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Abstract
The Mediterranean region is recognized as a global biodiversity hotspot. However, 
over the last decades, the cessation of traditional farming in the north part of the 
Mediterranean basin has given way to strong afforestation leading to occurrence 
of abandoned agricultural lands colonized by pioneer expansionist species like Pinus 
halepensis. This pine species is known to synthesize a wide range of secondary me‐
tabolites, and previous studies have demonstrated strong allelopathic potentialities 
of its needle and root leachates. Pinus halepensis is also recognized to release signifi‐
cant amounts of volatile organic compounds (VOC) with potential allelopathic effects 
that have never been investigated. In this context, the objectives of the present study 
were to improve our knowledge about the VOC released from P. halepensis needles 
and roots, determine if these VOC affect the seed germination and root growth of 
two herbaceous target species (Lactuca sativa and Linum strictum), and evaluate if 
soil microorganisms modulate the potential allelopathic effects of these VOC. Thirty 
terpenes were detected from both, needle and root emissions with β‐caryophyllene 
as the major volatile. Numerous terpenes, such as β‐caryophyllene, δ‐terpinene, or 
α‐pinene, showed higher headspace concentrations according to the gradient green 
needles < senescent needles < needle litter. Seed germination and root growth of the 
two target species were mainly reduced in presence of P. halepensis VOC. In strong 
contrast with the trend reported with needle leachates in literature, we observed an 
increasing inhibitory effect of P. halepensis VOC with the progress of needle physi‐
ological stages (i.e., green needle <  senescent needle < needle litter). Surprisingly, 
several inhibitory effects observed on filter paper were also found or even amplified 
when natural soil was used as a substrate, highlighting that soil microorganisms do 
not necessarily limit the negative effects of VOC released by P. halepensis on herba‐
ceous target species.
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1  | INTRODUC TION

Plant community organization and dynamics are under the con‐
trol of biotic processes, particularly plant–plant interactions such 
as resource competition, facilitation, and allelopathy (Callaway 
& Walker, 1997). A strong attention has been paid during the last 
decades to allelopathy, demonstrating the key implication of plant–
plant chemical interaction as a driver of plant community structure 
and ecosystem functioning (Inderjit, Wardle, Karban, & Callaway, 
2011; Meiners, Kong, Ladwig, Pisula, & Lang, 2012; Wardle, Nilsson, 
Gallet, & Zackrisson, 1998). Seed germination and seedling perfor‐
mance are the main life stages usually affected by allelochemicals, 
and frequent negative allelopathic effects are inhibition of seed 
germination (Fernandez et al., 2013; Herranz, Ferrandis, Copete, 
Duro, & Zalacain, 2006), delay of seed germination (Fernandez et 
al., 2013; Hashoum et al., 2017), and inhibition of seedling growth 
(Gavinet et al., 2019; Santonja, Le Rouzic, & Thiebaut, 2018) by al‐
tering physiological processes (e.g., photosynthesis, nutrient uptake, 
cell division, or elongation; Inderjit & Duke, 2003). However, the per‐
sistence, availability, and biological impacts of the allelochemicals 
could be modulated by soil microbial communities (Cipollini, Rigsby, 
& Barto, 2012; Inderjit, 2005). Indeed, by using different substrates 
such as filter paper, natural or sterilized soils, several studies high‐
lighted the key role played by soil microorganisms which suppressed 
the potential negative allelopathic effects (Fernandez et al., 2013; 
Inderjit, 2005; Kaur, Kaur, Kaur, Baldwin, & Inderjit, 2009). In addi‐
tion to be highly variable among species, the diversity and quantity 
of allelochemicals produced by a given species and their influence 
on a target species are strongly dependent on its phenological stage 
(Fernandez et al., 2009; Hashoum et al., 2017; Santonja, Le Rouzic, 
et al., 2018). Surprisingly, most of the published allelopathy studies 
were performed by using only green leaves (or needles) and thus 
neglected the allelopathic potentialities of chemicals contained in 
senescent leaves or leaf litter. Hashoum et al. (2017) reported that 
the germination velocity of two target herbaceous species (Festuca 
ovina L. and Linum perenne L.) was inhibited by aqueous extracts of 
senescent leaves of woody species (Acer monspessulanum L., Cotinus 
coggygria Scop., and Quercus pubescens Willd.) while their seedling 
growth was affected by aqueous extracts of green leaves.

