
ORIGINAL RESEARCH
published: 21 July 2021

doi: 10.3389/fnins.2021.652058

Frontiers in Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 652058

Edited by:

Diego Elgueda,

University of Chile, Chile

Reviewed by:

Behtash Babadi,

University of Maryland, United States

Subong Kim,

Purdue University, United States

*Correspondence:

Longhan Xie

melhxie@scut.edu.cn

Specialty section:

This article was submitted to

Auditory Cognitive Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 11 January 2021

Accepted: 24 June 2021

Published: 21 July 2021

Citation:

Cai S, Li P, Su E and Xie L (2021)

Auditory Attention Detection via

Cross-Modal Attention.

Front. Neurosci. 15:652058.

doi: 10.3389/fnins.2021.652058

Auditory Attention Detection via
Cross-Modal Attention
Siqi Cai, Peiwen Li, Enze Su and Longhan Xie*

Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, China

Humans show a remarkable perceptual ability to select the speech stream of interest

among multiple competing speakers. Previous studies demonstrated that auditory

attention detection (AAD) can infer which speaker is attended by analyzing a listener’s

electroencephalography (EEG) activities. However, previous AAD approaches perform

poorly on short signal segments, more advanced decoding strategies are needed

to realize robust real-time AAD. In this study, we propose a novel approach, i.e.,

cross-modal attention-based AAD (CMAA), to exploit the discriminative features and

the correlation between audio and EEG signals. With this mechanism, we hope to

dynamically adapt the interactions and fuse cross-modal information by directly attending

to audio and EEG features, thereby detecting the auditory attention activities manifested

in brain signals. We also validate the CMAA model through data visualization and

comprehensive experiments on a publicly available database. Experiments show that

the CMAA achieves accuracy values of 82.8, 86.4, and 87.6% for 1-, 2-, and 5-s

decision windows under anechoic conditions, respectively; for a 2-s decision window,

it achieves an average of 84.1% under real-world reverberant conditions. The proposed

CMAA network not only achieves better performance than the conventional linear model,

but also outperforms the state-of-the-art non-linear approaches. These results and data

visualization suggest that the CMAA model can dynamically adapt the interactions and

fuse cross-modal information by directly attending to audio and EEG features in order to

improve the AAD performance.

Keywords: auditory attention, attention mechanism, cocktail party, cross-modal, EEG

1. INTRODUCTION

Humans have the ability to pay selective attention to one speaker in a multispeaker environment,
also called the “cocktail party scenario” (Cherry, 1953; Haykin and Chen, 2005). However, people
with hearing loss find that such situations are particularly difficult. Modern hearing aids have
been developed to produce a better experience by reducing background noise and increasing
speech intelligibility, such as noise reduction system and directional microphone (Wu et al., 2019).
However, existing approaches usually fail in the cocktail-party situation and many hearing aid
users complain about the difficulty of following a target speaker in the presence of noisy and other
competing speech streams (Chung, 2004). Recent developments in the field of neuroscience have
shown that it is possible to decode the auditory attention in a multi-talker environment from brain
signals (Ding and Simon, 2012; Mesgarani and Chang, 2012). This is known as auditory attention
detection (AAD). The development of AAD opens up new opportunities to the cognitive control
of auditory prostheses, such as hearing aids and cochlear implants.
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EEG provides a non-invasive means of investigating cortical
activity with high temporal resolution and is a realistic option
for BCI applications. Various experiments have verified the
feasibility of decoding the selective attention in a multispeaker
environment using EEG (Choi et al., 2013; Mirkovic et al., 2015;
O’Sullivan et al., 2015; Van Eyndhoven et al., 2016; Deckers
et al., 2018; Bednar and Lalor, 2020; Cai et al., 2020, 2021; Wang
et al., 2020). The decoding of selective auditory attention from
non-invasive EEG signals is of interest in BCI and auditory
perception research and can mainly be divided into linear and
non-linear approaches. Previous approaches for decoding the
attentional selection of listeners have mainly focused on linear
mappings between the features of sound streams and EEG
responses. More specifically, the mapping from auditory stimuli
to cortical responses is typically referred to as the forward
model or temporal response function (TRF) (Crosse et al., 2016;
Wong et al., 2018), whereas the mapping from cortical responses
to acoustic features is referred to as the backward model
or stimulus-reconstruction (Fuglsang et al., 2017). Moreover,
de Cheveigné et al. (2018, 2019) have proposed an alternative to
both forward and backward mapping, i.e., canonical correlation
analysis (CCA). However, the performance of these linear
decoding approaches decreases significantly when operated at
low latency settings. For instance, the accuracy of linear AAD
models is fairly low (approximately 60%) over a data window
with a length of 1 s, the time scale at which humans are able to
switch attention from one speaker to another (Zink et al., 2017).
We argue that the linear mappings approach has two deficiencies.
First, its mapping and correlation evaluation process are not
jointly optimized for attention detection; second, both forward
and backward mapping leads to fairly low correlation values,
e.g., r = 0.054 (O’Sullivan et al., 2015). Such low correlation
scores support that linear mapping may not necessarily represent
the best approach for AAD. Recently, non-linear models have
been proposed to detect the attended speakers based on EEG
signals to realize low-latency AAD. de Taillez et al. (2017)
studied a non-linear neural network for mapping EEG signals to
speech envelopes in a cocktail party scenario and showed that
it outperforms the linear model baseline. Following a similar
approach, convolutional neural network (CNN)models (Deckers
et al., 2018; Ciccarelli et al., 2019; Cai et al., 2020; Vandecappelle
et al., 2021) were studied to detect the attended speakers.
However, these non-linear AAD approaches neglect valuable
temporal information of EEG signals and more advanced
decoding strategies are needed to realize robust real-time AAD.

