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Abstract
Accurate coregistration of computed tomography (CT) and magnetic resonance
(MR) imaging can provide clinically relevant and complementary information
and can serve to facilitate multiple clinical tasks including surgical and radia-
tion treatment planning,and generating a virtual Positron Emission Tomography
(PET)/MR for the sites that do not have a PET/MR system available.Despite the
long-standing interest in multimodality co-registration, a robust, routine clinical
solution remains an unmet need.Part of the challenge may be the use of mutual
information (MI) maximization and local phase difference (LPD) as similarity
metrics, which have limited robustness, efficiency, and are difficult to optimize.
Accordingly,we propose registering MR to CT by mapping the MR to a synthetic
CT intermediate (sCT) and further using it in a sCT-CT deformable image reg-
istration (DIR) that minimizes the sum of squared differences. The resultant
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deformation field of a sCT-CT DIR is applied to the MRI to register it with the
CT. Twenty-five sets of abdominopelvic imaging data are used for evaluation.
The proposed method is compared to standard MI- and LPD-based methods,
and the multimodality DIR provided by a state of the art, commercially avail-
able FDA-cleared clinical software package. The results are compared using
global similarity metrics, Modified Hausdorff Distance, and Dice Similarity Index
on six structures. Further, four physicians visually assessed and scored regis-
tered images for their registration accuracy. As evident from both quantitative
and qualitative evaluation, the proposed method achieved registration accu-
racy superior to LPD- and MI-based methods and can refine the results of the
commercial package DIR when using its results as a starting point. Supported
by these, this manuscript concludes the proposed registration method is more
robust, accurate, and efficient than the MI- and LPD-based methods.

KEYWORDS
local phase difference, multimodality deformable image registration, mutual information, synthetic
CT

1 INTRODUCTION

Multimodality fusion, the superposition of different
image volumes, makes it possible to simultaneously
visualize features from different imaging modalities
and provide clinically relevant and complementary
information, provided that the volumes are accurately
coregistered.1 In clinical applications,both magnetic res-
onance (MR) and computed tomography (CT) typically
provide anatomic information that can be combined
to improve the accuracy of diagnoses and precision
of image-guided surgical and radiation treatment plan-
ning. In the latter application, MR leverages superior
soft tissue contrast that CT lacks, while CT provides
the necessary electron density map needed to calcu-
late the radiation dose.2 To be clinically useful for such
application, MR and CT spatial agreement should be
within 1–2 mm.3 As there is no clinically available hybrid
MR/CT at present, data must be acquired on separate
scanners. Thus, the patient position inevitably differs
between modalities,and spatial registration of the image
volumes is a prerequisite prior to fusion.Another applica-
tion where MR-CT registration is valuable is in creating
a “virtual PET/MR.” Given the technical challenges and
expense of Positron Emission Tomography (PET)/MR
scanners,4 the value of combined PET/MR images5–10

motivates the development of a virtual PET/MR func-
tion by registration of MR data to the CT component of
PET/CT.

Due to the differences in voxel information, MR to CT
registration cannot directly utilize metrics such as the
sum of squared differences (SSDs) or cross-correlation
(CC) to optimize the spatial correspondences.11 As
such, methods using metrics like mutual information
(MI), local phase difference (LPD), and their variants,
have been investigated.12–16 MI-based registration max-
imizes shared intensity information between the two

images.12,14,17 Although MI is widely used in multimodal
registration,it has some shortcomings including:(1) slow
convergence rate due to discrete joint histogram and the
lack of use of gradient-based optimization methods,18

(2) difficulty in finding the global optimum, (3) low accu-
racy due to lack of spatial information in the intrinsically
global measure of MI,1,19,20 and (4) misregistration
due to small overlapping regions.1,21,22 Much effort has
been devoted in meeting the above challenges by intro-
ducing a differentiable MI to use the gradient-based
optimization,18 by including the spatial information for
achieving a higher accuracy than the conventional
global MI,1,19,20 and by proposing a normalized MI to
address the partial overlapping issue.21 Despite these
efforts, the multimodality registration based on MI is
still not as robust and efficient as the same-modality
registration, especially for the group-wise image reg-
istration, and thus has limited applicability for routine
clinical use.22,23

Minimizing local phase difference (LPD) as a similar-
ity metric for multimodality registration is relatively newer
as compared to MI approach. Janssens16 implemented
the LPD method by minimizing the sum of multi-
frequency and voxel-wise phase differences between
images. Although fast and insensitive to wide intensity
variations, misregistration may still occur due to false
minima. Other phase-based methods include the use
of phase MI,24,25 local phase-coherence,26 and com-
plex phase order.27,28 While the registration accuracy
could be improved compared with LPD, the imple-
mentation of these registration methods still suffers
from sophisticated similarity calculation and inefficient
optimization.29

Recently, some methods for registering MR to CT
have been described by transforming the multimodal-
ity registration to a same-modality matching problem
in order to achieve more robust multimodality image
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registration.1,22,29–33 However,the actual application and
performance evaluation has been scarcely reported. In
one study, Roy et al.30 generated the sCT using the
atlas-based method with 10 sets of brain MR and CT
data,then registered the sCT to the measured CT (mCT)
using CC as the similarity metric. In a more recent study,
Mckenzie et al.33 generated the sCT using CycleGAN
and 25 head-and-neck volumes, and registered the sCT
to the mCT using MI as the similarity metric. The other
reports of which we are aware that use sCT also use
synthetic MR (sMR); they work by simultaneously regis-
tering the sMR to the measured MR and the sCT to the
mCT. In this regard, they require additional computation
compared to what we are proposing.29–33 Surprisingly,
all but one of these29 used either MI or CC as the sim-
ilarity metric, which have suboptimal performance and
are more challenging to optimize than the SSD.

Herein, we propose a method of using sCT to facili-
tate MR to CT registration in the abdominopelvic region,
which is a more challenging anatomy than the brain.
Furthermore, the SSD similarity metric used is com-
putationally more efficient than CC and MI and more
robust for automatic optimization than CC and MI,which
often have a global maximum within a relatively narrow,
peaked region, and the area beyond the neighbor-
hood is relatively flat making it challenging to find.34–36

In brief, an sCT is created by converting the modi-
fied Dixon (mDixon)-reconstructed MR image volume
to CT-like contrast using a voxel-wise intensity and
segmentation-based method.37 Next, the sCT, derived
from MR and thus having exact spatial correspondence
to it, is deformably registered to the mCT. Finally, the
resultant deformation field is applied to the MR so that
it becomes coregistered with the mCT. In the following,
Section 2 presents our registration method and per-
formance evaluation protocol. Section 3 presents both
quantitative and qualitative results to illustrate the per-
formance of using sCT as an intermediate in MR-CT
registration, and the efficacy of our method in clin-
ical applications. Section 4 presents discussion, and
Section 5 is the conclusion.

