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The new severe acute respiratory syndrome coronavirus (SARS-CoV-2) recently

emerged as a worrying pandemic, with many confirmed cases and deaths globally.

Therefore, there is a clear need for identifying effective therapeutic options and a

review of secondary metabolites related to Brazilian herbal medicines was performed

as a strategy for the discovery of new antiviral agents. To confirm this potential, an in

silico screening of the identified compounds identified was also evaluated. The

review was performed by the PubMed database and the selected natural compounds

were subjected to in silico analysis such as QSAR, molecular docking and ADMET.

497 secondary metabolites were identified from 23 species. The in silico assays indi-

cated 19 potential anti-SARS-CoV-2 compounds, being triterpenes and phenolic

compounds. The indicated compounds showed a high affinity with proteins consid-

ered as the main molecular targets against SARS-CoV-2 and parameters indicated

low toxicity. In addition to Brazilian medicinal plants, these compounds can be found

in other species and they can be a base for the synthesis of other anti-COVID-19

drugs. Therefore, this review is important to conduct researches that address the

emerging need for drugs in COVID-19 treatment.
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1 | INTRODUCTION

After SARS-CoV-2 initial discovery, the World Health Organization

declared a pandemic situation, with over 30.6 million confirmed cases

globally and more than 954,000 deaths as of September 2020

(Worldometer, 2020). Although clinical trials have been conducted

with several drugs as remdesivir, favipiravir, chloroquine, hydro-

xychloroquine, ribavirin, tocilizumab, and sarilumab (Lu et al., 2020),

there is no scientific evidence of an effective treatment for

Coronavirus Disease 2019 (COVID-19). In addition, the discovery and

production of a safe and effective vaccine can take months or even

years, highlighting the need for identifying effective therapeutic

options in response to the growing number of cases and deaths

resulting from this pandemic.

Plants species have been of great importance for human develop-

ment and Brazil is the country with the largest biodiversity in the

world, presenting a rich chemical diversity of secondary metabolites,

which is a potential source of new drugs (Valli & Bolzani, 2019).

Although secondary metabolites are compounds non-essential for

plant basic vital functions, they present several pharmacologicalTatiane R. Amparo and Janaína B. Seibert contributed equally to this study.
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properties, including antiviral activity (Troost et al., 2020; Zakaryan

et al., 2017; Zhou et al., 2017).

Based on this reality, reviews guided by in silico analysis has

proved valuable in the initial large-scale screening of compounds that

present antiviral effect and inhibit important target proteins. Several

authors have been using in silico tool to find potential COVID-19

treatment options (Arya et al., 2020; Hall & Ji, 2020; Qamar

et al., 2020; Wu et al., 2020). Among the SARS-CoV-2 targets studied

are the spike glycoprotein (S protein), which mediates the entry of the

virus into the cell (Walls et al., 2020), as well as the papain-like prote-

ase (PLpro) and 3-chymotrypsin-like protease (3CLpro) that are

related to viral protein processing (Harcourt et al., 2004; Yang

et al., 2005). The RNA-dependent RNA polymerase (RdRp) is also a

key target since it catalyzes the viral RNA synthesis and plays a central

role in the replication and transcription cycle of SARS-CoV-2 (Gao

et al., 2020).

In this context, this work aimed to identify secondary metabolites

from licensed Brazilian native species as a source for new antiviral

agents and confirm their potential to treat SARS-CoV-2 infection

using an in silico approach.

2 | MATERIALS AND METODS

2.1 | Literature search and compound selection
from Brazilian native species

The Brazilian native species “Ananas comosus”, “Anadenanthera
colubrina”, “Bacopa monieri”, “Brosimum gaudichaudii”, “Caesalpinia
ferrea”, “Carapichea ipecacuanha”, “Cereus jamacaru”, “Cereus per-

uvianus”, “Cordia curassavica”, “Croton heliotropiifolius”, “Dorstenia
aritoflia”, “Erythrina velutina”, “Erythrina verna”, “Himatanthus

lancifolius”, “Lantana camara”, “Maytenus ilicifolia”, “Mikania

glomerata”, “Myroxylon balsamum”, “Operculina hamiltonii”, “Passiflora
alata”, “Paullinia cupana”, “Schinus terebinthifolia”, “Senna alexandrina”,
“Solanum paniculatum”, “Stryphnodendron adstringens”, “Trichilia
catigua”, and “Uncaria tomentosa” (Carvalho et al., 2018) were used as

query keyword on PubMed database. Studies published from January

1st 2005 to March 31st 2020 were selected. Reviews studies, studies

related only to biological assays and wrote in non-English language

were excluded. The secondary metabolites reported in studies on

chemical characterization of extracts were tabulated and classified

according to their biosynthetic pathways. Repeated references to the

same compound were excluded.

