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Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico
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In mammograms, a calcification is represented as small but brilliant white region of the digital image. Earlier detection of
malignant calcifications in patients provides high expectation of surviving to this disease. Nevertheless, white regions are difficult
to see by visual inspection because a mammogram is a gray-scale image of the breast. To help radiologists in detecting abnormal
calcification, computer-inspection methods of mammograms have been proposed; however, it remains an open important issue.
In this context, we propose a strategy for detecting calcifications in mammograms based on the analysis of the cluster prominence
(cp) feature histogram./e highest frequencies of the cp histogram describe the calcifications on themammography./erefore, we
obtain a function that models the behaviour of the cp histogram using the Vandermonde interpolation twice. /e first in-
terpolation yields a global representation, and the secondmodels the highest frequencies of the histogram. A weak classifier is used
for obtaining a final classification of the mammography, that is, with or without calcifications. Experimental results are compared
with real DICOM images and their corresponding diagnosis provided by expert radiologists, showing that the cp feature is
highly discriminative.

1. Introduction

Breast cancer is the top cancer that affects women both in
developed and developing countries. Early detection of
breast cancer increases treatment options and survival ex-
pectation [1]. Breast cancer statistics report that nearly 2
million of new cases were diagnosed in 2018; this represents
about 12% of all new cancer cases and 25.3% of all cancers in
women [2]. For an analysis of the efficiency in each stage of
the cancer disease, the diagnosis, registration, and moni-
toring of diseases allow to validate the most appropriate
treatments, including the optimization of costs [3]. /e early
detection for improving breast cancer outcome and survival
remains an open issue.

/e DICOM is the format used for registering a digitized
mammographic image. Nowadays, mammography is a re-
liable method for breast cancer detection. In addition,
several computer-aided detections (CAD systems) help
mammogram processing to provide more accurate results
[4]. A mammography is a low-energy radiography of the
breast. /e radiologist uses this method to localize mor-
phological alterations and infers the presence or absence of
anomalies, mainly small calcifications [5]. Breast calcifica-
tions are small spots of calcium salts in the breast tissue. /e
calcifications in the mammography appear as small white
spots. /ere are two different types of calcifications,
microcalcifications and macrocalcifications [6]. /e mac-
rocalcifications are large and coarse, mostly benign and
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associated with the age. /e microcalcifications can be early
signs of breast cancer, with or without a visible mass. /is
mass can be a benign tumor, a cyst, or cancer.

/e detection of microcalcifications in mammograms is
suboptimal because it depends on the radiologist’s experi-
ence, criterion, fatigue, and visual capability. As a result,
radiologists fail to detect breast cancers due to mis-
interpretation of the lesion and can lead to a greater number
of false-positive cases. Another aspect is the accuracy with
which the radiologist considers the medical importance of
the calcification regions because sometimes these region’s
sizes can be misinterpreted in the mammograms [7].
Microcalcifications are bright spots whose size oscillates
between 0.1mm and 1mm [8], and usually, they are not easy
to see. Furthermore, only certain suspicious micro-
calcifications (<0.5mm) are alarming, as it is verified in a
comparative study between cancer size measurements and
the results of pathology [9]. As a result, radiologists fail to
detect breast cancers.

Several methods have been developed to assist the ra-
diologist in the detection of calcifications using mammog-
raphy images [10, 11] or computed aid detection (CAD
systems). CAD systems have had significant technology
advances yield to detect segmentation and classify micro-
calcification clusters at digital mammograms. /us, CAD
systems have been used clinically for more than two decades
as “second lector” in the diagnosis carried out by the ra-
diologists [9, 12]. /e use of CAD systems is popular due to
the high sensitivity detection averaging up to 90% [13]. On
the other hand, the images obtained during the acquisition
of a mammography are low contrast, making the processing
a challenging task. Some methods are proposed to segment
several types of microcalcifications using texture features.
Kim and Park [14] compared the surrounding region-
dependence method (SRDM) to the other conventional
texture-analysis methods with respect to detection of clus-
tered microcalcifications in digitized mammograms. /e
performance results of the classification are usually evalu-
ated using receiver operating curve (ROC) curve that de-
scribes the discrimination capacity of the approach [15].
Yadollahpour and Hamed in [16] presents a review of
various methods considering texture analysis for mass and
microcalcification detection in mammography used for early
breast cancer detection. Jalalian et al. in [17] obtains sta-
tistical texture feature based on the co-ocurrence matrix
from a segmented volume of interest. /e classification stage
uses a multilayer perceptron neural network achieving high
accuracy results.