2 MATERIAL AND METHODS

2.1 Overview

Figure 1 shows the framework of our method. In brief,
machine learning is used to map an MR image vol-
ume to an sCT image volume. Then deformable image
registration (DIR) is used to bring the sCT into spa-
tial correspondence with the mCT by minimizing the
SSD. The resultant deformation field is then used to
spatially map the MR to coregister it with the CT.
This method is compared to conventional MI and LPD
approaches and the DIR provided by the MIM Mae-
stro (version 7.0.66.6.10, MIM Software Inc., Cleveland,

F IGURE 1 Framework of our proposed method in registering
magnetic resonance (MR) with computed tomography (CT).

OH) software for direct MR to CT registration.15,16 MIM
Maestro is chosen for comparison since it is widely
used, state-of -the-art clinical tool that has Food and
Drug Administration (FDA)-clearance. Registration per-
formance is evaluated using both quantitative metrics
and visual assessment of the registration by physicians.

2.2 Data acquisition

Volunteers are recruited from oncologic patients under-
going routine clinical PET/CT scanning using a Philips
GEMINI TF PET/CT or its Big Bore variant.38 This
procedure is immediately followed by PET/MR scan-
ning using Philips Ingenuity TF PET/MR.39,40 The low
dose CT from the PET/CT and the 3T MR images
from the PET/MR are used for the present study. Nei-
ther scan entails contrast injection. The CT acquisitions
use a low-dose, 120-kV protocol and are reconstructed
to a voxel spacing of 1.17 × 1.17 × 5.00 mm3. The
MR acquisitions utilize a spin echo imaging pulse
sequence to support mDixon reconstruction41: Repeti-
tion Time (TR) = 3.08 ms, Echo Time (TE) = 1.035 and
1.887 ms. Fat, water, in-phase (IP), and opposed-phase
(OP) images with a voxel spacing 0.98 × 0.98 × 5.00
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mm3 are reconstructed. Both CT and MR volumes use
512 × 512 × n matrices,where n depends on the subject
size. Twenty-five sets of whole-body MR and CT data
are acquired.

The subject recruitment,data collection,and manage-
ment are in compliance with protocols reviewed and
approved by the University Hospitals Cleveland Medical
Center Institutional Review Board.

2.3 Generation of synthetic CT

Synthetic CT images are generated using the Transfer
Fuzzy Clustering and Active Learning-based Classifi-
cation algorithm (TFC-ALC) as our group has demon-
strated previously.37,41–45 In brief, from the cropped MR
data, the local texture features are extracted for each
of MR water, fat, IP, and OP images by convolving with
a 3 × 3 weighting matrix. Combining these four local
texture features and the three-dimensional (3D) posi-
tion of voxel using grid partition strategy,37 a total of
seven features are used to classify tissue types for
each voxel. This seven-dimensional feature vector for
all the voxels is called a feature map. From the fea-
ture map, referenced class prototypes for four different
tissue types—bone, air, fat, and soft tissue—can be
determined. Candidate voxels for a bone cluster are
defined based on CT values exceeding 300 HU. The
remaining voxels are analyzed using conventional Fuzzy
C-Means (FCMs) to determine cluster centroids corre-
sponding to three tissue types: air, fat, and soft tissue.
The bone cluster centroid is calculated independently
as the mean values of the components of the seven-
dimensional features of the candidate bone voxels. Due
to the fact that we are leveraging the information from
CT to construct FCM models, this particular FCM model
is referred to as knowledge-leveraged transfer fuzzy
c-means (KL-TFCM). However, at this point, due to a
lack of adequate information from the MR images, the
cluster centroids of air and bone are not separated
sufficiently to reliably distinguish air and bone so result-
ing in cross-contamination that will be subsequently
addressed. Regardless, this process of obtaining the
four cluster centroids is repeated for each subject, and
then the referenced class prototypes of bone, fat, air,
and soft tissue are generated by averaging all subjects’
centroids.

To resolve the contamination of the bone class by
air voxels and the air class by bone voxels, additional
analysis is applied during training.37,44,45 For each sub-
ject, the feature map is partitioned into four clusters with
referenced class prototypes obtained from the previous
procedure.The fat voxels are satisfactorily distinguished
given that mDixon sequences can robustly identify the
fat tissue. Then, our active learning-based support vec-
tor machine (AL-SVM) method37 is trained to separate
the remaining three classes (bone, air and soft tissue).

The predicted labels of AL-SVM are corrected using
the paired CT image. The group of bone and air are
refined by separating the bone voxels from the voxels
that are wrongly partitioned to air using CT. The rest
of the voxels are assigned as soft tissue. This train-
ing procedure is repeated for all subjects to obtain the
same number of AL-SVM models with the number of
subjects. Combining the fat classifier using KL-TFCM
and the remaining three classifiers using AL-SVM, the
tissue-distinguishable-operators (TDOs) are obtained
for classifying four tissue types.

For sCT generation, the tissue types of voxels in
the target abdominopelvic MR images are distinguished
using the voting strategy based on the predicted results
from the obtained TDOs and the k-nearest neighbors
algorithm. With the final predicted given voxel labels, the
appropriate CT values for each corresponding tissue
type are assigned, and a Gaussian filter, with 2.5 mm
full-width-at-half -maximum, is applied to reconstruct a
synthetic CT image for the target MR images.Full details
are given in our previous publication.37