2.2 | Quantitative structure–activity relationship
(QSAR) analysis

Aiming to predict the antiviral potential, the compounds were sub-

jected to quantitative structure–activity relationship (QSAR) analysis

using the platform Prediction of Activity Spectra for Substances

(PASS online). Their structure was compared with substances available

in the database that are active against the virus. The action specifically

on Rhinovirus and Picornavirus were selected due these species

belong to the same Coronavirus group ([+]ssRNA - Group IV)

(Fernández-Miragall et al., 2009; Kim et al., 2012; Schrauf et al., 2009;

Zhu et al., 2020a). The probabilities of each compound to be active

(Pa) and inactive (Pi) were reported and the compounds that showed

Pa–Pi ≥0.5 results at least one of the viruses were selected for further

analysis (Seibert et al., 2019).

2.3 | Molecular docking analysis

The compounds selected in the previous step were subjected to

molecular docking analysis by the AutoDock Vina tool using PyRx

software in order to understand the interaction between these com-

pounds and the target proteins to combat the SARS-CoV-2 infection

(Dallakyan & Olson, 2015). Crystalline structures of SARS-CoV-2

(2019-nCoV) papain-like protease (PLpro) (Protomer PDB ID 6W9C),

main protease, also called 3-Chymotrypsin-like protease (3CLpro)

(PDB ID 6Y2F), spike glycoprotein (S protein) (Protomer PDB ID

6VSB) and RNA-dependent RNA polymerase (RdRp) (PDB ID 6 M71)

were obtained from the protein database (PDB). 3D structure of the

selected compounds and controls (formoterol, disulfiram, nelfinavir,

prulifloxacin, hydroxychloroquine, arbidol, remdesivir and favipiravir)

(Arya et al., 2020; Chen et al., 2020; Fantini et al., 2020; Lin

et al., 2018; Qamar et al., 2020; Wang et al., 2020; Zhu, Lu,

et al., 2020) were obtained by the PubChem database. The files were

converted to the appropriate format (*.pdb) using the Biovia Discov-

ery Studio software (San Diego, USA). Then, an algorithm method was

used to calculate the binding energies between the targets and the

compounds by the PyRx docking tool.

2.4 | Drug-like prediction and ADMET profile

The compounds that showed the best results on molecular docking

analysis were subjected to the web-based tool ADMETlab (Dong

et al., 2018) to predict the drug-likeness based on Lipinski's rule and

some ADMET (absorption, distribution, metabolism and excretion -

toxicity) parameters.

3 | RESULTS AND DISCUSSION

3.1 | Literature search and compound selection

The presence of different biomes in Brazil means that the country has

the greatest biodiversity in the world. Although Brazilian plants have a

wide chemical variety, few products from these species have been

developed (Valli & Bolzani, 2009). Difficulty in accessing medicinal

plants is one of the factors that hinder research and the production of

medicines. For this reason, Brazilian native species that are found on

the herbal medicine market were selected in this study in order to
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facilitate access to the natural product and enable the development of

research for future in vitro and in vivo assays.

In this way, 497 secondary metabolites were identified from

23 species (Table S1–S4). On the other hand, no secondary metabolite

has yet been identified in the extracts from Cereus peruvianus, Cordia

curassavica, Croton heliotropiifolius and Operculina hamiltonii. Three

main classes generally considered were: alkaloids (11%), phenolic

compounds (42%), steroids and terpenes (43%). In addition, furan deri-

vates (1%) and lactones (3%) were also reported (Figure 1).

Among the species selected in this review, Anadenanthera colu-

brine (Vigerelli et al., 2014), Caesalpinia ferrea (Lopes et al., 2013; Mar-

ques et al., 2015), Lantana camara (Hasan, 2017), Maytenus ilicifolia

(Khon et al., 2012), Schinus terebinthifolia (Nocchi et al., 2017), Sola-

num paniculatum (Valadares et al., 2009), Stryphnodendron adstringens

(Felipe et al., 2006), Trichilia catigua (Espada et al., 2015) and Uncaria

tomentosa (Caon et al., 2014; Reis et al., 2008) have already demon-

strated action against different viruses which supports the antiviral

potential of their constituents.