In this paper, we further study a non-linear decoder for real-
time AAD and develop a cross-modal attention mechanism,
which is referred to as cross-modal attention-based auditory
attention detection (CMAA). The CMAA model can detect
auditory attention directly from enhanced audio and EEG
features without the reconstruction process (e.g., without
reconstructing auditory stimulus from EEG signals). The core of
our proposed CMAAmodel is the cross-modal attentionmodule,
which can model the top-down and bottom-up modulation
by dynamically assigning weights at run-time according to
the input stimulus. The attention mechanism has attracted
great interest and shown promising capability in a variety

of related applications such as machine translation (Luong
et al., 2015), image caption generation (Xu et al., 2015) and
object classification (Wang et al., 2016; Guo et al., 2019). Give
that the fundamental theory of the AAD model is based on
the relationship between the auditory stimuli and the EEG
responses elicited by these stimuli, we employ the CMAA model
to dynamically modulate the interactions of EEG and audio
streams in the temporal domain, analogous to how human
brains selectively attend to input stimuli. Considering that brain
activity is a temporally dynamic process and EEG signals are
essentially non-linear time series data (Bassett and Sporns, 2017),
the proposed CMAA has an advantage over CNN in capturing
temporal characteristics of EEG. With the cross-modal attention
mechanism, we hope to adapt EEG to audio streams by repeated
reinforcement of the EEG features with those from audio, or vice
versa, thus improving low-latency AAD performance.

Overall, we explored a novel CMAA approach which allows
dynamic interaction between the audio and EEG features to
improve the observations of the relation between auditory
stimulus and EEG response. The proposed CMAA model was
evaluated on a publicly available database, i.e., DTU (Fuglsang
et al., 2017, 2018), which is described in detail in section 2.5. The
main contributions of this study can be summarized as follows:

1) We have developed a novel framework for EEG-based AAD.
The proposed CMAA framework integrates the cross-modal
attention mechanism into an AAD decoder to capture the
correlation between auditory stimuli and EEG responses in
order to improve the AAD performance.

2) CMAA framework consists of bi-directional cross-modal
attention, which transforms both the auditory stimulus and
the EEG response. Compared to previous methods based
on the forward or backward models for linear mapping,
CMAAmaximizes the mutual information and supports AAD
decoder that yields higher classification accuracy.

3) We conducted experiments on the DTU database, and the
experimental results indicated the proposed CMAA method
can realize reliable detection of auditory attention in low
latency settings under real-world reverberant conditions.

2. MATERIALS AND METHODS

AAD is usually formulated as a binary classification problem
in a two-speaker scenario (de Taillez et al., 2017; Deckers
et al., 2018; Vandecappelle et al., 2021). First, the CSP method
was used for discriminative feature extraction of the original
EEG signals. Meanwhile, we apply an auditory-inspired linear
filter bank and power-law compression to improve the speech
envelope extraction process (Biesmans et al., 2016), which is
denoted as H-LP and is described in detail in section 2.6.
Then, we employ the cross-modal attention module to adjust
the interactions of EEG and auditory stimuli. The advanced
feature extraction and attention mechanisms are expected to
improve the separation between the EEG signals of opposite
attention, and obtain optimal interactions between the EEG
signals and auditory stimuli. Finally, a similarity matrix is used
to evaluate the correlation coefficient (cosine similarity) between
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the EEG responses and the attended and unattended auditory
stimulus, respectively. The speaker with greater correlation is
chosen as the attended speaker, while the unattended speaker is
identified as the speaker with the weaker correlation. The overall
CMAA architecture is illustrated in Figure 1, and is explained in
detail below.