Mediterranean plants synthesize a wide variety of specialized 
metabolites, which help them to cope with summer drought and 
high radiative stress (Chaves & Escudero, 1999), and are involved in 
allelopathic interactions (Scognamiglio et al., 2013; Vilà & Sardans, 
1999). Strong evidence is thereby accumulating that allelopathy is 
a key mechanism shaping plant community diversity and dynam‐
ics in Mediterranean ecosystems (Alias, Sosa, Escudero, & Chaves, 
2006; Ehlers, Charpentier, & Grøndahl, 2013; Fernandez et al., 2013; 
Hashoum et al., 2017; Herranz et al., 2006). Among Mediterranean 
trees, Pinus halepensis Mill. has been the subject of numerous re‐
cent studies because this pine has expanded massively over the last 
century facilitated by both, forest fires and farmland abandonment 
(Richardson et al., 2007). As a result, this pioneer and expansion‐
ist species has come to dominate the areas of agricultural decline 

(Gondard, Romane, Aronson, & Shater, 2003), contributing to the 
homogenization of plant communities in the North Mediterranean 
area, where it forms dense monospecific mature forests. Pinus halep-
ensis produces large quantities of specialized metabolites including 
phenolics and terpenes (Fernandez et al., 2009, 2016; Macchioni et 
al., 2003; Pasqualini et al., 2003) which can alter the composition of 
plant communities (Fernandez et al., 2006, 2013), but also soil mi‐
crobial communities (Chomel et al., 2014; Santonja, Foucault, et al., 
2018) and ecosystem processes (Chomel et al., 2014; Santonja, Baldy, 
Fernandez, Balesdent, & Gauquelin, 2015; Santonja, Fernandez, 
Gauquelin, & Baldy, 2015). As most compounds involved in allelo‐
pathic interactions are water‐soluble (Reigosa, Sanchez‐Moreiras, 
& Gonzalez, 1999; Rice, 1984), previous studies have mostly fo‐
cused on the allelopathic potentialities of P. halepensis needle and 
root leachates. For example, Fernandez et al. (2013) demonstrated 
a high sensitivity of herbaceous plant species naturally present in 
fallow farmlands to allelochemicals released from P. halepensis green 
needles, while Nektarios, Economou, and Avgoulas (2005) reported 
a decreasing inhibitory effect on both, germination and seedling 
growth of four target herbaceous species according to the gradient 
green needles > senescent needles > needle litter. However, no pre‐
vious studies have focused on allelopathic effects driven by vola‐
tile organic compounds (VOC) released by P. halepensis, despite this 
pine species releases important amounts of VOC such as terpenes 
(Ormeño, Fernandez, Bousquet‐Mélou, et al., 2007) which have 
been reported to exhibit strong inhibitory effects on seed germina‐
tion and growth of numerous target herbaceous species (AlSaadawi, 
Arif, & AlRubeaa, 1985; De Martino, Mancini, Almeida, & Feo, 2010). 
In addition, terpene emissions from plant species are predicted to 
increase substantially due to a warmer climate and dense vegeta‐
tion communities (Peñuelas & Staudt, 2010) indicating the need 
for further research on the role played by these VOC in ecosystem 
functioning. In this context, it is of prime interest to improve our 
knowledge about the allelopathic potentialities of P. halepensis VOC.

To fill this gap, we performed a laboratory experiment in order 
to (a) identify the VOC released from P. halepensis needles and roots 
(green needles, senescent needles, needle litter, and roots), (b) deter‐
mine if these VOC affect seed germination and root growth of two 
herbaceous target species (Lactuca sativa L. and Linum strictum L.), (c) 
test if these VOC and their effects vary according to the organs (nee‐
dles vs. roots) and the needle physiological stages, and finally (d) eval‐
uate if soil microorganisms modulate the potential allelopathic effects 
of these VOC by using filter paper and natural soil as substrate.