2.4 MR to CT registration

The MR and CT data are preprocessed as follows: A
rigid registration is performed by aligning the CT image
to the MR image using MIM Maestro. Its rigid multi-
modality image registration utilizes MI, but deformable
multimodality image registration utilizes proprietary met-
rics that are not the conventional similarity metrics such
as SSD, CC, or MI (personal communication with MIM
Software, Inc). These rigid registered data sets hence-
forth are referred to as the baseline images and are
used as an initial guess (but still is an inadequate regis-
tration as will become evident in results). The MR data
have a matrix size of 512 × 512 × m with voxel spac-
ing of 0.98 × 0.98 × 5.00 mm3. To cover the intended
abdominopelvic region, the data were cropped so that
the number of slices, m, ranged between 76 and 104,
spanning from approximately 2 cm above the apex of
the liver to approximately 1 cm below the symphysis
pubis. The CT data are then resampled and cropped to
the same dimensions. Patients’ arms are removed from
both MR and CT images because MR and CT images
are scanned from two separate scanners at different
times making it extremely difficult to obtain spatially
concordant MR-CT pairs for arms. Further, while arms
above the head is the clinically preferred posture, arms
along the sides are allowable for people who find the
position to be uncomfortable, especially in the PET/MR,
which has a limited bore diameter.Such differences may
cause difficulty in not only training but also validation
of the quality of sCT and registration accuracy so they
are removed, noting that the arms are generally not
considered as being part of the abdominopelvic region
for diagnostic purposes. Likewise, the scanner table is
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TABLE 1 Summary of all comparing image registration methods with method labels used throughout the presented work

Method name

Rigid registration
method/baseline
images

LPD-based
method MI-based method

SSD-based
method

MIM Maestro
default method

MIM Maestro +

SSD-based
method

Method label A B C D E F

Deformable N Y Y Y Y Y

Optimization
metric

Maestro
proprietary

Local phase
difference (LPD)

Mutual information
(MI)

Sum of squared
difference (SSD)

MIM Maestro
proprietary

MIM Maestro
proprietary +
SSD

Interpolation
method for
image warping

Linear interpolation Linear
interpolation

Linear
interpolation

Linear interpolation Linear
interpolation

Linear
interpolation

Field
computation

Translation +

rotation
Morphons Block Matching Block matching MIM Maestro

proprietary
MIM Maestro

proprietary +
Block
Matching

removed from the CT images, whereas no additional
processing is needed for the MR data since the table
does not generate MR signal.

Of the available MR data, the Dixon OP sequence
image is used for all registration and evaluation proce-
dures as it provides enhanced contrast in the form of
a distinct black line around organs due to the phase-
cancellation effect between fat and water,46,47 and, from
the available image sequences (Dixon water, fat, and
IP sequences), achieves the most accurate contours for
assessing the landmark errors.

For this study,a total of six different image registration
methods are evaluated: (1) Rigid registration using MIM
Maestro (Baseline image), (2) LPD minimization, (3)
MI maximization, (4) SSD minimization (our proposed
method), (5) multimodality DIR provided by MIM Mae-
stro default method, and (6) applying method E followed
by D (MIM Maestro+ SSD-based method).Table 1 sum-
marizes method name, label, deformation method with
optimization metric. For all the methods, the mCT image
is used as the fixed image, and the MR image or sCT is
used as the moving image.

In detail,method A uses MIM Maestro to perform rigid
registration with translation and rotation based on opti-
mizing MI. This is taken as the starting point for all other
methods.Method B uses OpenREGGUI to perform DIR
with morphons11,48 algorithm as field computation with
minimizing the LPD as the optimization metric. Method
C uses OpenREGGUI to perform DIR with block match-
ing algorithm49 as field computation with maximizing the
MI as the optimization metric. Method D, the proposed
method, consists of four major steps: (1) generate sCT
from the baseline MR image, (2) using OpenREGGUI,
perform DIR between the sCT and the corresponding
mCT with block matching as field computation with min-
imizing the SSD between the sCT and the mCT image
as the optimization metric, (3) extracting the deformation
field from the previous step, and (4) apply the deforma-
tion field onto the MR. In summary, in method D, the MR

is coregistered with the mCT using sCT as an intermedi-
ate. Method E uses MIM Maestro to perform DIR based
on proprietary metrics that are generated for each voxel
from both MR and CT images and involves manual def-
inition of a bounding box, in our case capturing kidneys
and nearby spine, as the area of focus for registration
accuracy. Although Maestro does not require defining a
bounding box, we took this approach during proof-of -
concept work using a prior version (6.6.10) to resolve
the difficulties in registering bone structures and contin-
ued to use it in the work presented herein.Method F is a
two-step process entailing first E then refining that result
using method D.The point of F is to assess the potential
for the proposed sCT intermediate approach to improve
upon results of a state-of -the-art commercial product.

Although outside of user control of OpenREGGUI,
we note that for method B (minimizing LPD), there
are 6 quadrature filters, corresponding to 6 frequencies
in the 3D spatial domain, that are convolved with the
image to compute local phase at different scales of res-
olution for the LPD calculation and optimization. The
displacement search is based on the analytical solu-
tion of the phase difference function between the two
images among all frequencies and spatial directions.
For methods C and D, OpenREGGUI uses block match-
ing for field computation at each scale for 27 adjacent
blocks.16

2.5 Registration performance
evaluation

Twenty-five sets of abdominopelvic MR OP and paired
CT data are used in order to evaluate the performance
of registration. Quantitative evaluations are performed
using all six registration methods (A–F), and qualita-
tive evaluation is performed for registration methods
A, D, E, and F to avoid unnecessary physician effort
as explained in the later section. The baseline MR
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images, having only rigid registration, are included as a
control. Therefore, a total of 150 image volume pairs
are evaluated.

2.5.1 Quantitative evaluation

Quantitative evaluation provides an objective numeri-
cal value of similarity between two images to assess
the registration accuracy. Specifically, the MI and LPD
per voxel are calculated between the MR and the CT
volumes for all six methods. Although the effect of the
quality of the sCT in image registration is not the scope
of this study, we report the mean of SSD and mean
absolute HU difference (MAD) per voxel inside the body
between the sCT and CT for all methods as a mea-
sure of registration accuracy. After the registration, the
final deformation field, generated from the baseline MR
image, is extracted and applied onto the sCT for cal-
culating the SSD and MAD. In the case of methods D
and F, which use the sCT as an intermediate, the final
deformed sCT is readily available to calculate these
metrics.