2.1. Common Spatial Pattern
Considering the low signal-to-noise ratio of raw EEG data,
we applied the common spatial pattern (CSP) algorithm for
EEG signal enhancement (Ramoser et al., 2000; Pfurtscheller
and Neuper, 2001). Previous studies have demonstrated that
classification performed on the CSP features generally yields
better accuracy in motor imagery BCI systems (Blankertz et al.,
2007a; Zhang et al., 2017). Moreover, CSP method shows
potential for the improvement of EEG-based AAD performance,
as has been demonstrated in our pilot study (Cai et al., 2020).
CSP could find a projection matrix composing of several pairs
of space filtering vector. And the multi-channel EEG signals
are projected into a new space through the projection matrix
so that the variance of one class is maximized and the other
is minimized (Pfurtscheller and Neuper, 2001; Blankertz et al.,
2007b). Considering that we formulate a two-speaker AAD
problem as a binary classification task, we expect the CSP
algorithm to be effective in discriminating the EEG signals
corresponding to two opposite speakers.

The principle of CSP is find an optimal spatial filter with
diagonalization calculation to project the EEG signals into a new
feature space and maximize the variance between the classes.
Assume that we have two sets of EEG data, GA and GB, recorded
for two attended speakers A and B, respectively. Each set of
EEG data can be represented as a multichannel evoked response
matrix with M × S dimensions, where M is the number of
the channels and S is the number of the samples from each
channel. The composite covariance matrix and its eigenvalue
decomposition are given by

C = CA + CB

=
GAG

T
A

tr(GAG
T
A)

+
GBG

T
B

tr(GBG
T
B )

= ZψZT

(1)

where CA and CB are the covariance matrices of GA and GB.
tr(·) is sum of elements on the main diagonal of a matrix as
the trace of the matrix. T denotes the transpose operator. Z is
a matrix of normalized eigenvectors with corresponding matrix
of eigenvalues, ψ .

The whitening transformation matrix

P =

√

ψ−1ZT (2)

transforms the covariance matrices as

CA
′ = PCAP

T ,CB
′ = PCBP

T (3)

where CA
′ and CB

′ share common eigenvectors, and the sum of
corresponding eigenvalues for the two matrices are always one,
such that

CA
′ = UλAU

T ,CB
′ = UλBU

T , λA + λB = I (4)

where I is the identity matrix. U and λ respectively denote the
matrix of eigenvectors and the diagonal matrix of eigenvalues.

Thus, we can obtain the CSP projection matrix W = UTP
with the eigenvectors from the decomposition. And the EEG
features after spatial filtering can be expressed as:

Fi = WGi (5)

where {Fi : i ∈ {A,B}} denotes the resulting CSP-enhanced
EEG features.

2.2. Cross-Modal Attention
The fundamental theory of the AAD model is the relationship
between the auditory stimuli and the cortical responses elicited
by these stimuli. From our perspective, the interaction between
auditory stimulation and EEG responses can be formulated as
a cross-modal problem. Specifically, cross-modal attention can
dynamically adapt the streams from one modality to another
and correlate meaningful elements across these two modalities
(Peng et al., 2017; Ji et al., 2020). In addition, previous studies
(Anderson et al., 2018; Yuan and Peng, 2019; Paraskevopoulos
et al., 2020; Xu et al., 2020) have shown that the cross-modal
attention mechanism can achieve better performance than the
state-of-the-art methods in the multimedia field. Therefore, we
develop a model with cross-modal attention to fully explore the
correlations between audio and EEG signals, so as to solve the
AAD problem in this study.

As stated in previous studies (Vaswani et al., 2017;
Paraskevopoulos et al., 2020), the attention function can be
described as mapping a query and a set of key/value pairs to an
output, where the query, keys, values, and output are vectors. The
output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility
function of the query with the corresponding key. For cross-
modal attention, assume two modalities α and β , with two
streams from each of themodalities denoted byXα ∈ R

Tα×dα and
Xβ ∈ R

Tβ×dβ , respectively. Here, T denotes the duration of each
stream and d denotes the feature dimension. We define the query
as Qα = XαWQα , and the key and the value as Kβ = XβWKβ and
Vβ = XβWVβ , respectively. Here, the projections are the weight

matrices WQα ∈ R
dα×dk , WKβ ∈ R

dβ×dk , and WVβ ∈ R
dβ×dv .

The output from the cross-modal attention layer is represented
byOβ→α and is computed as:

Oβ→α = CM(Qα ,Kβ ,Vβ )

= softmax(
QαK

T
β

√

dk
)Vβ

= softmax(
XαWQαW

T
Kβ
XT
β

√

dk
)XβWVβ

(6)
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FIGURE 1 | A schematic diagram of our proposed cross-modal attention-based AAD network (CMAA). First, we employ CSP algorithm for EEG enhancement and

H-LP to improve the speech envelope extraction process. Then, the cross-modal attention, which takes EEG and audio features as input, is the core component of

the CMAA for dynamic interaction. The proposed CMAA architecture tackles all pairs of modalities with the cross-modal attention module, including EEG signals →

audio of speaker A (E → A), EEG signals → audio of speaker B (E → B), audio of speaker A → EEG signals (A → E) and audio of speaker B → EEG signals (B→ E).

Finally, the cross-modal similarity are computed and compared to determine the attended speaker. Here, the audio streams of speaker A and speaker B are denoted

in red and green, while the EEG signals are denoted in blue.

where the Oβ→α ∈ R
dα×dk has the same length as Qα , and

softmax(·) ∈ R
Tα×Tβ .