3.2 | Quantitative structure–activity relationship
(QSAR) analysis

The previously identified compounds were subjected to QSAR analy-

sis in order to select the best antiviral agents. This analysis was per-

formed using antiviral activity against Rhinovirus and Picornavirus,

which belong to the same SARS-CoV-2 group ([+]ssRNA - Group IV),

since the emergence of the new coronavirus is recent and few studies

have proven the efficacy of drugs against this virus.

As observed in Figure 2, coumarin, phenolic acid and derivates,

monoterpene and steroid showed the best result for this analysis,

since more than half of the compounds for these classes showed Pa–

Pi ≥0.5 results. In this way, coumarin has already shown inhibitory

action against different viruses and its mechanism of action is related

to the inhibition of proteins essential for virus survival (Mishra

et al., 2020). In accordance with our results, Özçelik et al. (2011)

observed that phenolic acids, such as gallic acid and quinic acid,

showed an antiviral effect greater than compounds belonging to alka-

loid and flavonoid classes. In addition, monoterpenes and steroids can

be highlighted and previous studies support this prediction for both

classes (Astani et al., 2010; Gu & Hao, 2016).

The complete QSAR analysis for all compounds is shown in the

supplementary material (Table S1–S4). All these data confirm the

potential of secondary metabolites as antiviral agents and reinforce

the importance of this study as a quick screening for the selection of

the best candidates for the COVID-19 treatment.

3.3 | Molecular docking analysis

The molecular docking results of the natural compounds were

analysed in comparison to control drugs (Table S5) and the results of

the selected compounds are shown in Table 1. The reference drugs

are among the main ones indicated for the COVID-19 treatment by

F IGURE 1 Secondary metabolites reported in studies on chemical characterization of extracts from Brazilian native species [Colour figure can
be viewed at wileyonlinelibrary.com]
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F IGURE 2 Proportional result according to the secondary metabolites class that showed Pa–Pi < 0.5 or Pa–Pi ≥ 0.5 values by quantitative
structure–activity relationship (QSAR) analysis using the PASS online tool

TABLE 1 Quantitative structure–activity relationship (QSAR) and molecular docking analyzes for compounds reported in native plant species
licensed in Brazil with high potential against SARS-CoV-2

Compound

QSAR (Pa–Pi Value)a Molecular Docking (Binding Energy Value)

Antiviral (Rhinovirus) Antiviral (Picornavirus) PLpro 3CLpro S Protein RdRp

(all-E)-Violaxanthin (1) 0.6 – −8.0 −8.2 −8.0 −8.0

12,13-Epoxyolean-3-yl acetate (2) 0.5 – −8.3 −8.8 −8.3 −8.6

12,13-Epoxyolean-9(11)en-3-yl acetate (3) 0.5 – −7.8 −9.3 −8.6 −8.1

3-Geranyloxyemodin (4) 0.7 – −7.4 −8.8 −7.1 −8.4

3β-Hydroxy-lantadene B (5) 0.5 – −7.9 −8.3 −8.0 −7.7

Abssinine (6) 0.5 – −7.9 −7.8 −7.1 −9.0

Apocynin E (7) 0.5 – −7.4 −8.1 −8.1 −9.3

Betulinic acid (8) 0.5 – −7.9 −9.1 −7.4 −8.3

Dicaffeoylquinic acid (9) 0.5 0.2 −8.0 −8.2 −7.8 −8.7

Lanosta-8,24-dien-3-yl acetate (10) 0.7 – −7.6 −8.8 −7.7 −8.1

Lantacin (11) 0.5 – −7.7 −8.0 −8.0 −9.2

Lupenyl acetate (12) 0.5 – −7.5 −8.5 −8.5 −8.5

Sigmoidin C (13) 0.5 – −7.9 −9.4 −7.7 −8.4

Taraxeryl acetate (14) 0.6 – −8.1 −9.1 −8.8 −8.4

Ursolic acid (15) 0.5 – −7.9 −7.9 −8.3 −8.8

Ursa-9(11),12-dien-3-yl acetate (16) 0.5 0.1 −7.5 −8.6 −8.3 −9.0

α-Amyrin (17) 0.5 – −7.5 −8.2 −8.2 −8.7

α-Amyrin acetate (18) 0.5 – −7.7 −8.3 −8.1 −8.5

β-Amyrin acetate (19) 0.5 – −7.6 −8.4 −8.8 −8.8

aValues of difference Pa–Pi. (–) Not indicated or unsatisfactory. (Pa–Pi) ≥ 0.5: high potential. 3CLpro: 3-Chymotrypsin-like protease; PLpro: papain-like