2  | MATERIAL AND METHODS

2.1 | Material collection

The sampling site was located in the Luberon Natural Regional Park, 
SE France. This site is a secondary succession following abandon‐
ment agricultural lands, including different stages of P.  halepensis 
colonization from fallow land with few young pines (<5 years old) to 
old pine forests (>60 years old).
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The soil used as substrate for the bioassays was collected outside 
the zone of influence of P. halepensis (i.e., in a fallow without pine), 
sieved to a mesh size of 2 mm, and kept at room temperature until 
the start of the experiment. Green needles, senescent needles, nee‐
dle litter, and roots of P. halepensis were collected in a young P. halep-
ensis forest (about 10 years old) at the beginning of summer. While 
green needles, senescent needles, and roots were directly collected 
on the trees, needle litter of the current year was collected on the 
ground under the canopy of the corresponding trees. Material from 
10 individuals was collected and pooled every 2 days since fresh pine 
material was renewed every 2 days in order to perform the laboratory 
experiments, for a total of 110 individuals sampled during the study.

Two herbaceous species were selected as target of P. halepensis 
VOC. Firstly, L. strictum as this herbaceous species is naturally pres‐
ent in the first secondary succession stages following abandonment 
of agricultural lands in the studied area and had been reported to be 
highly sensitive to green needle leachates (Fernandez et al., 2006, 
2013). Secondly, L. sativa since this species is known for its sensitiv‐
ity to allelopathic substances and is frequently used for bioassays 
(e.g., Bousquet‐Mélou et al., 2005; Fernandez et al., 2006). Seeds 
of L. strictum were collected from wild populations on the study site 
outside the zone of influence of P. halepensis and then stored in a 
cold chamber at 4°C until the start of the experiment. Seeds of L. sa-
tiva were purchased in a garden shop (Truffaut, www.truff​aut.com).

2.2 | Laboratory experiments

2.2.1 | Allelopathic bioassay with Pinus 
halepensis VOC

This bioassay was conducted with two doses of VOC by suspend‐
ing 2.5 or 10.0  g (equivalent dry mass, DM) of plant material in a 
1 L microcosm (Figure 1). Fresh material was renewed every 2 days. 
Petri dishes were filled with 50.0 g DM of soil or with two layers of 
filter paper deposited at the bottom of the microcosm closed with 
nalophane to prevent VOC from escaping (Figure 1). We compared 
results from natural soil and filter paper as substrate in order to 
assess the role of natural soil microbial communities in shaping al‐
lelopathic effects (Fernandez et al., 2013; Inderjit, 2005; Kaur et al., 

2009). Each Petri dish was sown with 25 seeds of one of the two 
target species that were watered every 2 days with 2 ml of deionized 
water for filter paper substrate or 5 ml for soil substrate (Figure 1). 
Four replicates were performed for each treatment (target spe‐
cies × Pinus VOC source × dose × substrate) for a total of 96 micro‐
cosms. Bioassays were conducted under natural photoperiod (15 hr: 
9 hr day: night regime) and controlled temperature (21 ± 1°C).

Seed germination percentage was calculated as [(number of germi‐
nated seeds)/(number of sown seeds)] × 100 (Bousquet‐Mélou et al., 
2005; Gavinet et al., 2019; Santonja, Le Rouzic, et al., 2018). Regarding 
seedling growth, root length (mm) was measured for each individual 
5 days after germination (Fernandez et al., 2006, 2013; Hashoum et 
al., 2017). We calculated a relative allelopathic effect (RAE) index to 
determine the intensity of the allelopathic effect on seed germination 
and seedling growth (Gavinet et al., 2019; Hashoum et al., 2017). The 
RAE index was calculated as (O − C)/C × 100, where O is the value of 
the plant trait (germination or growth) when a target species is ex‐
posed to allelopathic compounds and C the mean value of that trait 
under control conditions. A negative RAE value indicates an inhibitory 
effect, whereas a positive RAE value indicates a stimulatory effect.

