximation is achieved for the

values of f″(0) and θ′(0)by utilizing the Secant method. A

minimal step size of Δη � 0.01 is considered with an accuracy of

the fifth decimal place for a better convergence criteria.

Graphical results and discussion

The numerical computations are performed to present the

graphical illustrations (see Figures 2–10) of numerous intrigued

parameters on the velocity outline, temperature formation, skin

friction coefficient, Nu, and streamlines. Table 1 shows the

characteristics of the base fluid and nanoparticles. Table 2 and

Table 3 are computed for skin friction for refined fluid with

FIGURE 2
(A–C) Velocity profiles corresponding to multiple nanofluidic fractions: (A) (α), (B) (M), and (C) (m).
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α � 0and λ � M � 0 dimensionless heat flux of the refined fluid

with α � 0and λ � M � Ec � 0 for multiple variables of the

wedge (m). Table 2 depicts the present results compared to

the outcomes of Yacob et al. (Hamad et al., 2022), Khan and

Pop (Rasool et al., 2022), and Khan et al. (Animasaun et al.,

2019), and in Table 2, the present outcomes are correlated with

those of Kuo (Kuo, 2005), Khan et al. (Animasaun et al., 2019),

and Khan and Pop (Rasool et al., 2022). The outcomes of the

present study are in good accordance with previous results.

The effects of nanoparticle volume fraction (φ � 0, 0.1, 0.2)

on the velocity profile with the impact of the viscosity parameter

(α � 0, 0.8), Hartmann number (M � 0, 1.3), and wedge

parameter (m � 0, 0.5) are shown in Figures 2A–C. It is

detected that the velocity figure diminishes with growing

values of nanoparticle volume fraction. Figure 2A reveals that

the velocity profile diminishes with an increase in the magnitude

of the viscosity parameter. Figure 2B predicts that the velocity

profiles diminish the growing effects of the magnetic field. This

outcome is homogeneous to that of Sheikholeslami et al.

(Kumaran et al., 2019) in which the impacts of the applied

magnetic field on the velocity profile have been noted as

“magnetic field has the tendency to slow down the movement

of the fluid which decreases the velocity profile.” This similarity

validates our present model. Figure 2C shows that the velocity

profile contracts with the growing magnitude of the wedge

parameter. Finally, it is concluded that the thickness of the

FIGURE 3
(A,B) Temperature profiles corresponding to multiple nanofluidic fractions: (A) (α) and (B) (M).

FIGURE 4
(A,B) Temperature profiles corresponding to multiple nanofluidic fractions: (A) (m) and (B) (Ec).
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boundary layer decreases with the increasing magnitude of ϕ, α,

M, and λ.

The behaviors of the viscosity parameter (α � 0, 0.8),

Hartmann number (M � 0, 3), wedge parameter (m � 0, 1),

and Eckert number (Ec � 0, 1) on temperature profiles

corresponding to various quantities of the nanoparticle

volume ratio (α � 0, 0.1, 0.2) are presented in Figures 3A,B

and Figures 4A,B correlatively. It is detected that maximum

temperature occurs at zero transverse displacements and vice-

versa. The temperature outline enhances with the growing

magnitude of the nanoparticle volume fraction. Figure 3A

illustrates that the temperature profile diminishes with an

increase in the magnitude of the viscosity parameter.

Figure 3B displays that the temperature profile diminishes

with increasing M. Figure 4A presents that heat flux reduces

with the upsurging magnitude of λ. The effect of Eckert number

on the temperature profile is illustrated in Figure 4B, and it is

observed that heat flux enhances with the upsurging magnitude

of Eckert number. Furthermore, the thickness of the convection

boundary layer increases with the increasing Eckert number.

The variations of distinct quantities on Cf for the considered

types of base fluids (methanol and water) are discussed through

Figures 5A,B and Figures 6A,B. It is seen that Cf is more in the

case of methanol base fluids than in water base fluids. It can be

discerned from Figure 5A that the magnitude of Cf, the

coefficient, is more for upsurging the effects of magnetic field,

FIGURE 5
(A,B): Skin friction coefficient corresponding to different base fluids, that is, water and methanol for (A) (M). (B) (α).

FIGURE 6
(A,B) Skin friction coefficient corresponding to different base fluids, that is, water and methanol for (A) wedge parameter (m) and (B) moving
wedge parameter ( λ).
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that is, (M � 0, 1, 2). Figure 5B shows the variation of the

viscosity parameter (α � 0, 0.3, 0.6) on Cf, and it is detected

that Cf diminishes with increasing F061. The behavior of the

wedge parameter (m � 0, 0.3, 0.6) on Cf is presented in

Figure 6A, and it is noted that Cf upsurges for the larger

value of the wedge parameter. The influence of the moving

wedge parameter (λ � 0, 0.3, 0.6) on the skin friction

coefficient is illustrated in Figure 6B. It is pointed out that Cf

reduces with the increasing magnitude of the moving wedge

parameter from 0 to 0.6.

The characteristics ofNu for the Falkner–Skan wedge flow of

CNT nanofluids corresponding to the considered forms of base

fluids methanol and water are shown in Figures 7A,B and Figures

8A,B accordingly. It is found that the Nusselt number is more for

methanol nanofluids than for water nanofluids. Figure 7A depicts

the consequences of the viscosity parameter (α � 0, 0.3, 0.6) on

Nu, and there is an upsurge in the Nusselt number with the

increasing magnitude of the viscosity parameter. Figure 7B is

sketched for the Eckert number (Ec � 0, 0.2, 0.4) effects on the

Nusselt number, and it is observed that Nu is inversely

proportional to the Eckert number. Figure 8A illuminates the

variation in Nusselt number for the wedge parameter

(m � 0, 0.1, 0.2). Here, the Nusselt number is more for a

greater value of the wedge parameter. The impacts of applied

FIGURE 7
(A,B) Nusselt number corresponding to different base fluids, that is, water and methanol for (A) viscosity parameter (α) and (B) Eckert
number (Ec).