protease; RdRp: RNA-dependent RNA polymerase; S protein: spike glycoprotein.
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drug repurposing studies (Arya et al., 2020; Chen et al., 2020; Fantini

et al., 2020; Lin et al., 2018; Qamar et al., 2020; Wang et al., 2020;

Zhu et al., 2020b).

Potential anti-coronavirus therapies aim to prevent the viral life

cycle and include as main targets the prevention of virus replication

and RNA synthesis and the inhibition of structural proteins

(Wu et al., 2020). The first stage of the SARS-CoV-2 life cycle is the

entry into respiratory cells, mediated by S protein, one of the struc-

tural proteins (Fantini et al., 2020).

The S protein forms transmembrane homotrimers protruding

from the viral surface and attaches to the surface of respiratory cells

using the angiotensin-converting enzyme-2 (ACE-2) as an entry

F IGURE 3 Compounds from native Brazilian species that showed the highest in silico potential anti-SARS-CoV-2. (1) (all-E)-violaxanthin; (2)
12,13-epoxyolean-3-yl acetate; (3) 12,13-epoxyolean-9(11)en-3-yl acetate; (4) 3-geranyloxyemodin; (5) 3β-hydroxy-lantadene B; (6) abssinine; (7)
apocynin E; (8) betulinic acid; (9) dicaffeoylquinic acid; (10) lanosta-8,24-dien-3-yl acetate; (11) lantacin; (12) lupenyl acetate; (13) sigmoidin C;
(14) taraxeryl acetate; (15) ursolic acid; (16) urs-9(11),12-dien-3-yl acetate; (17) α-amyrin; (18) α-amyrin acetate; (19) β-amyrin acetate

AMPARO ET AL. 4301



receptor (Fantini et al., 2020). The top 10 compounds for this target

were 2, 3, 7, 12, 14, 15, 16, 17, 18 and 19 (Figure 3), with stronger

biding energy than the hydroxychloroquine and arbidol controls.

Along with arbidol, the most triterpenes bound between the subunits

S1 and S2 of S protein, near to the receptor-binding domain, region

that bound to the ACE-2 (Wrapp et al., 2020). Among the triterpenes,

only 14, which showed the lower binding energy (−8.8 kcal/mol),

bounded in the S2 subunit, as well as the flavonoid 7 (Figure 4A and

Table 1). The compound 14, isolated from Dorstenia arifolia, formed

hydrogen bonds with the THR1077 residue, as well as hydrophobic

interactions with the Ala706, Val705, Ala713, Tyr707 and Ile712. The

binding to S2 subunit can inhibit the entry of the virus into the host

cell, since this structure is responsible for the fusion of the mem-

branes (Walls et al., 2020).

After entering the cell, the RNA released in the cytoplasm is

translated into two long polyproteins, pp1a and pp1ab (Ratia

et al., 2006; Ziebuhr, 2004). PLpro and 3CLpro process these poly-

proteins leading to the nonstructural proteins (nsp 1–16), which medi-

ate the genome replication process (Ratia et al., 2006; Ziebuhr, 2004).