2.2.2 | Allelopathic bioassay with β‐caryophyllene

In addition to the use of P. halepensis material, we tested the effects 
of β‐caryophyllene, the main VOC released from both, needles and 
roots (Appendix 1; Figure 2), on the germination and growth of L. sa-
tiva. β‐caryophyllene (99% high purity standard) was obtained from 
Sigma‐Aldrich. The experiment was performed with filter paper as 
substrate (Figure 1). Each Petri dish was sown with 25 seeds that 
were watered every 2 days with 2 ml of deionized water. The pure 
compound was dissolved in ethanol (Reigosa & Pazos‐Malvido, 
2007) and five different dilutions (10, 50, 100, 500, and 1,000 µM) 
were prepared. Every 2 days, a piece of filter paper (2 × 1 cm) was im‐
pregnated with 1 ml of each solution (or only ethanol for the control 
treatment), kept few seconds outside the microcosm to evaporate 
ethanol and then suspended in the 1 L microcosm. Four replicates 
were performed for each concentration for a total of 24 micro‐
cosms. Bioassays were conducted under the same conditions than 
before (natural photoperiod and controlled temperature: 21 ± 1°C). 

F I G U R E  1  Schematic drawing (a) and picture (b) of the experimental design used to test the effects of the volatile organic compounds 
released from Pinus halepensis needles and roots on seed germination rate and root growth of Lactuca sativa and Linum strictum. Filter paper 
or natural soil were used as substrate in the glass Petri dish, and the 1,000 ml glass jar was closed with nalophane to prevent volatile from 
escaping

………. 25 seeds of target species
Petri dish with substrate

1,000 ml glass jar

Nalophane

Pine needle or root

(a) (b)

http://www.truffaut.com
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Germination rate, root growth, and corresponding RAE values were 
obtained as previously described.

2.3 | Chemical analysis

Headspace Solid Phase Micro Extraction (SPME) was per‐
formed to collect and characterize the chemical composition of 
volatiles released from P.  halepensis needles and roots (Jassbi, 
Zamanizadehnajari, & Baldwin, 2010). A SPME fiber coated with 
Polydimethylsiloxane/Divinylbenzene (PDMS/DVB, fiber diam‐
eter 65  μm, needle size 24 ga, StableFlexTM) was exposed for 
4 hr to 10.0 g DM of suspended plant material in each microcosm 
1 hr after the pine material was put into the microcosm (Figure 1). 
The SPME fibers were analyzed on a Hewlett‐Packard GC6890 
coupled with a HP5973N Mass Selective Detector and equipped 
with a HP‐5MS capillary column (30  m  ×  0.25  mm  ×  0.25  µm, 
J&W Scientific). Data were acquired in scan mode from 40 to 
300 uma. Retention indexes of compounds were determined rela‐
tive to Wisconsin Diesel Range Hydrocarbon injection (C8‐C20, 
Interchim) and compared with those reported in the literature 
(Adams, 2007). The identification of some terpenes was done by 
comparison of mass spectra (MS) to those of reference standards 
(Sigma‐Aldrich®, Appendix 1). Database searches in the NIST 
2014 mass spectral library were also conducted to tentatively an‐
notate unidentified components.

2.4 | Statistical analyses

Statistical analyses were performed with the R software (version 3.3.1). 
Significance was evaluated in all cases at p < 0.05. Normality and homo‐
scedasticity of the residuals of the models were visually checked.

Firstly, differences of seed germination rate and root growth ac‐
cording to target species (L. sativa vs. L. strictum), substrate type (filter 
paper vs. natural soil), and their interactions in absence of VOC (i.e., 

in the control treatments) were assessed using two‐way ANOVAs, 
followed by Tukey HSD tests for post hoc pairwise comparisons.

Secondly, three‐way ANOVAs, followed by Tukey HSD tests 
for post hoc pairwise comparisons, were used to test the effects of 
P.  halepensis VOC source (green needle, senescent needle, needle 
litter, and root), dose (low and high), substrate type (filter paper and 
natural soil), and their interactions on the RAE on seed germination 
and root growth of the two target species.

Thirdly, Kruskal Wallis tests, followed by post hoc multiple range 
tests (Fisher's Least Significance Difference), were used to test 
the effects of β‐caryophyllene concentration on the seed germina‐
tion and root growth of L. sativa.