√

dk is the scaling factor. Specifically, the
scaled softmax is the score matrix on the values, i.e., the attention
map, which reflects the relationship between the two modalities.
Oβ→α is the weighted representation of Vβ .

Considering that the EEG data were collected from the
subject while he/she listened to two competing speakers and
was instructed to attend to one particular speaker in the AAD
tasks, the proposed CMAA architecture must handle all pairs
of modalities with the cross-modal attention module. As shown
in Figure 1, the CMAA model consists of two directions: EEG
→ audio (backward direction) and audio → EEG (forward
direction). Specifically, for EEG → audio attention, which is
referred to as E2A attention, the model attends to EEG signals
according to each audio component and then determines the
importance of the audio components to the EEG by comparing
each audio component to the corresponding attended EEG
vector. E2A attention consists of two pairs of modalities: EEG
signals → audio of speaker A and EEG signals → audio of
speaker B. For audio → EEG attention direction, which is
referred to as A2E attention, the model attends to the audio
components for the EEG signals and determines the importance
of the EEG components for the audio attention vector. A2E
attention also treats two pairs of modalities: the audio of speaker
A→ EEG signals and audio of speaker B→ EEG signals.

Taking the audio of speaker A → EEG signals as an example,
the detailed architecture of the cross-modal attention (OA→E)
is depicted in Figure 2. Specifically, we employ the audio
of speaker A as the β modality, while CSP-enhanced EEG
features as the α modality in equation 6. Thus, the cross-modal
attention mechanism adaptively adjusts the weights of the audio
components and emphasizes the most informative components
of the audio signal based on the EEG attention vector, realizing

the forward direction AAD. Moreover, the backward direction
AAD is realized with the E2A attention, where EEG is the β
modality and audio is the α modality.

2.3. Overall Architecture for Cross-Modal
Transformer
Based on the cross-modal attention mechanism, we developed
the cross-modal transformer, which is based on the transformer
architecture (Vaswani et al., 2017), as shown in Figure 3. Briefly,
the cross-modal transformer consists of N layers. The first
operation in each layer is a cross-modal attention block, as
illustrated in detail in section 2.2. The second operation is a
positionwise feed-forward layer block that consists of two linear
transformations with a rectifying linear unit (ReLU) activation
in between (Vaswani et al., 2017). Therefore, the cross-modal
transformer computes feed-forwardly for i = 1,..., N layers,
as follows:

O
[0]
β→α = O[0]

α

Ō
[i]
β→α = CM

[i]
β→α(LayerNorm(O

[i−1]
β→α), LayerNorm(O

[0]
β ))

+ LayerNorm(O
[i−1]
β→α)

O
[i]
β→α = (LayerNorm(Ō

[i]
β→α))

FF + LayerNorm(Ō
[i]
β→α)

(7)

where LayerNorm denotes layer normalization (Ba et al., 2016).
It is a recently introduced method for normalizing the activities
of neurons in deep neural networks to help stabilize training and

boost model convergence. (LayerNorm(Ō
[i]
β→α))

FF is transformed
by the positionwise feed-forward block and can be computed
as follows:

(LayerNorm(Ō
[i]
β→α))

FF = max(0, (LayerNorm(Ō
[i]
β→α))W1 (8)

+b1)W2 + b2
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FIGURE 2 | Illustration of the cross-modal attention mechanism between the audio of speaker A and EEG signals, i.e., OA→E .

where W1 and W2 denote the first and second linear projection
matrix, respectively. b1 and b2 denote the first and second
bias, respectively.

Generally, the cross-modal transformer enables one modality
to receive information from another modality. Specifically, EEG
signals continue updating the sequence and are transformed to a
different set of key/value pairs to interact with the corresponding
auditory stimulus through the cross-modal transformer and vice
versa. Therefore, we obtained the outputs from cross-modal

attention transformer as follows: O
[N]
E→A, O

[N]
E→B, O

[N]
A→E, and

O
[N]
B→E. The CMAAmodel is composed of a stack of N = 5 layers

in this study.

2.4. Output Layer and Classification
To avoid any information loss in data compression, we redefined
the simulation regression problem as a classification problem
in this paper. Our CMAA model directly chooses the attended
speaker by selecting the closest audio stream based on the
cosine similarity (Herff et al., 2019) of the corresponding EEG
features. Such operation does not contain any additional learning
parameters, and it is intuitive that the inner product measures
the cosine similarity between audio and EEG features. The cosine
similarity between vectors X and Y is defined as:

similarity(X,Y) =
X · Y

‖X‖ ‖Y‖

=

∑n
i=1 XiYi

√

∑n
i=1 X

2
i

√

∑n
i=1 Y

2
i

(9)