Therefore, PLpro is essential for correcting virus replication and is

a possible anti-coronavirus target (Wu et al., 2020). The compounds 1,

2, 3, 5, 6, 8, 9, 13, 14 and 15 showed stronger biding energy than the

F IGURE 4 3D diagram showing the superimposed binding site of secondary metabolites and controls with (A) spike glycoprotein (S protein),
(B) papain-like protease (PLpro), (C) 3-Chymotrypsin-like protease (3CLpro) and (D) RNA-dependent RNA polymerase (RdRp). (1) (all-E)-
violaxanthin; (2) 12,13-epoxyolean-3-yl acetate; (3) 12,13-epoxyolean-9(11)en-3-yl acetate; (4) 3-geranyloxyemodin; (5) 3β-hydroxy-lantadene B;
(6) abssinine; (7) apocynin E; (8) betulinic acid; (9) dicaffeoylquinic acid; (10) lanosta-8,24-dien-3-yl acetate; (11) lantacin; (12) lupenyl acetate; (13)
sigmoidin C; (14) taraxeryl acetate; (15) ursolic acid; (16) urs-9(11),12-dien-3-yl acetate; (17) α-amyrin; (18) α-amyrin acetate; (19) β-amyrin
acetate; (HCQ) hydroxychloroquine; (ARB) arbidol; (FMT) formoterol; (DSF) disulfiram; (PFX) prulifloxacin; (NFN) nelfinavir; (RDS) remdesivir and
(FVP) favipiravir [Colour figure can be viewed at wileyonlinelibrary.com]
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formoterol and disulfiram controls (Figure 4B and Table 1). Among

these compounds, 2, also isolated from Dorstenia arifolia, showed the

best result with binding energy −8.3 kcal/mol due to hydrophobic

interactions with Tyr213, Tyr305 and Lys306 residues of the PLpro

fingers domain.

The compounds 1 and 14 bound near the PLpro active site,

located at the bottom of the palm and thumb domains, which might

interfere with substrate entering (Ratia et al., 2006). The other com-

pounds are mainly bound between the palm and fingers domains, a

region important for ubiquitin recognition (Figure 4B and Table 1).

The deubiquitinating is a PLpro function involved in modulating the

innate immune response (Ratia et al., 2014).

Along with PLpro, 3CLpro is another enzyme essential for cleav-

age of polyproteins and origin of the nsp (Ratia et al., 2006;

Ziebuhr, 2004). The compounds 2, 3, 4, 8, 10, 12, 13, 14, 16 and 19

bound between II and III domains, such as nelfinavir and

prulifloxacin. All the compounds showed stronger binding than

prulifloxacin (−7.6 kcal/mol). In relation to the other reference drug,

only 19 did not show binding energy values lower than nelfinavir

(−8.5 kcal/mol) (Figure 4C and Table 1). Comparing the values of the

natural compounds, the flavanone 13, isolated from Erythrina

velutina, exhibited the highest binding affinity (−9.4 kcal/mol) and

formed hydrogen bonds with the Asn203 and Gln110 as well as

hydrophobic interactions with the Val202, Pro293 and Phe294

residues.

The inhibition of 3CLpro and PLpro by the analysed natural com-

pounds might prevent the SARS-CoV-2 polyproteins processing (Ratia

et al., 2006; Ziebuhr, 2004). The RdRp (nsp12) is one of the non-

structural proteins derived as cleavage products of these polyproteins

(Gao et al., 2020). This enzyme can also be a target to drugs, since it

catalyzes the RNA synthesis, being essential for replication and tran-

scription (Chen et al., 2020; Wang et al., 2020).

The flavonoid 7, isolated from Trichilia catigua, exhibited the best

result for RdRp (−9.3 kcal/mol) and bound in its active site, where

TABLE 2 Data about the origin of the compounds that showed the highest in silico potential anti-SARS-CoV-2

Compound Species Popular Names Local Part References

(all-E)-Violaxanthin (1) Ananas comosus Abacaxi (pineapple) Ghana Fruits Steingass et al. (2020)

12,13-Epoxyolean-3-yl acetate

(2)
Dorstenia arifolia Caiapiá; Carapiá; Caiapiá

do sul; Caiapiá preto;

Capa homem; Sabuco;

Sabugo do mato

Brazil Leaves and

rhizomes

Fingolo et al. (2013)

12,13-Epoxyolean-9(11)en-

3-yl acetate (3)

Lanosta-8,24-dien-3-yl acetate

(10)

Lupenyl acetate (12)

Taraxeryl acetate (14)

Ursa-9(11),12-dien-3-yl

acetate (16)

α-Amyrin (17)

α-Amyrin acetate (18)

3-Geranyloxyemodin (4) Senna

alexandrina

Sene Italy Leaves and

fruit

Epifano et al. (2015)

3β-Hydroxy-lantadene B (5) Lantana camara Camará; Cambará;

Camará-de-cheiro;

Camará-de-espinho;

Cambará-de-cheiro;

Cambará-de-chumbo;

Cambará-de-espinho;

Cambará-miúdo;

Cambará-verdadeiro;

Cambará-vermelho

Indonesia

(5),
Pakistan

(8,11)