3  | RESULTS

3.1 | Detected volatiles

Solid Phase Micro Extraction fibers were used to trap the emitted 
VOC from Pinus needles and roots (Appendix 1; Figure 2). The GC‐
MS analysis revealed that 88% (senescent needles) to 93% (roots) of 
the detected volatiles were terpenes. Thirty terpenes were detected 

F I G U R E  2  Chromatograms obtained 
from Solid Phase Micro Extraction 
(SPME) of the volatile organic compounds 
released from Pinus halepensis green 
needles (a), senescent needles (b), needle 
litter (c), and roots (d). Red star indicates 
β‐caryophyllene (i.e., the main compound 
released from needles and roots)

(a) (b)Green needles Senescent needles

(c) Needle li�er (d) Roots

* *

*

*

TA B L E  1  Seed germination rate and root growth of Lactuca 
sativa and Linum strictum according to substrate type (filter paper 
vs. natural soil) in the control treatments

  Filter paper Natural soil

Lactuca sativa

Germination (%) 86.0 ± 3.8 94.0 ± 2.0

Root (mm) 23.2 ± 0.6 32.4 ± 0.7

Linum strictum

Germination (%) 38.0 ± 6.2 30.0 ± 3.8

Root (mm) 18.3 ± 0.6 20.3 ± 0.5

Note: Values are mean ± SE.
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TA B L E  2  Results of three‐way ANOVAs testing for the effects of Pinus halepensis VOC source (green needle, senescent needle, needle 
litter, and root), dose (low vs. high), substrate type (filter paper vs. natural soil), and their interactions on the relative allelopathic effect (RAE) 
on seed germination rate and root growth of the two target species (Lactuca sativa and Linum strictum)

 

RAE on germination rate RAE on root growth

df % SS F‐value p‐value df % SS F‐value p‐value

Lactuca sativa
VOC source (V) 3 36.7 16.8 *** 3 2.9 10.9 ***
Dose (D) 1 10.5 14.4 *** 1 12.7 143.4 ***
Substrate (S) 1 1.7 2.3   1 0.6 6.2 *
V × D 3 0.6 0.3   3 1.6 6.0 ***
V × S 3 11.6 5.3 ** 3 11.2 42.0 ***
D × S 1 2.6 3.6   1 0.8 9.5 **
V × D × S 3 1.3 0.6   3 1.5 5.6 ***
Residuals 48 35.0 0.6   1,282 68.7 5.6 ***

Linum strictum
VOC source (V) 3 42.3 26.1 *** 3 31.7 75.4 ***
Dose (D) 1 7.1 13.2 *** 1 7.7 53.0 ***
Substrate (S) 1 19.7 36.4 *** 1 3.6 24.5 ***
V × D 3 0.8 0.5   3 2.7 6.2 ***
V × S 3 3.1 1.9   3 5.2 11.8 ***
D × S 1 0.4 0.8   1 0.0 0.0  
V × D × S 3 0.6 0.4   3 0.6 1.3  
Residuals 48 25.9     332 48.5    

Note: F‐values and associated p‐values (* for p < 0.05, ** for p < 0.01 and *** for p < 0.001) are indicated.
Abbreviations: df, degrees of freedom; % SS, percentage of sums of squares.

F I G U R E  3  Relative allelopathic effect (RAE) on seed germination of Lactuca sativa (a, b, and c) and Linum strictum (d, e, and f) according to 
Pinus halepensis VOC source (a, d), dose (b, e) and substrate type (c, f). Values are mean ± SE. Different letters denote significant differences 
between treatments with a > b > c. Negative values of RAE indicate an inhibitory effect, whereas positive values indicate a stimulatory 
effect. GN, green needle; FP, filter paper; NL, needle litter; SN, senescent needle
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from both, needle and root emissions, while 20 terpenes were de‐
tected only from needles (Appendix 1). In addition, 12 terpenes were 
detected in emissions from senescent needles and needle litter but 
not from green needles. Higher headspace concentrations of terpe‐
nes were observed in microcosms containing needles compared to 
roots. Sesquiterpenes from needles were emitted twice more than 
monoterpenes (58% vs. 32%), whereas the ratio was 72% versus 
22% for roots. β‐caryophyllene was the major emitted volatile from 
both, needles and roots. The other major emitted volatiles from 
needles were myrcene, δ‐terpinene, and α‐pinene, while α‐pinene, 

α‐muurolene, and copaene were the other major emitted volatiles 
from roots. Finally, numerous terpenes, such as β‐caryophyllene, 
δ‐terpinene, and α‐pinene, showed an increasing concentration ac‐
cording to the gradient green needles < senescent needles < needle 
litter.