Therefore, the cross-modal similarity between EEG and audio
of speaker A is obtained by computing their cosine distance

as similarity(O
[N]
E→A,O

[N]
A→E). Similarly, we can obtain the cross-

modal similarity between the EEG and audio of speaker B as

similarity(O
[N]
E→B,O

[N]
B→E). Previous research indicates that when

two speech streams are presented simultaneously, neural activity
shows stronger correlation with the temporal envelope of the
attended speech stream than with the unattended speech (Ding
and Simon, 2012; Mesgarani and Chang, 2012; O’Sullivan et al.,
2015). Therefore, the speaker with higher similarity will be
classified as the attended speaker, while the speaker with lower
similarity will be classified as the unattended speaker. Here we
employed multiple fully connected (FC) layers to choose the
attended speaker in a binary decision. Specifically, the first layer
contains T neurons with ReLU activation function. The second
layer contains two (output) neurons with sigmoid activation
function and weighted cross-entropy as the loss function.

2.5. Dataset and Setting
In this paper, experiments were carried out on an EEG and audio
dataset for auditory attention decoding (Fuglsang et al., 2017,
2018), recorded at the Technical University of Denmark (DTU),
and thus referred to as the DTU dataset; 64-channel EEG data
were recorded at a sample rate of 512 Hz using a BioSemi Active
system following the electrode locations of the international
10/20 system. The auditory stimuli in the DTU dataset were
recorded at a sample rate of 48 kHz and comprised a male and a
female speaker simultaneously speaking in simulated rooms with
different degrees of reverberation. Specifically, recordings from
two speakers in an anechoic room are referred to as being under
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FIGURE 3 | Illustration of the cross-modal transformer architecture between

two time-series from modality α and β.

anechoic conditions. The two concurrent speech streams were
presented to subjects at 65 dB using loudspeakers, with distances
of 2.4 m and positioned at ± 60◦ along the azimuth direction.
Recordings from two target speakers corrupted by 6 additional
background speakers (3 male, 3 female) in a reverberant room are
referred to as being under reverberant conditions. According to
the clarity, which is defined as the ratio of the direct 80-ms sound
energy to the remaining energy (Fuglsang et al., 2017), mild
reverberation ranges between C80,63 Hz = 5.7 dB and C80,63 Hz =
7.4 dB, and high reverberation ranges between C80,63 Hz = 6.7 dB
and C80,63 Hz = 9.7 dB.

EEG data from 18 subjects were collected. All participants
were students with self-reported normal hearing and no history
of neurological disorders. Each subject listened to 60 trials in
total, and each trial contained auditory stimuli with a duration
of 50 s. Prior to each trial, the subjects were told to attend to
one speech stream and ignore the other speech stream. After
each trial, subjects were required to answer a multiple-choice
question related to the content of the attended speech stream. The
position of the target streams and the gender of the speaker were
randomized across the trials.

2.6. Data Processing
EEG signals were first processed to filter out 50 Hz line
noise and harmonics (de Cheveigné and Arzounian, 2018). Eye

artifacts were subsequently removed using a joint decorrelation
framework (de Cheveigné and Parra, 2014). Then, the data of
each channel were re-referenced to the average response of the
mastoid electrodes. All the EEG data were bandpass-filtered
between 2 and 32 Hz with a finite impulse response (FIR)
filter and subsequently downsampled to 70 Hz. The frequency
range was chosen based on the previous non-linear AAD studies
(de Taillez et al., 2017; Deckers et al., 2018; Vandecappelle et al.,
2021). Finally, the EEG data channels were normalized to ensure
zero mean and unit variance for each trial.

Previous studies have shown that the power-law compression
model resembles the non-linear transformation process of the
speech streams in the human auditory system that is effective
in the AAD experiment (Biesmans et al., 2016). In brief, a
gammatone filterbank ranging from 150 to 4,000 Hz was used
to filter the auditory stimuli into subbands. Each subband
was further processed with a power-law compression with an
exponent of 0.6. The subband envelopes were then added to
generate a broadband envelope, which was filtered with the same
filter as used for the EEG recordings and then downsampled
to 70 Hz to match the EEG data (Deckers et al., 2018;
Vandecappelle et al., 2021), denoted as H-LP in Figure 1. Finally,
the stimulus amplitudes in each speech stream within each trial
were normalized to have the same RMS intensity.

2.7. Training and Evaluation
The CMAAmodel was evaluated against a reference baseline, and
the performance characteristics of AAD for 5, 2, and 1 s were
reported, with the decoding accuracy defined as the percentage
of correctly classified decision windows. Data of each subject
were randomly divided into training (80%), validation (10%), and
test sets (10%). For each partition, data segments were generated
with a sliding window, which we call a decision window, with an
overlap of 50%.

We trained the CMAAmodel for 200 epochs, and adopted the
cross-entropy loss function as the cost function in the adaptive
moment estimation algorithm (Adam) (Kingma and Ba, 2014).
The learning rate was set to 1×10−4. All hyperparameters given
above were determined by running a grid search over a set
of reasonable values. Performance during this grid search was
measured on the validation set.