Both applications Hough transform and threshold-based
method were considered by Fanzinni et al. [18] as strong
techniques that yield to group single microcalcifications, as
“success events,” into clusters using a set of expert codified
rules. From this, it is possible to obtain the regions that
contain the lesions of interest. High-frequency filters were
used by Lauria et al. [19] as preprocessing filters to carry out
the segmentation of possible suspicious areas at mam-
mography. /e microcalcification analysis yield to find and
classify regions of interest (ROIs) by means of two neural
networks: the first is a feedforward neural network, while the

second neural network uses the principal component
method to end the process of classification. Samala et al. in
[20] presents a study corresponding to the advantages and
challenges for detection of microcalcifications in digital
mammograms and digital breast tomosynthesis from a CAD
systems perspective.

Basic concepts of mathematics define an inflection point
as a point on the curve at which the sign of the curvature
(i.e., the concavity) changes. In this approach, such changes
on the curvature represent the fluctuations/variations of
agglomerations in the image with respect to the specific level
of the cp texture feature. In this paper, the analysis of the
cluster prominence cp texture feature on mammography
images is carried out to detect breast calcifications that may
indicate cancer. /e modelling of the last part of the cp
histogram reveals the presence of microcalcifications with
respect to another common mass on the breast tissue. /e
final classification of the mammography is performed using
a weak classifier. /e document is organized as follows: the
next section describes the proposed strategy for detecting
calcifications. Also, it explains the cp feature computation,
the global and local interpolation, and the classification of
the cp histogram. /e experimental results and conclusions
are, respectively, provided in the last part of the document.

2. Materials and Methods

/e analysis of the cluster prominence (cp) texture feature is
proposed to accurately detect calcifications in digital
mammography. /e proposed approach described here uses
the mammography dataset collected at the General Hospital
of Irapuato, Guanajuato. /e dataset consists of 74 images:
22 diagnosed with calcifications and 52 diagnosed as normal
tissue, in accordance with the classification system for breast
mammogram, BI-RADS. An overview of our proposed
approach is depicted in Figure 1, presenting mainly three
stages: (1) feature extraction, (2) analysis of calcifications,
and (3) classification of the mammography. First, the cp
texture feature is computed from a mammogram using the
sum and difference histograms (SDH) technique [21].

/is feature is a measure of asymmetry for which a high
value indicates large changes in the gray-scale levels of the
image [22]. In other words, cp is a measure of how uniform is
the gray-scale level distribution. In accordance with this, it is
proposed that high cp values represent calcifications that can
be more deeply analysed for validating the detection of
calcifications.

/e cp feature histogram is analysed using the Van-
dermonde technique. A global interpolation function f(cp)
that best describes the cp feature histogram is obtained. /is
function is used to analyse the range of the histogram with
high possibilities of finding calcifications, by means of the n
inflection points in f(cp), here referred as Zcp. Each inflection
point represents different and noticeable agglomeration
zones of the mammography with a high level of cp texture
feature. However, a deeper analysis must be performed to
search and validate the presence of calcifications on one
specific zone of the high frequency. To accomplish this, the
g(cp) function is obtained from a local interpolation on the
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high frequency range of the cp histogram. Using a specific
range of the g(cp) function, the attributes X vector is
computed.

/e stage of mammograms classification receives
the normalized version of statistical attributes (including the
number of zeros) of theX vector and then classified using the
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K-nearest neighbour. /e classification results refer the
mammogram as “with calcifications” or “without calcifica-
tions.” In the following, these stages will be explained on
detail.