3.2 | Allelopathic bioassays with P. halepensis VOC

Germination rate of L.  sativa seeds was three times higher than 
L. strictum in the control treatments (F = 174.2, p < 0.001, Table 1), 
and germination rate of both species was not affected by substrate 
type (p  > 0.05, Table 1). Root growth of L.  sativa was higher than 
L. strictum (F = 131.1, p < 0.001, Table 1), and root growth of both 
species was higher when natural soil was used as substrate com‐
pared to filter paper (F = 112.5, p < 0.001, Table 1).

3.2.1 | Seed germination

Pinus VOC source and dose had significant effects on seed germina‐
tion (Table 2). Needle litter exhibited higher negative effects on seed 
germination than the three other VOC sources for both herbaceous 
target species (Figure 3a,d). Increasing dose reduced threefold and 
twofold seed germination of L.  sativa and L.  strictum, respectively 
(Figure 3b,e). The allelopathic effects on L.  strictum seed germina‐
tion were strongly reduced in natural soil compared to filter paper 
(Figure 3f). Pinus VOC source and substrate type interacted in their 
effects on L. sativa seed germination (Table 2): the negative effects 
of volatiles released from Pinus needle litter on L.  sativa seed ger‐
mination were reduced on natural soil compared to filter paper; by 
contrast, the effects of volatiles released from Pinus roots turned 
from positive into negative (Figure 4a).

3.2.2 | Root growth

Allelopathic effects on root growth varied across needle physiologi‐
cal stages, with a clear trend to increasing negative effects accord‐
ing to the following order: green needle < senescent needle < needle 
litter (Figure 5a,d). In addition, root growth of both target species 
decreased with increasing dose (Figures 5b,e) and these nega‐
tive effects were higher with natural soil compared to filter paper 
(Figure 5c,f). However, significant interactions between Pinus VOC 
source, dose, and substrate type were observed (Table 2).

As reported for L. sativa seed germination, Pinus VOC source and 
substrate type interacted in their effects on root growth for both 
target species (Table 2; Figure 4). The inhibitory effects of Pinus 
roots and green needles (only for L.  strictum) were enhanced with 
natural soil compared to filter paper (Figure 4b,c). By contrast, the 
inhibitory effects of both senescent needles and needle litter on 
L.  sativa root growth were reduced with natural soil compared to 
filter paper (Figure 4b).

Regarding the significant dose ×  substrate type interaction on 
L.  sativa root growth (Table 2), a similar inhibitory effect was ob‐
served at low dose on both filter paper and natural soil, while the 

F I G U R E  4  Relative allelopathic effect (RAE) on Lactuca 
sativa seed germination (a), L. sativa root growth (b), and Linum 
strictum root growth (c) according to the Pinus halepensis VOC 
source × substrate interaction (Table 2). Values are mean ± SE. 
Significant differences of RAE values between filter paper and 
natural soil are indicated with the respective symbols * for p < 0.05, 
** for p < 0.01, *** for p < 0.001 and ns for p > 0.05. GN, green 
needle; NL, needle litter; SN, senescent needle
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inhibitory effect at higher dose was remarkably higher on natural soil 
compared to filter paper (Figure 6).

Finally, the significant Pinus VOC source  ×  dose interaction 
(Table 2) suggested that the range of allelopathic effects across 
the four Pinus VOC sources differed between low and high doses 
(Figure 7). A similar inhibitory effect between the four Pinus VOC 
sources on L. sativa root occurred at low dose, while higher inhibi‐
tory effects and a clear trend to increasing allelopathic effects with 
increasing needle physiological stage was observed with the higher 

dose (Figure 7a). Regarding L. strictum, senescent needles exhibited a 
similar inhibitory effect than green needles at low dose, while senes‐
cent needles exhibited a similar inhibitory effect than needle litter at 
high dose (Figure 7b).

3.3 | Allelopathic bioassay with β‐caryophyllene

β‐caryophyllene strongly inhibited seed germination and root 
growth of L. sativa. Seed germination was reduced by 75% at 10 µM 
and totally suppressed from 500 µM (K = 13.7, p < 0.01, Figure 8a). 
Root growth was reduced from 70% at 10 µM to 88% at 100 µM 
(K = 10.1, p < 0.01, Figure 8b).