FIGURE 8
(A,B) Nusselt number corresponding to different base fluids, that is, water and methanol for (A) wedge parameter (m) and (B) Hartmann
number (M).
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MHDonNu are depicted in Figure 8B, and it is predicted thatNu

reduces with the upsurging magnitude of M.

Streamlines are the key characteristics of the fluid flow which

are mathematically found when the stream function is constant.

For different values of stream function, the variation of stream

lines is illustrated in Figures 9A–C and Figures 10A–C accordingly.

The variation of the moving wedge parameter (λ � −0.5, 0, 0.5) at
fixed values of other parameters (m = 1, M = 2, α = 0.3) on

streamlines is presented through Figures 9A–C, and it is revealed

that for –ve value of the moving wedge parameter, the streamline

patterns are parabolic in range 0<x< 0.5 and patterns are non-

linear with horizontal and vertical asymptotes (both axes) in range

FIGURE 9
(A–C) Streamlines with the variation of the moving wedge parameter (λ). Other parameters are m = 1, M = 2, and α = 0.3.

FIGURE 10
(A–C) Streamline graph of the variation of (α). Other parameters are m = 1 and M = 2.

TABLE 1 Experimental values for the base fluid and nanoparticles
(Sajjan et al., 2022).

Physical property Base fluids Nanoparticle

Water Methanol Cu

ρ (kg/m3) 997 792 8,933

cp (J/kg-K) 4,179 2,545 385

k (W/m-K) 0.613 0.2035 401

Pr 6.2 7.38 —
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x> 0.5. There is no parabolic pattern for the +ve value of the

moving wedge parameter. The effects of the viscosity parameter

(α � 0, 0.4, 0.8) at fixed values of other parameters (m = 1, M =

2) on streamline patterns are elucidated through Figures

10A–C. It is revealed that there is a parabolic pattern in the

range 0<x< 0.75 for the value of α � 0 and in the range

0< x< 0.5 for the value of α � 0.4and in the range

0< x< 0.25for the value of α � 0.8. It is finally interpreted

that the parabolic nature of streamline patterns reduces with

the increasing value of the viscosity parameter.

Conclusion

The impacts of relevant variable parameters on the

characteristics of the Falkner–Skan wedge flow of a temperature-

dependent viscous effectwithCNTnanofluids have beendiscussed.

The concluding results are summarized as follows:

• The extent of the boundary layer reduces with an

upsurging magnitude of ϕ, α, M, and λ.

• The extent of the thermal boundary layer expands by

enhancing the value of ϕ, and Eckert number, however,

decreases with the increasing value of the wedge

parameter, and M.

•Cf is more in the case of methanol base fluids than for water

base fluids.

•Cf is more for the large value of the Hartmann number and

wedge parameter; however, opposite trends are pointed for

the viscous parameter and moving wedge parameter.

• Nusselt number is more for methanol nanofluids than

for water nanofluids.

• The Nusselt number is proportional to the viscosity

parameter and wedge parameter; however, it is related

in an inverse proportion to the Eckert number and

Hartman number.

• The parabolic nature of streamlines reduces for the –ve

value to +ve value of the moving wedge parameter, and it

also decreases with the increasing value of the viscosity

parameter.
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TABLE 2 Comparative study on skin friction for α � 0and λ � M � 0.

m f@(0)

Current analysis Khan et al. (2015) Khan and Pop (2013) Yacob et al. (2011a)

0 0.46960 0.4696 0.4696 0.4696

1/11 0.65499 0.6550 0.6550 0.6550

1/5 0.80213 0.8021 0.8021 0.8021

1/3 0.92768 0.9277 0.9277 0.9277

1/2 1.03890 1.0389 1.0389 1.0389

1 1.23259 1.2326 1.2326 1.2326

TABLE 3 Comparative study on heat transfer for pure fluids with α � 0 and λ � M � Ec � 0.

m −θ9(0)

Current analysis Khan et al. (2015) Khan and Pop (2013) Kuo (2005)

0 0.87691 0.8769 0.8769 0.87673

1 1.12796 1.1280 1.1279 1.1147
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Nomenclature

uw wall velocity (ms−1)
B0 the magnitude of magnetic field strength

α Reynolds viscosity parameter (−)
U∞, Uw free stream and wedge velocity (ms−1)
η similarity parameter (−)
K fluid thermal conductivity (Wm−1K−1)
ϕ volume portion of nanoparticles (−)
MHartmann Number (−)θ Hartmann Number

(−)θtemperature dimensionless representation (−)
x, y coordinates (m)
cf base fluid heat capacitance (JKg−1K−1)
Nux Nusselt number (−)
cp nanoparticles’ heat capacitance (JKg−1K−1)
P pressure (Nm−2)

μ viscosity (Kgm−1s−1)
Pr Prandtl number (−)
ρnf nanofluid density (Kgm−3)
q heat flux (Wm−2)
αnf thermal diffusivity of the nanofluid (m2s−1)
Shnx local nanoparticle Sherwood number

ν kinematic viscosity of the nanofluid (m2s−1)
u, v velocity components (ms−1)
μnf (T) nanoparticle temperature-dependent viscosity

T local fluid temperature (K)
kf thermal conductivity of the base fluid (Wm−1K−1)
Tw wall temperature (K)
knf nanofluid thermal conductivity (Wm−1K−1)
β Hartree pressure gradient parameter (−)
λ fixed mobile wedge parameter (−)
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