Besides the global metrics (SSD, MAD, LPD, and MI),
there are quantitative evaluations based on landmark
analysis. Bilateral kidneys, femoral heads, bladder, and
rectum are picked as the landmarks. The kidneys are
picked as they have distinct edges in both MR and
CT images, and the others are picked as they are the
common organs-at-risk for radiation treatment in the
abdominopelvic region. Regions of interest (ROIs) are
drawn by manually tracing contours from each subject’s
MR OP images and CT images.The modified Hausdorff
distance (MHD) is calculated50:

MHD (A, B) = max

{
1

Na

∑
x∈A

inf y𝜖Bd (x, y) ,%
1

Nb

∑
x∈B

inf x𝜖Ad (x, y)

}
(1)

where A represents the contour generated from the CT
image,and B represents the contour generated from the
corresponding MR OP image. infy∈Bd(x, y) represents
the infimum and numerically equals the “minimum” dis-
tance from 3D position of point x in A to 3D position point
y in B. Na and Nb are the numbers of points in A and B.
The Dice Similarity Index (DSI) is calculated:

DSI (A, B) =
2 |A ∩ B|

(|A| + |B|) (2)

The Jacobian determinant (JD) of the deformation
field measures the change in volume for each voxel.51

JD values >1 correspond to a local expansion and <1 to
shrinkage. A JD of less than or equal to zero indicates
that there may be an error or limitation in the registra-
tion algorithm.52 JD values provide insights including: (1)
Whether the image volume undergoes a change in total
volume or not, (2) which voxels undergo a large change,

and (3) if there is any limitation or error in the registration
algorithm. The mean JD value of 1 is desirable as the
deformable registration should not change the absolute
volume of a subject. Having some voxels with JD much
different than 1 supports that a rigid registration alone is
not sufficient.

2.5.2 Qualitative evaluation

While quantitative evaluation provides an objective mea-
sure of registration that an algorithm can utilize for
optimization, it may not necessarily indicate clinical
usefulness. As reviewer assessment of registration
accuracy from all subjects and all methods is not practi-
cable, we used the quantitative evaluations to eliminate
the subset of methods that were clearly inferior from
qualitative evaluation. (As will be shown in results,B and
C were excluded.) Specifically,Methods D,E,and F,were
evaluated by reviewers to clearly identify clinical use-
fulness of each method. Method A (rigid registration) is
included as a reference (control) method. Consequently,
there were 100 registered, de-identified image pairs for
25 subjects for each of the four registration methods to
be evaluated. Four clinicians were recruited to score the
quality of the MR to CT registration using a Likert scale
ranging from 1 to 5. Scores are assigned as:

1. Not usable; major misregistration and completely
unusable

2. Bad; substantial misregistration and prefer not to use
3. Good; good enough to use, but still needs manual

adjustment
4. Readable; some misalignment, but not significant

such that manual adjustment is not needed
5. Perfect; no need to put effort into interpreting and

distinguishing the organs from fusion images

The four board-certified physicians recruited to help
with the final evaluation of the presented work include
two attending nuclear medicine physicians, a radiol-
ogist in a nuclear radiology fellowship program, and
an attending cardiothoracic radiologist. MIM Maestro,
a tool familiar to the clinicians, is used for image
review.

2.6 Processing times

Synthetic CT generation and image registration are per-
formed using a desktop computer equipped with an Intel
i5-4590 3.3 GHz CPU with 12 GB of memory and Win-
dows 10 OS. As the number of axial slices in each
volume 0 varies in different subjects, for standardization,
the computer processing time for volume is divided by
the number of slices in the volume, which is supported
by scatter-plot analysis showing that the computational
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time tends to scale linearly with the number of slices.
Summary statistics of mean and standard deviation are
calculated.

2.7 Statistical analysis

For all quantitative evaluation metrics, statistical signifi-
cance is assessed using the p-values calculated using
one-tailed,paired t-tests.The t-test is constructed to test
against the alternative hypothesis that the mean of the
reference method (registration accuracy) is better than
that of the comparison method. The null hypothesis is
rejected, and an alternative hypothesis is accepted if p-
value is less than 0.05. Specifically, better registration
accuracy is obtained with higher values of MI and DSI
and with lower values of SSD, MAD, MHD, and LPD.
Therefore, right-tailed tests are conducted for MI and
DSI, and left-tailed tests are conducted for SSD, MAD,
MHD and LPD.

For qualitative evaluation of the Likert scores, which
are ordinal data, statistical significance is assessed
using the p-values calculated using one-tailed, Mann-
Whitney U test.The Mann-Whitney U test is constructed
to test against the alternative hypothesis that the sum
of ranks of the Likert scores of the reference method
is higher (better registration accuracy) than that of the
comparison method.The proportion of the data sets that
have Likert scores that exceed a specified threshold is
calculated, and the ability of one method to achieve a
statistically significantly higher proportion than another
is evaluated using a chi-squared test. The upper-tailed
test is constructed with the alternative hypothesis that
the probability of the reference method having a higher
proportion than that of the comparison method.For both
statistics, the null hypothesis is rejected, and an alter-
native hypothesis is accepted if p-value is less than
0.05. Likert scores given by each reviewer are analyzed
to estimate inter-reviewer variability, and composite Lik-
ert scores from all reviewers are analyzed to compare
comprehensive registration performance.

3 RESULTS

3.1 Optimization metrics (SSD, MI,
LPD) evaluation

Using the proposed method, sCTs are generated and
registered with the mCT images using SSD minimiza-
tion. Five examples of such sCT images are shown in
Figure S1. We used the HU difference between the reg-
istered sCT and CT as one measure of the registration
accuracy; a superior registration should minimize the
HU difference recognizing that the differences would not
reach zero as they are also affected by the accuracy of
the sCT per se. Specifically, Figure S2 shows the SSD

and voxel-wise MAD, that is perhaps a more intuitive
measure, of all methods. When ordered by the SSD and
MAD values, the methods are F < D < A < C < B < E
from lowest to highest, or from best to worst registration,
and numeric values of statistical significance between
the successive methods in the ordered list (e.g., F vs. D,
D vs. A, etc.) are listed in Tables S1 and S2 for SSD
and MAD, respectively. Considering the methods that
optimize SSD (D and F), Figure 2 plots SSD and MAD
compared to those of the rigid registration method A
as reference, with statistical significance versus method
A annotated. Indeed, as expected, D and F significantly
reduce SSD and MAD as well. It should be noted that the
MADs are calculated excluding the background air out-
side the body to avoid diluting the result by many pixels
that are perfectly matched. The somewhat large MAD is
mainly attributed to a small subset of the voxels which
are (1) the outliers that result from misclassifications of
bone and air inside the body,particularly in the lungs and
around the spinal canal, and (2) the outliers result from
anomalies near the superior and inferior ends of the field
of view (FOV),wherein some spatial locations have data
available from one modality but not the other. Both of
these outliers may often cause some voxel differences
to exceed 1000 HU. Despite the outliers, the methods
that use sCT as an intermediate (D and F) seem to be
robust with regard to the presence of the outliers not-
ing that we did not omit these outliers in the registration
process.