2.1. Texture Feature Extraction Using SDH Algorithm. /e
sum and difference histogram (SDH) technique calculates
histograms that collect the results of addition and sub-
traction of the gray-scale levels on a whole digital image [18].
/e SDH requires basic arithmetic operations and less
memory storage in comparison with other texture tech-
niques. Furthermore, it stores important information about
the image content.

Considering the mammogram image as a rectangular
matrix of size K × L, the sum image IS is obtained by
summing each pixel and their surrounded pixels are sepa-
rated by a set of M relative displacements. /e gray level at
each pixel is quantified to Ng levels; therefore, the range of
the IS image is [0, 2(Ng−1)]. From the IS image, the sum
histogram (hS) is calculated for a rectangular window of N
elements (N�width × height, 3 × 3) storing the cardinality at
each coordinate (x, y) in the window with an intensity value
i. Finally, the normalized sum histogram PS(i) is given by
the following equation:

PS(i) �
hS(i)

N
. (1)

/e cp feature is given by the following equation:

cp � 
i

(i− 2μ)
4

· PS(i). (2)

As mentioned above, this feature is used to seek for
calcifications in mammograms, as calcifications and ag-
glomerations are related with high values in the cp texture
feature.

/e size of the region used for computing the cp
feature is D � 3 × 3 because the calcifications are more
visible using this size. /e displacement was established
only in the horizontal direction, although more directions
were evaluated, i.e., 45°, 90°, and 135° without noticeable
changes. /e value was set at “1” because as mentioned
above, the sizes of the microcalcifications are <0.5 mm [9].
/is minimal resolution of “1” pixel allows to detect the
microcalcifications.

2.2. Analysis of the cp Feature Histogram. In this section, it
explains the theoretical context of the Vandermonde tech-
nique, and the global and local interpolations are performed
for modelling the hcp behaviour. /e histogram of the cp
feature (here denoted as hcp) might be numerically modelled
by a polynomial function f(cp) that globally describes the
histogram behaviour. Such f(cp) function is obtained using
the Vandermonde interpolation technique. After that, a local
interpolation is performed (using the same interpolator) but
only for high values of cp features.

2.2.1. Vandermonde Technique for Global Interpolation.
/e basic procedure to determine the coefficients
a0, a1, . . . , an of the polynomial function

Pn(x) � a0 + a1x + a1x
2
+, . . . , + anx

n (3)

consists in interpolating the m + 1 points
(x0, y0), (x1, y1), . . . , (xm, ym) yielding a linear system of
equations

Pn x0(  � y0 ⟶ a0 + a1x0 + a2x
2
0 + . . . + anx

n
0 � y0,

Pn x1(  � y1 ⟶ a0 + a1x1 + a2x
2
1 + . . . + anx

n
1 � y1,

⋮ ⟶ ⋮

Pn xm(  � ym ⟶ a0 + a1xm + a2x
2
m + . . . + anx

n
m � ym,

(4)

or in matrix form Va � y.
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1

⋮ ⋮ ⋮ · · · ⋮

1 xm x2
m · · · xn

m
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

/ematrixV of this linear system is calledVandermonde
matrix. As this matrix is nonsingular, the system Va � y

could be solved to obtain the coefficients
a � (a0, a1, . . . , an). In this work, the f(cp) function ob-
tained from the Vandermonde interpolation is a polynomial
function of order 13. /is function is used to obtain the
range of the histogram with high possibilities of finding
calcifications. To accomplish this, the first derivative of f(cp)
is computed, while its n inflection points Zcp:

Zcp � cpi ∣ f′(cp) � 0, i � 1, 2, . . . , n . (6)

Figure 2 depicts in asterisks (∗) the interpolated function
f(cp) and in circles (o) the corresponding inflection points of
the function. Note that f(cp) follows the shape of hcp
(continuous line), except at the highest values of the cp
feature that shows minimal and maximal local frequency
values. /erefore, a second interpolation must be performed
to fit the hcp behaviour in the last part of the function.