Aerial parts Abdjul et al. (2017) (5),

Begum et al. (2015) (8),
Begum, Zehra & Siddiqui

(2008) (11)

Betulinic acid (8)

Lantacin (11)

Abssinine (6) Erythrina

velutina

Mulungu Brazil Stem bark Rodrigues et al. (2017) (6),
Raupp et al. (2008) (12),
Rodrigues et al. (2017)

(13)

Lupenyl acetate (12)

Sigmoidin C (13)

Apocynin E (7) Trichilia catiguá Catuaba Brazil Ground

barks

Martins et al. (2018)

Dicaffeoylquinic acid (9) Mikania

glomerata

Guaco Brazil Leaves Della Pasqua et al. (2019)

Ursolic acid (15) Maytenus

ilicifolia

Espinheira-santa Brazil Leaves Wonfor et al. (2017)
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hydrogen bonds with Thr710, Gly774, Lys780, Asn781 and Ser784

were formed. In addition, hydrophobic interactions with Ala706 may

further direct the favorite conformation of compound 7. The phenolic

acid 9, among the top 10 compounds with higher affinity than the

controls remdesivir and favipiravir, is also bound in the RdRp active

site (Figure 4D and Table 1).

The compounds 6, 11, 12 and 17 did not bind in the active site,

but they bound in other regions of the polymerase domain and might

interfere with the viral RNA synthesis (Velthuis, 2014). The other

compounds, 2, 15, 16, 18 and 19, bound in the nidovirus-unique N-

terminal extension domain (NiRAN) (Figure 4D and Table 1). Despite

this domain is not part of the RdRp catalytic site, it is essential for the

virus due to functions that may include nucleic acid ligation, mRNA

capping and protein-primed RNA synthesis (Lehmann et al., 2015).

Compound 15 has been reported to inhibit RdRp of the hepatitis C

virus (Kong et al., 2013).

Therefore, the molecular docking results indicated that the com-

pounds 1–19 showed the highest potential anti-SARS-CoV-2

(Figure 3 and Table 2). Most of them (63%, 12 compounds) are penta-

cyclic triterpenes. The anti-coronavirus action of different triterpenes

has already been reported in the literature (Chang et al., 2012; Wen

et al., 2007). Among the compounds with the best potential in silico,

8, 12 and 15 have already reported selective activity against several

viruses (Chiang et al., 2005; Gómez-Calderón et al., 2017; Hong

et al., 2015; Karagöz et al., 2018; Kong et al., 2013; Tohmé

et al., 2019; Yu et al., 2017; Zhao et al., 2014).

The other five compounds (26%) are phenolic compounds, being

one anthraquinone, one phenolic acid and three flavonoids. Most of

the natural compounds recently indicated as anti-COVID-19 are phe-

nolic compounds (Qamar et al., 2020; Wu et al., 2020). Several flavo-

noids have exhibited significant antiviral properties against different

viruses, including coronavirus (Zakaryan et al., 2017).

3.4 | Drug-like and ADMET profile

Accordingly the Lipinski's rule, a molecule should obey four criteria to

be considered as a drug-like: molecular weight ≤500 Da, number of

H-bond donors ≤5, number of H-bond acceptors ≤10 and log p ≤5

(Lipinski, 2004). As observed in Table 3, only two compounds (6 and

13) reached all criteria of Lipinski's rule. However, several compounds

that did not reach all parameters to be considered drug-like because

of the log p value presented a good prediction regarding intestinal

absorption (2, 3, 4, 8, 10, 12, 14, 15, 16, 17, 18 and 19). One of the

TABLE 3 Drug-like prediction and ADMET profile of the selected natural compounds

Compound

Lipinski's Rules
Human

Intestinal
Absorption
Ideal =1

hERG
Blockers
Ideal = 0

Ames
Mutagenicity
Ideal = 0

Human
Hepatotoxicity
Ideal = 0

Molecular
Weight
≤ 500

H Bond
Donor
≤5

H Bond
Acceptor
≤10

log
p ≤5

(all-E)-Violaxanthin (1) 628.938 2 4 9.75 0.651 0.506 0.446 0.000

12,13-Epoxyolean-3-yl

acetate (2)
484.765 0 3 7.951 0.763 0.462 0.206 0.156

12,13-Epoxyolean-9

(11)en-3-yl acetate (3)

