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Abstract: Coir fiber is a by-product waste generated in large scale. Considering that most of these
wastes do not have a proper disposal, several applications to coir fibers in engineering have been
investigated in order to provide a suitable use, since coir fibers have interesting properties, namely
high tensile strength, high elongation at break, low modulus of elasticity, and high abrasion resistance.
Currently, coir fiber is widely used in concrete, roofing, boards and panels. Nonetheless, only a few
studies are focused on the incorporation of coir fibers in rendering mortars. This work investigates
the feasibility to incorporate coir fibers in rendering mortars with two different binders. A cement
CEM II/B-L 32.5 N was used at 1:4 volumetric cement to aggregate ratio. Cement and air-lime
CL80-S were used at a volumetric ratio of 1:1:6, with coir fibers were produced with 1.5 cm and
3.0 cm long fibers and added at 10% and 20% by total mortar volume. Physical and mechanical
properties of the coir fiber-reinforced mortars were discussed. The addition of coir fibers reduced the
workability of the mortars, requiring more water that affected the hardened properties of the mortars.
The modulus of elasticity and the compressive strength of the mortars with coir fibers decreased
with increase in fiber volume fraction and length. Coir fiber’s incorporation improved the flexural
strength and the fracture toughness of the mortars. The results emphasize that the cement-air-lime
based mortars presented a better post-peak behavior than that of the cementitious mortars. These
results indicate that the use of coir fibers in rendering mortars presents a potential technical and
sustainable feasibility for reinforcement of cement and cement-air-lime mortars.

Keywords: vegetable fiber; fiber-reinforced mortar; cement and cement-lime mortars; sustainability;
render

1. Introduction

Agricultural waste has been considered an environmental issue. Coir fiber is a by-
product waste of the production of other coconut products [1,2], and the world production
is approximately 250,000 tonnes a year [3]. In order to provide a proper disposal, many
researchers seek different approaches to use the coir waste fiber. Concerning engineering
applications, coir has been incorporated in concrete, roofing, boards, panels, and others
building materials [4–10]. Coir fibers are extracted from between the outer husk of coconut
and the internal shell [11], and their physical and mechanical properties are seen as great
potential to improve the ductility, flexural toughness, and energy absorption capacity of the
composites. The high toughness and flexibility of these fibers offer a better post-cracking
behavior of the reinforced composites.

Regarding the incorporation of coir fibers in mortars, a few studies were carried out
with the purpose of enhance their cracking performance [1,12–17]. In previous studies, the
use of coir fiber was investigated in mortars with cement as the only binder (further referred
as cement mortars) and in mortars using more than one binder. In general, the authors
have reported that the addition of coir fibers decreased the workability of the mortars; thus,
it was necessary to add more mixing water when compared to that of the mortar without
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fibers. This effect is attributed to the high water absorption and the retentive nature of the
coir fibers [6]. A reduction in the mortar’s density was found by increasing the coir fibers
content and water/binder ratio.

Concerning the compressive strengths, there are contradictory outcomes presented
in previous works. For cement mortars, Hwang et al. [1] found that the incorporation of
coir fibers decreased their compressive strength when increasing the fiber content. The
authors attributed this reduction to the fibers clustering inside the matrix; an increase of the
volume of voids inside the composite was observed as a high volume fraction of coir fibers
was added, which indicates a more porous structure. On the other hand, other researchers
found an increase in compressive strength with the incorporation of coir fibers in cement
mortars [12,15]. Al-Zubaidi [15] attributed this effect to the distribution of stresses by the
fibers. In what concerns the addition of coir fiber in cement-lime mortars, Sathiparan
et al. [14] found that the compressive strength of the mortars increased with the volume
fraction of coir fibers up to 0.5%, whereas a higher content of coir fiber decreased the
compressive strength of the mortar when compared to the reference mortar.

With regard to flexural properties, it is well known that the addition of fibers in-
creases the flexural strength, fracture toughness, and ductility of the mortars. Hwang
et al. [1] reported a significant improvement in flexural behavior of the coir fiber-reinforced
cement-based mortars. The flexural strength increased by increasing the fiber content. The
explanation given by the authors was that the fibers distribute the stresses before rupture.
Additionally, the coir fibers surface seems rough, which provides a better interfacial adhe-
sion between the fiber and the cementitious matrix. Andiç-Çakir et al. [12] also found an
increase in flexural strength with increasing of the coir fiber amount in cement mortars.

For cement-lime mortars, the incorporation of coir fibers in the studies of Sathiparan
et al. [14] presented improvements in flexural strength up to 0.5% of addition. The authors
reported that the incorporation of 0.75% coir fiber decreased by 16.5% the flexural strength
when compared to the reference mortar.

Previous studies have found an enhancement in mortar’s toughness as increasing the
addition of coir fibers [1,12,14]. Sathiparan et al. [14] reported that the flexural toughness
indices of the cement-lime mortars were significantly higher than that of the control mortar,
which reveals a higher energy absorption during post-peak. The authors calculated the
toughness indices based on the total area under the load-deflection curves from the flexural
strength test. Therefore, the authors verified that the flexural ductility of the mortars with
coir fibers have increased by increasing the coir fiber content, i.e., the fiber-reinforced
mortars showed a more ductile failure mode when compared to that of the mortars without
fibers. Regarding the incorporation of coir fibers in cement-based mortars, they also
presented improvements in terms of residual strength, ductility and toughness. Hwang
et al. [1] found that the increase of coir fibers content presented a significant increase in
mortars’ toughness. This improvement was associated to the bridging mechanism of the
fibers, which transfers the stress in the matrix across the opening cracks and withstands
a residual load after achieving the maximum load. The results found by Andiç-Çakir
et al. [12] also presented a remarkable increase in toughness values, which can be attributed
to the bridge phenomena and interface between fibers and the matrix.