2.3. Global Analysis: Detecting Calcifications. Note in Fig-
ure 3 that to calculate the minimal and maximal threshold
thmin and thmax, it is necessary to analyse two different
behaviours on the last part of the f(cp) function: (1) when the
last inflection point in Zcp is maximal and the function
decreases; (2) when the last inflection point in Zcp is minimal
and the function increases. /e behaviour 1 is illustrated by
the first two graphs of Figure 3, and the last graph illustrates
the second behaviour case.

In this work, we propose a concavity criterion to choose
the threshold values./e concavity criterion is established as
follows: the searching zone for calcifications is ranged from
the penultimate inflection point to the last inflection point if
the last inflection point is maximal, otherwise is ranged from
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the antepenultimate inflection point if the last inflection
point is minimal:

thmin �
cp(n−1), if f cpn( >f cpn−1( ,

cp(n−2), otherwise.

⎧⎨

⎩ (7)

In both cases illustrated in Figure 3, the maximal thmax is
the last inflection point. /e range established by thmin and
thmax is used for obtaining a second interpolation function of

hcp. /is function will be referred as g(cp), and it is inter-
preted as the result of a local interpolation.

2.4. Local Interpolation: Search for Calcifications. /e part of
the histogram hcp located in the ranges thmin and thmax is
referred as h∗cp. In this local interpolation, the function g(cp)
fits the h∗cp curve values more accurately and is used to
calculate the new inflection points of Zcp.

In Figure 4, the global and local interpolation results are
compared. Figures 4(a) and 4(b) show, respectively, the
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global and local interpolation function f(cp) and g(cp). Note
that after the local interpolation process, the function g(cp) (the
blue continuous line in Figure 4(b)) fits better the h∗cp values
(red asterisks) than in the last part of the global interpolation
function of Figure 4(a). Furthermore, the new g(cp) function
includes additional inflection points in Zcp (black circles in
Figure 4(b)), which better describes the high frequency
changes. /is variability during second interpolation allows to
suppose the presence of calcifications in the mammogram;
however, the result will be delivered by the classifier.

2.4.1. Local Analysis for Computing Attributes. /e g(cp)
function is used for computing some texture attributes (X
vector) on the zone of the DICOM image in which the
calcifications could be found. /e attributes computed are
(1) the number of zeros Zcp and (2) the number of pixels
contained in h∗cp. From the second attribute, it is possible to
compute three statistical values, like mean, standard de-
viation, and variance yielding 5 attributes in total. Such
attributes are discriminant enough to be used in the clas-
sification process of normal and malign tissue.

2.5. Classification of Mammography. /e five attributes are
normalized by the centered-reduced data technique and
used as the input to a KNN classifier based on Euclidean
distance. /e KNN classifier ranks third as the most used
classifier in the last 20 years in the mammography analysis
[23], and in our case, due to the model proposed here, this
classifier is the most appropriate. /e Euclidean distance is
sufficiently discriminant because the attributes are not lin-
ear, allowing a greater separation among classes. To un-
balance the single data-classes, K must be chosen as an odd
number, in our case K� 3. /e classifier was trained and
tested using leave-one-out cross validation (LOOCV). /is
validation technique ensures a very low error; additionally, it
is typically used for small databases, providing a maximum
adjustment of the training set and independent test set
[23, 24].

3. Results and Discussion

As was described above, the mammography dataset consists
of 74 images: 22 diagnosed with calcifications and 52 di-
agnosed as normal tissue, in accordance with the classifi-
cation system for breast mammogram, BI-RADS. /e
mammograms are images stored as DICOM 3.0 format with
a size of 4784 × 3517 pixels, as shown in Figure 5(a).
Figure 5(b) shows the cp attribute of the mammogram, used
in this work for modelling sharp changes in the intensity.

/e results obtained from the global interpolation of the
hcp histogram are illustrated on Figure 6(a). Note that, this
function highlights mass, conducts, calcifications, and
healthy tissue at the same time. As we have mentioned
above, a second interpolation technique is required for the
high frequency zone of the cp histogram, yielding the g(cp)
function. Figure 6(b) illustrates the calcification detected by
the g(cp) function. However, this second analysis still needs
to validate which of these spots found belong to abnormal
tissue growth or mass, that is, if these spots are calcifications
or not. To accomplish this, five attributes are computed and
analysed from the g(cp) function, and they are used as input
to the KNN classifier.