482.749 0 3 7.871 0.793 0.484 0.174 0.312

3-Geranyloxyemodin (4) 406.478 2 5 5.253 0.635 0.627 0.254 0.798

3β-Hydroxy-lantadene B (5) 554.812 2 4 7.722 0.697 0.424 0.090 0.308

Abssinine (6) 368.385 2 6 3.997 0.511 0.375 0.420 0.696

Apocynin E (7) 508.479 5 10 3.893 0.412 0.630 0.452 0.592

Betulinic acid (8) 456.711 2 2 7.09 0.791 0.421 0.090 0.188

Dicaffeoylquinic acid (9) 516.455 7 11 1.03 0.320 0.570 0.236 0.398

Lanosta-8,24-dien-3-yl

acetate (10)
468.766 0 2 9.05 0.848 0.458 0.040 0.326

Lantacin (11) 570.811 3 5 6.692 0.697 0.415 0.090 0.368

Lupenyl acetate (12) 468.766 0 2 8.596 0.837 0.170 0.022 0.170

Sigmoidin C (13) 354.358 3 6 3.694 0.539 0.384 0.450 0.660

Taraxeryl acetate (14) 468.766 0 2 8.74 0.841 0.486 0.020 0.184

Ursolic acid (15) 456.711 2 2 7.09 0.803 0.458 0.118 0.222

Ursa-9(11),12-dien-3-yl

acetate (16)
466.75 0 2 8.373 0.841 0.474 0.020 0.146

α-Amyrin (17) 426.729 1 1 8.025 0.915 0.480 0.036 0.054

α-Amyrin acetate (18) 468.766 0 2 8.596 0.841 0.482 0.020 0.182

β-Amyrin acetate (19) 468.766 0 2 8.74 0.841 0.486 0.020 0.180
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most important challenges facing an oral drug is its movement across

the intestinal epithelial barrier that determines the rate and extent of

human absorption and ultimately affects its bioavailability (Guan

et al., 2018). Despite indicating good intestinal absorption, high log P

values indicate low water solubility, which can lead to low oral bio-

availability. The pharmacokinetics of compounds 8, 15 and 17 have

already been studied and their oral bioavailability can be improved by

formulations such as nanoemulsions, nanoparticles, liposomes, poly-

meric micelles and cyclodextrin complexes (Abriata et al., 2017;

Cavazos-Garduño et al., 2015; Da Silva Júnior et al., 2019; Kumar

et al., 2018; Liu et al., 2016; Moura et al., 2020; Qiu et al., 2019;

Rodrigues et al., 2013; Soica et al., 2014; Wang et al., 2019; Zhou

et al., 2019).

Regarding the possible toxic effects, the predictions of cardiotoxic

(inhibition of the hERG potassium channel), hepatotoxic and muta-

genic effects (Ames test) were evaluated. All the compounds that

presented good prediction results of intestinal absorption also pres-

ented good prediction results regarding the toxicity effects and no

compound was highly likely to be mutagenic. In vivo studies have

already demonstrated low toxicity of the compounds 8 and 12 (Moura

et al., 2020; Wang et al., 2019). Therefore, the compounds 1–19 may

be an interesting beginning for future in vitro and in vivo tests.

3.5 | Other sources of the selected compounds

Besides the Brazilian native plants cited, the selected compounds can

be extracted from other species. Some examples, which can be found

in different regions of the world, are shown in the supplementary

material (Table S6). These natural products can be considered as

potential sources of treatment for COVID-19 and are indicated for

future studies in vitro and in vitro. In addition, the possibility of

research with synthetic derivatives based on the structures of com-

pounds 1–19 is highlighted.

4 | CONCLUSION

This review is important to conduct research that addresses the

emerging need for drugs in COVID-19 treatment. Based on sec-

ondary metabolites from native species found in the Brazilian

herbal medicine market, the studies in silico QSAR, molecular

docking and ADMET indicated potential anti-SARS-CoV-2 com-

pounds, being mainly triterpenes and phenolic compounds. The

indicated compounds showed a high affinity with proteins consid-

ered as the main molecular targets against SARS-CoV-2 and indica-

tive of low toxicity.

In addition to Brazilian medicinal plants, these compounds can be

found in other species and they can be a base for the synthesis of

other anti-COVID-19 drugs. Based on the need for new drugs, the

metabolomics database reported for Brazilian species can be used as a

source for the assessment of other therapeutic potentials.
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