To capture the general performance of the CMAA, the
reported accuracy for each subject is the average accuracy of
10 different testing runs of the model, each with a different
(random) initialization.

3. RESULTS

In this study, we systematically investigated the effectiveness
of cross-modal attention-based AAD. We studied the effect
of the decision window size and acoustic conditions through
comprehensive experiments.

Additionally, we performed experiments on the DTU dataset
to benchmark the proposed framework against the state-of-the-
art baseline. The CNN-based AAD model in (Deckers et al.,
2018) was reimplemented on the DTU dataset for comparison
since it showed state-of-the-art results on the AAD tasks. During
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FIGURE 4 | Auditory attention detection accuracy of the CMAA and CNN model across all subjects under anechoic conditions with the 2-s decision window.

Significance was calculated using paired t-test (*p <0.05).

training, the CNN network is optimized to predict the correct
label, i.e., 0 or 1, which represents the attended speaker. We note
that the CNNmodel in our study focused on processing the CSP-
enhanced EEG data. Briefly, the CNN architecture includes a
convolution layer [66–9], an average pooling and two FC layers
(Input: 10, hidden: 10, output: 2). The ReLU activation function
is used after the convolution step, and the sigmoid activation
function is used after each FC layer. The loss function is the
weighted cross-entropy loss. To train the CNN network, the
initial learning rate was 0.1 and was halved successively after 10,
25, and 40 training epochs.

3.1. Decoding Performance
We report the AAD accuracy of the CMAA and CNN models
across all subjects in subject-dependent scenario in Figure 4.
For the 2-s decision window, the CNN model obtains an
average accuracy of 84.1%, with a standard deviation of 9.04.
The proposed CMAA model achieves better AAD performance,
with an average accuracy of 86.4% (standard deviation or
SD: 8.43). The percentages of the subjects who achieved 90%
classification performance are 44.4% (8 of 18) and 27.8% (5 of
18) for the CMAA and CNN model, respectively. Additionally,
the classification accuracy for all participants was greater than
70%, indicating that the proposed CMAA model may be a
promising solution for detecting auditory attention in a cocktail
party scenario.

Statistical analyses were performed using SPSS 24.0 (SPSS Inc.,
Chicago, IL, United States). All outcomes were inspected for
normal distribution using the Kolmogorov-Smirnov test, prior to
selection of appropriate statistical tests. A significance level of P
<0.05 was used for all the analyses. The AAD performance of the
CMAA model significantly outperforms that of the CNN model
(paired t-test: p = 0.03), which validates the contribution of the
cross-modal attention mechanism.

3.2. Effect of the Decision Window Length
To realize real-time AAD, our study concentrates on shorter
decision windows. Specifically, we compare the AAD
performance of the CMAA model for the decision window
sizes of 1, 2 and 5 s, as illustrated in Figure 5. Consistent with
previous findings (Fuglsang et al., 2017; Wong et al., 2018), the
best decoding performance is obtained with the 5-s decision
window (mean: 87.6%, SD: 8.86), followed by the 2-s decision
window (mean: 86.4%, SD: 8.43) and 1-s decision window
(mean: 82.8%, SD: 8.89). This result may be because shorter
decision windows contain less information and therefore result
in poorer performance than the longer decision windows (Miran
et al., 2018; Das et al., 2020).

It is important to note that in the case of operating at
low latency settings, our proposed CMAA method consistently
outperforms the state-of-the-art methods. Specifically, the
CMAA model is capable of boosting the performance of a non-
linear AAD decoder, leading to 1.1, 2.3, and 2.4% performance
gains for the 1-, 2-, and 5-s decision windows, respectively.
These results demonstrate the promising potential of the
proposed CMAA method for the practical implementation of
real-time AAD.

3.3. Effect of Acoustic Conditions
To understand how the proposed CMAA model behaves under
different acoustic conditions, we also trained and tested the
CMAA under three listening conditions, namely, anechoic, mild
reverberation, and high reverberation settings. These results
are reported in Figure 6. For the 2-s decision window, the
CMAA model obtained the best decoding performance under
anechoic conditions (mean: 86.4%, SD: 8.43), followed by high
reverberation conditions (mean: 85.9%, SD: 8.39) and mild
reverberation conditions (mean: 80.1%, SD: 10.01), or an average
of 84.1%. The paired t-test provided evidence of a small,
statistically significant difference between the anechoic and mild
reverberation conditions (p = 0.04). Moreover, we found that
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FIGURE 5 | Auditory attention detection performance of the CMAA model for

three different decision windows. CNN decoding model is shown as baseline.