As another quantitative assessment of registration
methods, the LPD and MI values are calculated for
each of the six registration results (including, even the
methods that do not minimize LPD or maximize MI). Full
results of LPD and MI values are plotted in Figures S3
and S4, respectively. When ordered by mean LPD, the
methods are E < D < B < F < A < C, from lowest to high-
est values, or from best to worst registration accuracy.
Statistical analysis comparing successive methods in
this ordered list did not achieve significance as detailed
in Table S3. However, method E achieves statistically
significant lower LPD than method B (p = 0.042).
Figure 3 plots LPD for method A the reference rigid
registration, method B that optimizes LPD, and D our
proposed method. Our proposed method shows lower
LPD than method B, although the difference did not
achieve statistical significance. Turning to MI as the
metric, the methods ranked E > F > D > B > C > A
from highest to lowest values, or from best to worst
registration accuracy. Statistical analysis comparing
successive methods in the ordered list are presented in
Table S4. Considering A, B, and C as one group and D,
E, and F as the other group, we successively compared
a member of the second group with members of the
first group for a total of nine comparison pairs: (D vs. [A,
B, or C]; E vs. [A, B, or C]; and F vs. [A, B, or C]). All nine
comparison pairs found D, E, and F are superior to A, B,
and C (p < 0.0001). Figure 4 plots MI for method A the
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F IGURE 2 Sum of squared differences (SSDs) and mean absolute differences (MADs) comparisons of the baseline volumes (method A)
and those deformably registered using different methods (methods D and E). Baseline refers to images that were aligned using rigid
registration, and which served as the input to deformable registration. Generally, low SSD and MAD are desired for registrations that use sCT as
an intermediate. The proposed method achieves a lower SSD and MAD than method A, and method F achieves the lowest values for both
metrics. For this and subsequent box-plots, the arrow heads indicate that the particular method achieved a better mean (or sum of ranks for
qualitative evaluation) than the comparison method at the arrow tail. p-Values for comparisons are shown with different levels of statistical
significance represented by the number of asterisks; more asterisks represents higher statistical significance while “ns” represents not
significant. The dotted horizontal lines indicate the mean values (or median for qualitative evaluation). The box heights indicate interquartile
range (IQR) in between the 25th to 75th percentile (Q1 and Q3, respectively). The whiskers indicate the minimum and maximum values not
considered outliers, where the outlier is determined if the value exceeds 1.5 times the IQR from Q1 and Q3. The outliers are plotted with “o.”
Note that the y-axis does not start at zero but is scaled to capture the absolute minimum and maximum values of each evaluation metric. The
values in the parenthesis below the boxplots indicate the mean values.
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F IGURE 3 Local phase difference (LPD) comparison of the
baseline volumes (method A) and those deformably registered using
different methods (methods B and D). The arrow head annotations
indicate that the particular method achieved a lower (better) LPD
value than the comparison method at the arrow tail. The proposed
method achieves a lower LPD than method B, which directly
optimizes LPD.

reference rigid registration, method C that optimizes MI,
and D our proposed method. Method C fails to achieve
a statistically significant difference against method A
(p = 0.44), while method D achieved a significantly
higher MI than both methods A and C.

3.1.1 Landmark error evaluation

Differences in the registration accuracy of the methods
based on LPD versus MI indicates that these metrics
alone are not sufficient to unambiguously make a con-
clusion about which method should be preferred; hence
we also explored landmark error evaluation.Registration
accuracy is scored based on the spatial correspondence
of anatomic structures as seen in CT and MR. Spatial
correspondence is quantified using the MHD and DSI
to assess ROI contours drawn on each subject’s mCT
image and MR OP images after registration.

F IGURE 4 Mutual information (MI) comparison of the baseline
volumes (method A) and those deformably registered using different
methods (methods C and D). The arrow head annotations indicate
that the particular method achieved a higher (better) MI value than
the comparison method at the arrow tail. The proposed method
achieves a higher MI than method C, which directly optimizes MI.

Full results for landmark evaluation using MHD are
shown in the supplementary materials Figure S5 and
Table S5. Surprisingly, method B degrades the MHD
after DIR for all ROIs, meaning method B performs
even worse than rigid registration (method A). Gen-
erally, when ordered by mean MHD, the methods are
F < E < D < A < C < B, from lowest to highest val-
ues, or from best to worst registration accuracy, and
numeric values of statistical significance between the
successive methods in the ordered list are listed in Table
S5. Considering A, B, and C as one group and D, E,
and F as the other group, we successively compared
a member of the second group with members of the
first group for a total of 9 comparison pairs: (D vs. [A,
B, or C]; E vs. [A, B, or C]; and F vs. [A, B, or C]). All
nine comparison pairs found D, E, and F are superior
to A, B, and C for all ROIs with statistical significance
achieved for bilateral kidneys and bilateral femur heads
(p < 0.0001) but not for bladder and rectum (p < 0.25).
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F IGURE 5 Modified HD (MHD) values comparison of region of interest (ROI) between the registered magnetic resonance (MR)
opposed-phase (OP) images from methods D, E, and F and the measured computed tomography (CT) images. Generally, lower MHD is desired
for registration. Method E shows relatively better MHD than method D, and method F shows relatively better MHD than method E.

Focusing on the best-performing methods D, E, and F,
box plots analysis (Figure 5) shows that: (1) method E
demonstrates lower MHD than method D but does not
achieve statistical significance for most ROIs except for
the left femoral head, and (2) method F demonstrates
lower MHD than method E for all ROIs with statistical
significance achieved except for rectum and left femur
head.