4  | DISCUSSION

As inhibited seed germination rate and seedling root growth imply a 
decrease in recruitment and survival of individuals, our results evi‐
denced a strong potential control of P. halepensis VOC on the dynam‐
ics of herbaceous species populations. Two previous studies already 
highlighted an allelopathic effect of green needle and root leachates 
on L. strictum seed germination and seedling growth during labora‐
tory bioassays (Fernandez et al., 2006, 2013). Floristic inventories 
performed by Fernandez et al. (2013) highlighted an important de‐
crease in L. strictum abundance in the field when pines were present 

F I G U R E  5  Relative allelopathic effect (RAE) on root growth of Lactuca sativa (a, b, and c) and Linum strictum (d, e, and f) according to 
Pinus halepensis VOC source (a, d), dose (b, e) and substrate type (c, f). Values are mean ± SE. Different letters denote significant differences 
between treatments with a > b > c. GN, green needle; FP, filter paper; NL, needle litter; SN, senescent needle
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in their neighborhood. Thus, in addition to the high sensitivity of 
L.  strictum to P.  halepensis nonvolatile allelochemicals, our study 
suggests that P. halepensis VOC may also control L. strictum demo‐
graphic parameters in the field.

Needle physiological stage was a key factor of the observed 
allelopathic effects in the present study as they explained a large 
part of RAE variance on both seed germination and root growth of 

the two target species (percentages of sums of squares, Table 2). 
Interestingly, in contrast with the trend reported by Nektarios et al. 
(2005) with the use of P. halepensis needle leachates, we observed 
a clear increasing inhibitory effect related to VOC according to the 
evolution of needle physiological stage (green needle <  senescent 
needle < needle litter). Since the allelochemicals released in leach‐
ates belong usually to phenolics (Fernandez et al., 2009; Santonja, 
Le Rouzic, et al., 2018), the water solubility, and rapid leaching of 
these compounds, could explain the decreasing allelopathic po‐
tentialities along needle physiological stages (Chomel et al., 2014; 
Hashoum et al., 2017). Santonja, Baldy, et al. (2015) and Chomel et 
al. (2014) reported that 40% and 80% of phenolics disappeared after 
2 and 6 months of P. halepensis needle litter decomposition, respec‐
tively, supporting the findings of Nektarios et al. (2005).

β‐caryophyllene was the main volatile released from P. halepen-
sis needles and roots (Figure 2). Several previous studies showed 
that β‐caryophyllene is constitutively present in P.  halepensis 
branches and litter and is naturally released in a large variety of 
growing conditions (Ormeño et al., 2009; Ormeño, Fernandez, 
Bousquet‐Mélou, et al., 2007; Ormeño, Fernandez, & Mévy, 
2007). Ormeño et al. (2009) showed that β‐caryophyllene occurs 
within needle litter of P. halepensis in the field. Likewise, Ormeño, 
Fernandez, Bousquet‐Mélou, et al. (2007) reported β‐caryo‐
phyllene emissions from P.  halepensis branches growing in six 
Mediterranean natural forest sites. Likewise, Ormeño, Fernandez, 
and Mévy (2007) reported that P. halepensis seedlings also synthe‐
size and emit β‐caryophyllene. In the present study, this sesquiter‐
pene exhibited strong inhibitory effects on both, seed germination 
and root growth of L.  sativa, a finding in line with previous stud‐
ies that suggested that this compound may act as allelochemical 
to influence neighboring plant growth (Kong, Hu, & Xu, 1999; 
Sanchez‐Muñoz, Aguilar, King‐Díaz, Rivero, & Lotina‐Hennsen, 
2012; Wang, Pen, Zeng, Ding, & Xu, 2009). Wang et al. (2009) re‐
ported that β‐caryophyllene inhibited both, seed germination and 
seedling growth of Brassica campestris L. and Raphanus sativus L., 
given thus potential support for the successful invasion of Mikania 