Significance was calculated using paired t-test (*p <0.05, **p <0.01).

there is no statistical difference between the AAD accuracy of
the anechoic and high reverberation conditions (paired t-test, p
= 0.41). One explanation could be that attention to one specific
speaker becomes harder under high reverberation condition, and
consequently demands more effort from the subject (Das et al.,
2018). Findings of previous fMRI (Zekveld et al., 2006) and
ECoG (Golumbic et al., 2013) research have also shown that
brain regions involved in top-down processing supplementing
speech comprehension to be more active when the speech was
less intelligible. With the improvement in signal-to-noise ratio of
the neural responses, it is possible to realize relatively accurate
attention decoding under challenging auditory conditions, such
as high reverberation condition. It also consistent with the
findings by Fuglsang et al. (2017) that percentage of correctly
answered comprehension questions related to the content of the
attended stories drops in mild reverberation in comparison with
anechoic and high reverberation conditions. Considering that the
answers served as an indicator of whether the subjects attended
the target talker and whether the speech was comprehensible
in the different listening conditions, it makes sense that
the AAD performance of CMAA decreases slightly in mild
reverberation condition.

In general, the AAD performance of the proposed CMAA
model is still better than 80% in different acoustic environments.
The experimental results suggest that the CMAA can achieve
robust detection accuracy of auditory attention decoding even in
the presence of real-world reverberation.

4. DISCUSSION

We present a CMAA model that dynamically adjusts the
interaction between audio and EEG features in order to improve
the low-latency AAD performance. To the best of our knowledge,
this is the first study to apply the cross-modal attention
mechanism, which can adapt streams from one modality to

another (e.g., EEG → audio), in the EEG-based AAD tasks.
Using this mechanism, we hope to build the correlation between
auditory stimuli and EEG responses, thus detecting the attention
activities manifested in brain signals. The proposed CMAA
model has realized high AAD accuracy even with 1-s decision
window. Additionally, the experimental results demonstrate that
the proposed CMAA can detect the attended speaker from a
mixture of two speakers and is stable against varying amounts
of reverberation. Generally, the low-latency and noise-robust
CMAA model paves a way for developing new neurofeedback
training paradigms that require EEG-based attention decoders
(Kim et al., 2021).

To further validate our method and understand the
functioning of the cross-modal attention mechanism, we next
compare the proposed CMAA model with other competing
models in the literature.

4.1. Comparative Study
We start by comparing CMAA model with other linear models
reported in the literature in a subject-dependent test. Wong
et al. (2018) reported the AAD performance on the same DTU
dataset with a linear model. Table 1 shows the average decoding
accuracies across all subjects for individual methods. The AAD
accuracies of the linear model with low latency are fairly low,
while our proposed CMAAmodel can obtain an average accuracy
over 80%, even for the 1-s decision window. These results
demonstrate that our method significantly outperforms the other
reported linear mapping methods on the same dataset with a
large margin (p <0.01). The better AAD performance of the
CMAA model also validates that the correlations of the audio
and EEG signals can be captured by the proposed cross-modal
attention mechanism.

It is noted that non-linear models show much better
performance than linear models, particularly in low-latency
settings (de Taillez et al., 2017; Deckers et al., 2018; Ciccarelli
et al., 2019; Vandecappelle et al., 2021). Since the other reported
non-linear models are reported on different datasets, a direct
comparison with CMAA is not straightforward. We therefore
reimplement the CNN-based AAD model in (Deckers et al.,
2018) to process the CSP-enhanced EEG data of the DTU
dataset. As shown in Table 1, our proposed CMAA method
significantly outperforms that reported in (Deckers et al., 2018)
with consistent improvements in AAD accuracy with different
decision windows (p= 0.01).

To summarize, the performance of the proposed CMAA
compares favorably with that of the state-of-the-art AAD
models on the public DTU dataset in low latency settings.
The results support the suitability of the proposed CMAA
method for developing new neurofeedback (or perceptual)
training paradigms.

4.2. Contributions of Cross-Modal
Attention to Auditory Attention Detection
Our proposed CMAA model yields competitive performance
compared with the existing AAD models. To obtain better
insight into the underlying reasoning processes that CMAA
learns to perform, we study the visualizations of the attention
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FIGURE 6 | Auditory attention detection accuracy of the CMAA model across all subjects under three different acoustic conditions with the 2-s decision window.

Significance was calculated using paired t-test (*p <0.05, n.s., no significance).

distributions produced by the cross-modal attention during its
iterative computation.