Full results for landmark evaluation using DSI are
shown in the supplementary materials Figure S7 and
Table S6. Surprisingly, methods B and C degrade the
DSI after DIR for most ROIs, meaning methods B and C
performs even worse than rigid registration (method A).
Generally, when ordered by mean DSI, the methods are
F > E > D > A > C > B, from highest to lowest values, or
from best to worst registration accuracy. Statistical anal-
ysis comparing between the successive methods in the
ordered list are presented in Table S6. Considering A,
B, and C as one group and D, E, and F as the other
group, we successively compared a member of the sec-
ond group with members of the first group for a total
of nine comparison pairs: (D vs. [A, B, or C]; E vs. [A, B,
or C]; and F vs. [A, B, or C]). All nine comparison pairs
found D, E, and F are superior to A, B, and C for all ROIs
(p < 0.009). Focusing on the best-performing methods,
Figure 6 shows that (1) method E achieves improvement

over method D but does not achieve statistical signifi-
cance for any ROI, and (2) method F achieves a higher
DSI mean on all ROI than method E with statistical
significance on the left and right kidneys.

3.2 Jacobian determinant

The JD measures the degree of deformation at each
voxel. JD maps provide intuitive visualization of the
deformation. Figure 7 shows example maps for the
deformation fields of methods B, C, and D for a typi-
cal subject; maps are not available for methods A, E,
and F as MIM Maestro does not make these available.
Figure 8 shows a boxplot visualization of the statisti-
cal summary of the distributions of JD values across all
subjects to indicate the change in volume for each voxel
after the transformation.As evident in Figure 8,although
the mean JD values are all close to 1 for methods B,
C, and D, method B shows a larger interquartile range
than the other two methods C and D, indicating larger
deformations at certain voxels. Delving into the details
for an example data set, Figure 9 shows a histogram of
JD values for the deformation field of method D for a
typical subject. There are some voxels with JD values
as small as 0.5 and as large as 2, but these voxels are
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F IGURE 6 Dice similarity index (DSI) values comparison of region of interest (ROI) between the registered magnetic resonance (MR)
opposed-phase (OP) images from methods D, E, and F and the measured computed tomography (CT) images. Generally, higher DSI is desired
for registration. Method E shows relatively better DSI than method D, and method F shows relatively better DSI than method E.

extremely rare as evident in the histogram noting that
the inset plot shows that the JD values of most voxels
are between 0.95 and 1.05. Specifically, for methods B,
C,and D respectively: (1) ranges are (0.43–2.00), (0.72–
1.57), and (0.51–2.44), (2) 67.3%, 84.8%, and 82.9% of
JD values are between 0.95 and 1.05, and (3) 90.2%,
98.5%, and 96.8% of JD values are between 0.85 and
1.15. JD values smaller than 0.85 and larger than 1.15
mostly occur at four locations: (1) inferior boundary of
lungs, (2) spinal canal, (3) intestines, and (4) medullary
cavity of femur bone.

3.3 Qualitative evaluation

To assess the potential for clinically relevant improve-
ments in registration, reviewers reviewed the image
volumes,visually scoring the registration accuracy of the
reference, A, and of the best-performing methods D, E,
and F. Unsurprisingly, the specific area of concern for
any individual reviewer is related to that reviewer’s area
of clinical practice with our different reviewers noting
that the features of concern are the bone, intramuscu-
lar fat,major organ bodies, vascular, and patient-specific
pathology. Figure 10 box plots provide a visual sum-
mary of the distributions and annotations of statistical

significance of the scores assigned by each of the
reviewers and a composite of all reviewers. A tally of
the number of images achieving each score,aggregated
across all reviewers, is presented in Table 2. Consid-
ering a composite of all reviewers’ Likert scores, the
relative registration performance is in the order of meth-
ods F > E > D > A, from best to worst registration
accuracy evaluated by sum of ranks. Statistical analy-
sis comparing successive methods in the ordered list is
presented in Table S7. F is better than E (p = 0.048),
and D is better than A (p = 2.54 × 10–15); however the
difference between D and E fails to achieve statistical
significance (p = 0.35). That is, choice of method D ver-
sus E for registration is not expected to be clinically
relevant.

To address the question of the ability of a fully-
automated DIR method to achieve sufficient registration
accuracy that manual refinement is not needed, we
calculated the proportion of cases, which had Likert
score >3 for each method. The methods, ordered by
the proportion, are F > E > D > A, from highest to low-
est proportions. While methods D and E show similar
proportions of scans not requiring manual refinement
(Likert score > 3) (p = 0.88), method F tends to a higher
proportion than method E (p = 0.11) and method D
(p = 0.08).
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F IGURE 7 Jacobian determinant (JD) maps of the magnetic resonance (MR) opposed-phase (OP) to computed tomography (CT)
registration deformation fields of a typical subject, using the local phase difference (LPD)-based method (B), the mutual information (MI)-based
method (C), or the proposed method (D). Note that the bright regions indicate local expansion, and the dark regions indicate shrinkage. These
JD maps show the largest variation on the body edges and organ boundaries. Method B shows the largest deformation among the compared
methods.

3.4 Processing time

In order to gauge the practicality of using the vari-
ous fully automatic registration methods, the processing
times are provided in Table 3. Note that methods D and
F have two time-consuming steps:

(1) the mean processing time for generating a sCT vol-
ume from the MR volume and (2) the mean processing
time taken to register MR to CT data. With an excep-
tion of method B and C, all methods show reasonable
processing times to be implemented for a fully auto-
matic registration process with processing times less
than 9 min per volume. The registration processing time
for method F includes both the DIR from MIM Maestro
(method E) and proposed method from OpenREGGUI
(method D). Note that it exhibits shorter processing
time than adding those of methods D and E, presum-
ably because registering sCT to the mCT is faster than
method D as the sCT generated from method E, and
used for method F, is already registered to the mCT via
MR-CT coregistration from method E.