Figure 7(a) illustrates the classification results obtained by
an expert, and Figure 7(b) illustrates the results obtained using
our method. Our method detects exactly the two calcifications
indicated by the expert in Figure 7(a). /e cp feature detects
big changes of intensity on the mammography; therefore, it is
possible to detect more calcification on Figure 7(b) than those
detected by the human eye. Figures 7(c) and 7(d) show the
clusters of the microcalcifications found.

A second result is illustrated in Figure 8. Here, the
calcifications visually found by an expert are also entirely
detected by the proposed method.

Figures 7 and 8 illustrate qualitatively the correct per-
formance of the proposed approach with respect to mam-
mograms previously diagnosed with calcifications. Following
subsection will show the quantitative results and a compar-
ative table to point out the relevance of our proposed strategy.
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3.1.Metrics of PerformanceAnalysis. /e quantitative results
obtained by the experimental tests are summarized in the
confusion matrix shown in Table 1. /e worst case of a

classifier is the false-negative (FN) score, that refers to the
cases in which the classifier does not detect the calcification,
and it exists. From Table 1, two false negatives (FNs) are

(a) (b)

Figure 5: (a) Mammogram in the DICOM format, (b) cp feature of the mammogram (a).

(a) (b)

Figure 6: Calcification detection results: (a) calcifications and normal tissue detected with the global interpolation; (b) the local in-
terpolation results only highlight the calcifications.
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(a) (b)

(c) (d)

Figure 7: Classification results: (a) mammography in the DICOM format, the circles highlight the zones with calcifications found by
an expert; (b) the cp attribute with the calcifications found by the proposed method; (c) and (d) zoom into the microcalcifications
detected.

(a) (b) (c)

Figure 8: Classification results: (a) mammography in the DICOM format, circles highlight the zones with calcifications found by an expert;
(b) cp attribute with the calcifications found by the proposed method; (c) zoom into the microcalcifications detected.
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obtained from the experimental tests. On the other hand,
four false positive (FP) have been obtained from the ex-
perimental tests, and this result indicates the presence of
calcifications that does not exist, in accordance with the
diagnosis of the medical expert.

As reported in the confusion matrix, the specificity
obtained from the experimental results is 0.9230 for normal
tissue detection and 0.9090 of sensitivity for calcifications
detection. Such rate of classification is usually compared
with other strategies proposed in the literature. /e worst
case during the classification stage is due to the presence of
false-negative values. In this case, two of the FN cases were
analysed, and in both cases, the mammography shows low
brightness.

Now, the choice of the polynomial function order is
essential to warranty the best accuracy results. /us, Table 2
shows the performance evaluation of our approach mea-
sured with different metrics including accuracy, precision,
specificity, sensitivity, and percentage of false alarms (FA),
for different orders of the polynomial function. /e best
accuracy value is 0.9189, for the 13 and 14 order of the
function; however, the 13 order was chosen for simplicity.
For this order, the obtained precision value is 0.8333 which
is not as high as we would expect due to the false positives.
/is means that the most common error of our strategy
occurs when a calcification is detected, but it does not exist.
Such results are also validated by the specificity and the
sensitivity values: 0.9230 and 0.9090, respectively. /e

percent of positive and negative incorrect detections (false
alarms, FA) is 0.0769, and a low percentage of false negative
is the most expected result.

A comparative analysis among different methods found
in the state-of-the-art is shown in Table 3. /e first column
presents the techniques used by different authors including
our proposed strategy, and the second column shows the
dataset used for the experimental results. /e third column
indicates how the image processing is performed, which can
be manual, semiautomated, and automated. /e last column
shows the achieved accuracy for each method.

Furthermore, in these methods, the algorithms pro-
cessing is automated allowing the use of such strategies for
real applications. However, we want to point out that in the
case of methods that compute texture features, such as [20]
and our approach, the best performance is shown by our
strategy. Additionally, among these three methods, our
approach is the only method that process images as
automated.