F I G U R E  7  Relative allelopathic effect (RAE) on root growth of Lactuca sativa (a) and Linum strictum (b) according to the Pinus halepensis 
VOC source × dose interaction (Table 2). Values are mean ± SE. Different letters denote significant differences between VOC sources with 
a > b > c (lower case = low dose; upper case = high dose). GN, green needle; NL, needle litter; SN, senescent needle
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micrantha Kunth in China. In addition, Kong et al. (1999) reported 
that β‐caryophyllene, by inhibiting seedling growth of several crop 
species (Solanum Lycopersicon L., Raphanus sativus L., and Vigna ra-
diate (L.) R. Wilczek), could partly explain the strong allelopathic 
potentialities of the widespread weed Ageratum conyzoides L. in 
south China and Southeast Asia. Despite it is well known that alle‐
lopathic interactions are not due to a single compound but rather 
to a pool of several allelochemicals acting synergistically to inhibit 
or stimulate growth (Reigosa et al., 1999), the increasing release 
of β‐caryophyllene along needle physiological stages (Figure 2) 
could partly explain the increasing allelopathic effects along needle 
physiological stages in the present study. Other terpenes known as 
allelochemicals such as α‐pinene, 3‐carene, or limonene (Abrahim, 
Braguini, Kelmer‐Bracht, & Ishii‐Iwamoto, 2000; De Martino et al., 
2010; Singh, Batish, Kaur, Arora, & Kohli, 2006) showed the same 
trend of increasing release as β‐caryophyllene (Appendix 1), giving 
additional support to increasing allelopathic effects according to 
needle physiological stages. However, we acknowledge that the 
volatile emission was measured only 1 hr after the pine material 
was put in the microcosm while this pine material remained in the 
microcosm for 2  days, suggesting that potentially other volatiles 
have been released by P. halepensis needles and roots during the 
experiment but not detected by the SPME fibers.

Laboratory bioassays using filter paper are frequently reported to 
overestimate the ability of allelochemicals to influence the germina‐
tion and growth parameters of neighboring target plants (Fernandez 
et al., 2013). Indeed, the effects of allelochemicals are less inhib‐
itory, disappear, or even become positive under natural soil (e.g., 
Fernandez et al., 2013; Hashoum et al., 2017) as microbial commu‐
nities strongly influence the persistence, availability and biological 
activity of allelochemicals through volatile assimilation, degradation, 
and transformation (Blum & Shafer, 1988; Inderjit, 2005; Kaur et al., 
2009). However, in the present study, numerous inhibitory effects 
observed with filter paper as a substrate were similar or amplified 
when using natural soil, highlighting that soil microorganisms are not 
necessarily able to limit the negative effect of VOC released from 
P.  halepensis on herbaceous target species. This was particularly 
the case for the impact of VOC released from P. halepensis roots on 
seedling growth, suggesting that microbial degradation/transforma‐
tion of these VOC could lead to degraded products with increased 
negative allelopathic effects. In addition, the impact of VOC released 
from green needles was enhanced, while those from senescent nee‐
dles or needle litter were reduced with natural soil as substrate. We 
can speculate that a better ability of soil microorganisms to degrade 
the VOC released by senescent needles or needle litter leads to a 
reduction in their allelopathic effects as compared to those released 
by green needles. However, we acknowledge that we only used soil 
free from P.  halepensis influence in the present study, that is, soil 
whose microbial community was not frequently in contact with the 
allelochemicals (phenolics and terpenes) released by P.  halepensis. 
The soil microbial community under the influence of P.  halepensis 
could be completely different and, as a result, could have an altered 
effect on the outcome of plant–plant chemical interaction mediated 

by P. halepensis VOC. These hypotheses would need new laboratory 
experiments specifically designed to study such microbial‐driven 
chemical transformations.

5  | CONCLUSION

The present study confirms the strong allelopathic potentialities of 
P.  halepensis as seed germination and seedling growth of the two 
target herbaceous species were mainly inhibited by VOC released 
from pine needles and roots. In addition, we demonstrated for the 
first time a clear increasing inhibitory effect of VOC according to 
the evolution of needle physiological stage (green needle < senes‐
cent needle < needle litter). Finally, our results pointed out that soil 
microorganisms are not necessarily able to limit the negative effect 
of VOC on herbaceous target species.
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