4 DISCUSSION

Herein a method of transforming the MR to CT image
registration problem into a same-modality registration
task using sCT as an intermediate is evaluated. In par-
ticular, and unlike prior work,30,33 the proposed method
uses SSD as the similarity metric and overcomes some
of the robustness challenges of direct multimodality reg-
istration based on optimizing MI or LPD. In summary, we
recommend method D as clinically practicable and valu-
able for registering MR and CT with its fully automatic
workflow, particularly when Maestro is not available as
might be the case in an academic research environment.
One of the greatest potential benefits this study can
offer for radiation oncology treatment planning is trans-
ferring the contours drawn on MR images to CT images
for better confidence in localization of highly deformable
organs (such as bladder and rectum) and reproductive
organs (such as prostate, uterus and cervix) than when
using CT standalone, which lacks contrast thus limiting
identification of critical organs. Therefore, future studies
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F IGURE 8 The statistical plot of Jacobian determinant (JD)
values of all subjects using the three methods (B, C, and D). The
boxplot shows that method B has the largest interquartile range
(IQR), indicating greatest deformation at certain locations. Note that
the outliers are not plotted as part of the boxplots because, due to
hundreds of millions of samples, their number is so great that
plotting them obstructs the visualization of the boxplot. Instead, we
report that for methods B, C, and D, respectively, 1) the ranges are
(0.43, 2.00), (0.72, 1.57), and (0.51, 2.44); 2) 67.3%, 84.8%, and
82.9% of JD values are between 0.95 and 1.05; and 3) 90.2%,
98.5%, and 96.8% of JD values are between 0.85 and 1.15.

may include clinical validation of the transferred con-
tours. Another use of our proposed methodology is to
create a virtual PET/MR study by accurate coregistra-
tion of MR with a CT image volume that is acquired as
part of a PET/CT examination. This provides PET/MR
functionality in the majority of sites that do not have such
physical scanners.

4.1 General ranking order of methods

Considering clinically relevant measures, the general
order of methods in terms of registration accuracy is
F > E > D > A > C > B, from best to worst, with
method D being, in most cases, the preferred method
with its fully automatic workflow. Methods D, E, and
F, as a group, achieve clinically relevant registration
accuracy that is significantly better than that of conven-
tional methods A, B, and C as can be seen in Figures
S5–S7. Figure S7 illustrates this using a checkerboard
display presentation that, in hard-copy format, better

depicts the registration performance than Figure S8,
which illustrates a snapshot from the interactive clinical
display tool that reviewers used to evaluate the paired
MR-CT image volumes. In particular, the checkerboard
display enhances the visualization of the discontinuities
of anatomical structures between the mCT and Dixon
OP images and confirms that discontinuities are more
prevalent in methods A, B, and C than in methods D, E,
and F.

Evaluation results suggest that our proposed method
D can be an alternative for MIM Maestro DIR (method
E) particularly when Maestro is not available as might
be the case in an academic research environment. On
the other hand, the FDA clearance,user friendliness,and
user support may make Maestro preferable for routine
clinical use. Indeed, neither was clearly superior to the
other. In particular, the difference in rank sum of Likert
scores between methods D and E is not statistically sig-
nificant (p = 0.35), and the difference in the number of
cases not requiring additional manual adjustment (Likert
score > 3) is also not statistically significant (p = 0.88).
In fact, this high p-value suggests that methods D and
E are trending toward being indistinguishable. A partic-
ular advantage of the proposed method D is that it has
potentially better reproducibility due to its fully automatic
operation compared to MIM Maestro DIR (method E),as
we used it,which involves manually choosing a bounding
box. Maestro does not require selecting a bounding box,
but our group implemented it during proof-of -concept
work using a prior version of the software to resolve
the difficulties in registering bone structures, and con-
tinued to use it in the work presented herein. On the
other hand, method F, using our method to refine the
results achieved by MIM Maestro, did achieve a supe-
rior result by some metrics.The difference in rank sum of
Likert scores between methods F versus D is significant
(p = 0.016), but the difference in utility of fully auto-
matic DIR based on the number of cases that achieved
Likert score > 3 did not achieve statistical significance
(p = 0.08). Moreover, the checkerboard visualization,
Figure S7, does not reveal any major differences in
terms of spatial discontinuities between methods D, E,
and F. Considering this and that this two-step approach
of F and entailing both clinical and research software
might be impracticable for routine clinical practice in
its current implementation. A possibility for future work
would be to achieve a clinically practical streamlined
workflow by addressed by implementing method D in
MIM Extensions.

4.2 Relative utility of metrics for
computerized optimization

Automated registration requires an objective measure
of registration goodness that can be optimized, and, for
this purpose,we considered LPD,MI,and SSD.Although
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F IGURE 9 Jacobian determinant (JD) histogram of the magnetic resonance (MR) opposed-phase (OP) to computed tomography (CT)
registration deformation fields of a typical subject, using the proposed method (D). The main plot shows a histogram magnified for a shorter
y-axis (number of voxels) than the subplot on the right, which is a histogram capturing the maximum height occurring in between JD values of 1
and 1.01. The minimum JD value is approximately 0.5, and the maximum JD value is approximately 2.1, which are not distinguishable from the
histogram as there are only a handful of voxels with such small and large values.

MI-based registration may outperform LPD-based regis-
tration, as implemented herein, both metrics seem to be
particularly more challenging to optimize and less robust
than SSD. The rank of methods when ordered by LPD
(E > D > B > F > A > C) is inconsistent with the gen-
eral rank order of methods in terms of clinically relevant
registration accuracy (F > E > D > A > C > B), suggest-
ing limited robustness of LPD.Despite the inconsistency,
we do not attribute it to an intrinsic flaw of LPD as a
metric because the result is consistent with the gen-
eral findings with regard to clinical registration accuracy
in that: (1) method E shows statistically significantly
lower (better) LPD than methods A, B, and C, and (2)
the difference in LPD between methods D and E does
not achieve statistical significance. Moreover, evidence
that the LPD optimization is implemented correctly is
that method B, which directly optimizes LPD, achieves
lower (better) LPD than the initial guess in the opti-
mization (rigid registration, i.e., method A), so the fact
that method E achieves statistically significantly lower
(better) LPD than method B (p = 0.042) suggests that
LPD is difficult to optimize. Indeed, LPD is known to
lack a common set of filters that generally yield a global
optimum across various multidimensional images of dif-

ferent anatomical regions, implying a possibility of the
existence of different sets of filters that can reflect clini-
cally relevant registration accuracy better than the filters
implemented in this study.29,53 Therefore, future studies
may include a systematic search for a common set of fil-
ters that achieves the best clinically relevant registration
accuracy.