Table 3 shows a comparative analysis between different
related works in the state of the art. /e first column lists the
related methods, and all these methods use texture or ap-
pearance features for detecting calcifications and different
classification methods. /e dataset used for experimental
tests is shown in the second column, and the third column
indicates the execution mode of the method, that is auto-
matic (A) and semiautomatic (S). Automatic refers that no
intervention is necessary from the user; on the other hand,

Table 1: Confusion matrix of the g(cp) function for K� 3 and using the Euclidean distance.

Desired/estimated Normal tissue Calcification Specificity
Normal tissue 48 (TN) 4 (FP) 0.9230
Calcification 2 (FN) 20 (TP) 0.9090

Table 2: Metrics performance results of the proposed method for different orders of the polynomial function.

Order Accuracy Precision Specificity Sensitivity % FA
9 0.8648 0.8333 0.9423 0.6818 0.0576
10 0.9054 0.8571 0.9423 0.8181 0.0576
11 0.8513 0.8333 0.9411 0.6818 0.0588
12 0.8378 0.9166 0.9807 0.5000 0.0192
13 0.9189 0.8333 0.9230 0.9090 0.0769
14 0.9189 0.8333 0.9230 0.9090 0.0769
15 0.9054 0.8226 0.9230 0.8636 0.0769

Table 3: Comparison between our methodology and state-of-the-art methods.

Compared methods Dataset Set-up Accuracy Sensitivity FPi
Proposed strategy Hosp. Irapuato A 0.9189 0.9090 5.4054
PSOWNN [15] Clinical A 0.9367 0.9416 1.9006
DEOWNN [25] MIAS A 0.9353 0.9690 5.9754
Hough transform [18] BCDR A 0.9326 0.9178 3.9999
CALMA-ANN [19] CALMA A 0.9200 0.9200 4.9627
CAD-PPJ [20] U of M. A 0.8914 0.8500 1.7100
Texture feature + SLDA [26] DDSM S 0.8700 0.9333 10.000
Level set [27] U. of M. S 0.8500± 0.0200 — —
Active contour [27] U. of M. S 0.8700± 0.0200 — —
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the semiautomatic requires a minimum intervention from
the user. Note that, only the methods proposed in [26, 27]
are semiautomatic.

/e fourth column shows the accuracy value that allows
us to compare the performance between each of the
methods. In particular, our proposed approach and the
works proposed in [15, 18, 19, 25] show an accuracy higher
than 0.9, indicating a high-performance evaluation. Al-
though our proposal does not present the best accuracy, it is
positioned in the middle of all the high-performed ap-
proaches, being a good and competitive solution in general.
Note that, the approach with the best accuracy, presented in
[15], only differs by 0.0178 with respect to ours, and this
difference can be solved using a dataset with a greater
number of samples. /e fifth column shows the sensitivity,
which evaluates the performance only when a calcification
is detected. For most of the compared works, this measure
is superior to 0.9, in particular the work proposed in [25]
shows the highest sensitivity, and our proposed method is
only 0.06 below it. Finally, the sixth column shows the false
positives per image (FPi), which allows to measure the
errors in calcifications detection, that is, when the normal
tissue is detected as a calcification. For this measure, all
listed references are less than 6, indicating a good FPi
performance.

4. Conclusions

A method for detecting calcifications based on cluster
prominence cp feature analysis on mammograms is pro-
posed in this work. A deep analysis about the cluster
prominence feature throws that is highly discriminative and
allows the modelling of the calcifications in comparison with
other attributes. /e classification error obtained is low.
Among this misclassification, the most common error of our
strategy is the false detection, that is the false positives, which
finally is less critical than the false-negatives results. A
performance comparison demonstrates that our proposed
strategy has better performance than similar works. /is
methodology is proposed as a tool for helping the radiologist
during diagnosis. A web application is under construction
for providing a more flexible support to the final user. Future
works include further experimental tests of this approach
using INbreast dataset and a new characterization of the cp
feature for improving time performance results.
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