We take E2A attention as an example in which the weights
of the EEG signals were adaptively adjusted based on the
audio attention vector. The cross-modal attention weights
show the most relevant EEG inputs for each audio stream,
as illustrated in Figure 7. The weights of multi-channel of
EEG signals were aggregated in each matrix. A whiter cell
indicates higher attention, while a darker cell indicates lower
attention. In the first row, it is observed that EEG inputs
have same weights across time before they were processed
by cross-modal attention module. The second row represents
the attention weights of EEG that are adjusted according to
the audio of speaker A, while the third row represents the
attention weights of EEG that are adjusted according to the
audio of speaker B. These results demonstrated that the cross-
modal attention model can pay attention to more relevant
EEG inputs for each audio. Brain activities related to attention
also show similar mechanisms to that of humans who confine
their attention to the behaviorally relevant information and
inhibit the processing of irrelevant information (Zanto and
Gazzaley, 2009; Foxe and Snyder, 2011; Vanthornhout et al.,
2019). However, we are not aware of other studies on the
AAD tasks, using both linear and non-linear models (Mirkovic
et al., 2015; O’Sullivan et al., 2015; Van Eyndhoven et al., 2016;
Deckers et al., 2018; Ciccarelli et al., 2019; Bednar and Lalor,
2020; Cai et al., 2020; Wang et al., 2020; Vandecappelle et al.,
2021), which can emphasize more important and discriminative
components of the EEG signal for the AAD based on the audio
attention vector.

Additionally, examining the attention distributions not only
help to provide a degree of interpretability for the proposed
CMAA model but also present evidence for the classifications.
As shown in Figure 7, the attended speaker is speaker A in
S1–S3, while the attended speaker is speaker B in S4–S6.
For S1–S3, our proposed CMAA model classified S1 and S3
correctly, while S2 was wrongly classified as speaker B. The

TABLE 1 | Auditory attention detection accuracy (%) in a comparative study of

different models on the same DTU dataset with different window lengths under

anechoic conditions.

Model
Decision window

1 s 2 s 5 s

Linear (Wong et al., 2018) 55 61 70

CNN∗ 81.7 84.1 85.2

CMAA 82.8 86.4 87.6

*Here, we reimplement the CNN model in Deckers et al. (2018) with our experiment setup

for comparison.

visualizations show that the second row of S1 and S3 are
much lighter than the third row, indicating that the attention
weights of the EEG signals corresponding to the audio of
speaker A are larger than the attention weights corresponding
to the audio of speaker B. In comparison with S1 and S3, the
attention distributions of the second and third row of S2 are
similar, explaining the incorrect classification result. For S4–S6,
which were classified as speaker B correctly by the proposed
CMAA model, the second row is much darker than the third
row, indicating that the attention weights of the EEG signals
corresponding to the audio of speaker A are smaller than the
attention weights corresponding to the audio of speaker B. These
results indicated that the cross-modal attention has learned to
capture the relevant parts of the auditory stimulus even with
competing audio.

Overall, it is encouraging to find that the cross-modal
attention mechanism can effectively adapt the EEG streams to
audio streams by repeated reinforcing of the EEG features with
those from the audio stimuli, or vice versa, thus improving the
AAD performance. Our newly designed CMAA algorithm can
dynamically modulate the interactions of EEG and audio in a
cocktail party scenario. Compared with classic linear mapping,
the CMAA model, which mimics human auditory attention
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FIGURE 7 | Visualization of the cross-modal attention module from EEG to audio. Six samples were randomly chosen and defined as S1–S6. For S1–S3, the

attended speaker is speaker A, while the attended speaker is speaker B in S4–S6. Each sample contains three attention matrices. The first row depicts attention

weights before cross-modal attention model. The second and third row represents the attention weights of EEG that are adjusted according to the audio of speaker A

and speaker B, respectively. In each matrix, the weights of all EEG channels are aggregated to presents the attention weights of EEG across time. The color of the

cells describes the weight with lighter color corresponding to larger weight.

(Mesgarani and Chang, 2012; Forte et al., 2017; Kaya and Elhilali,
2017; Obleser and Kayser, 2019), is a more advanced “decoding”
strategy to realize robust real-time AAD.

4.3. Future Work
Throughout the paper, we assume that the clean audio of the
speakers in a mixture are available; however, the access to clean
sources is not realistic in real-world applications. The auditory
stimuli must be extracted from acoustic mixtures as recorded by
the acoustic applications such as hearing aids. Recently, some
algorithms (Van Eyndhoven et al., 2016; Das et al., 2020) have
been proposed to extract and denoise the auditory streams in
a two-speaker acoustic scenario, relying on microphone array
recordings from a binaural hearing aid. These sophisticated noise
suppression systems can be integrated in our proposed model
as a preprocessing module of auditory stimulus. We will further
investigate the feasibility and effectiveness of this extension
framework in future research.

5. CONCLUSION

AAD has attracted increasing interest for its potential application
to hearing-aid design in the multiple competing speakers
scenario. In this paper, we proposed a novel CMAA approach
to detect the attended speakers in a cocktail party scenario.
The CMAA model can dynamically adjust the interaction
between the EEG responses and auditory stimuli and transform
both the auditory stimulus and the EEG response. The
experimental results on a benchmark dataset indicate that
our proposed CMAA method significantly outperformed the

previous subject-independent as well as conventional subject-
dependent approaches. Moreover, data visualization and the
aforementioned results suggest that the correlations between
audio and EEG can be captured by the cross-modal attention
mechanism in the CMAA model. In conclusion, our newly
designed CMAA approach paves a way for real-time and robust
AAD even in complex acoustic environments.
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