In considering MI as a metric, the rank of methods
when ordered by MI (E > F > D > B > C > A) is more
consistent with that of clinically relevant registration
accuracy rank order of methods (F> E>D> A>C> B)
than when ordered by LPD. Also, the MI metric finds that
methods D, E, and F, as a group, achieve statistically sig-
nificantly higher (better) MI than methods A, B, and C,
as a group, as is the case with the clinically relevant
registration accuracy (Likert scores), but not with LPD
as a metric. Although MI, as metric, is more robust than
LPD, MI too can be challenging for automated computer
optimization. Evidence that the MI optimization is imple-
mented correctly is found in method C, which directly
optimizes MI, improves the MI from the initial guess (rigid
registration, i.e., method A), so the fact that method D,
which optimizes SSD, often achieves the highest (best)
MI value suggests that MI is difficult to optimize. Our



HEO ET AL. 15 of 18

F IGURE 10 Box plots summarize the distribution of the scores by the reviewers, including the composition of all physician evaluation. The
values in the square bracket below the boxplot represent the median values, which are indicated as dotted horizontal lines. The values in the
parenthesis are the mean Likert scores and are provided as a simple metric that can be calculated for each method, whereas the sum of ranks
must be calculated separately (pairwise) for every comparison. To evaluate potential for statistically significant differences, sum-of-ranks
/Mann-Whitney U test tests were performed. The arrow head annotations indicate that the particular method achieved a higher (better) sum of
ranks than the comparison method at the arrow tail. For each reviewer, there were 100 cases to evaluate with 25 cases for each of the four
methods. Generally, method F received the highest scores across all the physicians. p-Values between method F, and the three other methods
indicate that the performance advantages between method F versus other methods are statistically significant. Method E has a tendency to
perform better than method D but fails to achieve statistical significance. Note that the reviewer 2 preferred method D, although statistical
significance is not achieved.

experience that MI is difficult to optimize concurs with
that of others who report that the MI objective function
has a relatively narrow, peaked region around the opti-
mal point with a flat area beyond the neighborhood.34,35

Another limitation of MI is that it does not achieve sta-
tistical significance in identifying the difference between
methods D and F in contrast to the clinically relevant
measures (Likert score, MHD, and DSI) which do.

In contrast to evidence of limited robustness of LPD
and MI, SSD, as a metric, seems to be more robust
and reliable as ranking by SSD reflects clinically rele-
vant registration accuracy better than ranking by LPD
or MI. The rank of methods when ordered by SSD
(F > D > A > C > B > E) is, with the exception of E,
consistent with the clinically relevant rank order of reg-

TABLE 2 Number of cases for each Likert score for each
method from all physician evaluation

A D E F

Score 1 29 4 8 5

Score 2 27 9 6 7

Score 3 29 20 18 10

Score 4 11 38 34 34

Score 5 4 29 34 44

Note:Score >3 indicates a sufficient registration accuracy is achieved that man-
ual refinement is not needed.Score 5 indicates a perfect registration of clinically
relevant organs.

istration accuracy (F > E > D > A > C > B). Method E
achieves the highest (worst) SSD,but we attribute this to
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TABLE 3 The mean processing time per (512 × 512) slice for each method

Steps A B C D E F

sCT generation 2.3 s 2.3 s

Registration 0.1 s 8.2 s 183.2 s 5 s 2 s 5.6 s

Total time 0.1 s 8.2 s 183.2 s 7.3 s 2 s 7.9 s

Total time for the volume 8 s 12 min 4.5 h 7.4 min 2.9 min 8.3 min

Note: The last row is the mean processing time for the volume. Methods D and F have an additional time-consuming step of generating sCT from the MR volume. The
registration processing time for method F includes both the DIR from MIM Maestro (method E) and proposed method from OpenREGGUI (method D).

the vagaries of how MIM Maestro handles the deforma-
tion field toward the axial ends of the FOV - repositioning
anatomy that is outside of the FOV of one image vol-
ume set but not of the other. In particular, noting that
we calculate SSD for method E by extracting the resul-
tant deformation field from MIM Maestro and apply it to
the initial sCT, the high SSD is ameliorated when end
planes are omitted from the SSD calculation. Thus, for
these reasons, we find SSD to be the superior registra-
tion metric. Also, it seems to be robust with respect to
imperfections in the sCT accuracy, and thus we did not
have to resort to a ultrashort echo time or zero echo time
pulse sequence to improve the discrimination between
bone and air for sCT generation; the commonly used
Dixon pulse sequence was sufficient. Another advan-
tage is that SSD is much faster to optimize than LPD
and MI as presented in Table 3, further supporting that
SSD is clinically more practical than LPD and MI. This,
coupled with the fully automated processing of method
D means that the registration can be seemingly instan-
taneous from the physicians’perspective as it is feasible
to perform it after image acquisition and before they
are ready to read the images. It is worthwhile to note
that, of the two SSD-based methods, F achieves better
SSD than method D (p = 0.0037). Thus, even with SSD,
there is some challenge in optimizing SSD and finding
the global optimum given that the only difference is that
D and F start with different initial guesses. Therefore,
future studies may consider strategies to find the global
minimum of the SSD.

4.3 Challenges of DIR in
abdominopelvic region

The abdominopelvic region is a particularly challenging
anatomic section to perform DIR because organs are
highly deformable. Contours, assessed using MHD and
DSI, are consistent with physician review, but even with
methods D, E, and F, the mean MHD can exceed 4 mm
and the DSI similarity be less than 0.7 for bladder and
rectum with large standard deviations across subjects.
However, this does not represent intrinsic limitations of
methods D, E, and F as MR and CT are acquired on
different scanners—there is no combined MR-CT scan-
ner, which necessitates patient repositioning and time

gaps, which, in our case, were on the order of 30 min.
Consequently, the bladder size and shape can be dif-
ferent across subjects due to filling and the mobility of
adjacent organs. For example, the rectum is a relatively
deformable organ, and its volume can be affected by
bladder filling and bowel gas, so a large MHD and a
small DSI in these areas are not surprising.As presented
in Figure 7, deformations mainly occur on the body
edges and organ boundaries that are affected by breath-
ing motions and deformable nature of organs, further
illustrating the challenges of abdominopelvic DIR.

5 CONCLUSION

This work proposes the methodology of using a sCT as
an intermediate for the abdominopelvic MR to CT regis-
tration.This maps the multimodality registration problem
to the simpler same modality registration that can use
SSD as the metric to minimize. The deformation field
is extracted from the sCT to (measured) CT registra-
tion and then applied to the MR data to register it with
CT. Both quantitative and qualitative results show: (1)
improved robustness and clinically relevant registration
accuracy of our proposed method compared with the
traditional rigid, LPD- and MI-based registration, (2) in a
research environment our proposed method can provide
a DIR that performs comparably to that in a commercial
software, (3) our proposed method may be of interest for
implementation in a commercial software to support the
clinical workflow.
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