Cracking behavior of the mortars with vegetable fibers was also investigated in
previous works [1,12,14,16]. It was clear that the effectiveness of the fibers in led to
reducing the mortars’ shrinkage. Toledo Filho et al. [16] evaluated the free, restrained,
and drying shrinkage of coir fiber-reinforced cement mortars. The authors reported that
the addition of vegetable fibers delayed the first crack opening and crack propagation in
the mortars. This effect is mainly due to the bridging mechanism of the fibers across the
cracks. Hwang et al. [1] and Sathiparan et al. [14] also found that the incorporation of coir
fibers contributes to control the cracking opening and its propagation, due to the stresses
distribution by the fibers. As a result, conversely to the mortars without fibers that present
a brittle failure, the modified mortars present a ductile behavior and a gradual failure.
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Notwithstanding these previous research studies, the study of coir fibers in rendering
mortars with two different binders has not been found in the literature. Therefore, the
aim of this work was to investigate the feasibility of the renders with the addition of coir
fibers, in order to minimize cracking by improving the mortars’ ductility. Cement and
cement-lime mortars with compositions adequate for use as renders were produced and
modified by adding 10% and 20% of coir fibers by the total mortar volume. Two common
volumetric ratios were used to produce the mortars for render’s application following the
European Standard for specifications for rendering mortars (EN 998-1 [18]). Cement to
aggregate ratio at 1:4 and cement: air-lime: sand at 1:1:6 volumetric ratio. Two fibers’ length
were chosen based on previous research studies that used coconut fiber as reinforcement
in mortars. The coir fiber-reinforced mortars’ properties were investigated at fresh and
hardened state, and physical and mechanical behavior was evaluated through several tests.

2. Experimental Program
2.1. Materials

The objective of the experimental program was to evaluate the physical and me-
chanical properties of cement and cement-air-lime-based mortars with coir fibers for
non-structural uses, namely renders. The materials used in this study are the following:

• Cement (Secil, Portugal): CEM II/B-L 32.5 N, according to EN 197-1 [19];
• Calcium hydrated lime powder-air lime (Calcidrata S.A., Portugal): Class CL80-S,

according to EN 459-1 [20];
• Sand (Areipor—Areias Portuguesas S.A., Portugal): Sieved river sand to obtain the

size range previously defined;
• Coir fibers (waste from an insulation company—Amorim Cork Insulation, Portugal):

With lengths of 1.5 cm and 3.0 cm.

The results of the tensile properties of the coir fibers used in this current work are:
tensile strength of 237.26 ± 79.55 MPa, modulus of elasticity of 2.25 ± 1.75 GPa and
elongation at break of 11.25%. The coir fiber’s water absorption is 115%. Coir fibers consist
of cellulose as crystalline microfibrils held together by amorphous lignin and hemicellulose
fibrils [21]. In general, plant-based fibers present a similar morphology. The cellulose fibrils
packed inside these bundles bonded with lignin forming an unidirectional filament [22].

The grading curve of the sand used in this work is presented in Figure 1. The sand
was previously washed and calibrated by the producer. From the technical sheet of the
producer, the sand is mainly composed by quartz (>98% silica). The sand was sieved to
achieve the previously size distribution chosen. The opening of the sieves were 0.063, 0.15,
0.25, 0.50, 1.00, 1.70, and 2.00 mm.
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The fibers’ length was obtained by manually cutting of the waste, which is presented
in Figure 2. These fibers were previously washed with neutral detergent, in order to remove
any impurities. Before the fibers incorporation in the mix, they were distributed inside



Materials 2021, 14, 823 4 of 15

a properly closed receptacle by blowing compressed air in order to achieve an adequate
dispersion and disentangle the fibers.
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A microscopic observation was performed using an Olympus SZH-10 optical micro-
scope (Tokyo, Japan) in order to evaluate the fibers’ surface and estimate their diameter.
Figure 3 presents a micrograph of coir fiber, and the average of coir fibers diameter is
179 ± 3 µm. Therefore, the aspect ratios (length/diameter) were 83.80 and 167.60 for 1.5
and 3.0 cm, respectively.

Materials 2021, 14, x FOR PEER REVIEW 4 of 15 
 

The fibers’ length was obtained by manually cutting of the waste, which is presented 
in Figure 2. These fibers were previously washed with neutral detergent, in order to 
remove any impurities. Before the fibers incorporation in the mix, they were distributed 
inside a properly closed receptacle by blowing compressed air in order to achieve an 
adequate dispersion and disentangle the fibers. 

 
Figure 2. Coir fibers used in this work. 

A microscopic observation was performed using an Olympus SZH-10 optical micro-
scope (Tokyo, Japan) in order to evaluate the fibers’ surface and estimate their diameter. 
Figure 3 presents a micrograph of coir fiber, and the average of coir fibers diameter is 179 
± 3 μm. Therefore, the aspect ratios (length/diameter) were 83.80 and 167.60 for 1.5 and 
3.0 cm, respectively. 

 
Figure 3. Optical microscope image of a coir fiber. 

The bulk density of the constituents of the mortars produced is presented in Table 1. 

Table 1. Bulk density of the constituents. 

Component Apparent Bulk Density (kg/m3) 
Cement 975.5 
Air-lime 565.7 

Sand 1230.8 
Coir 1.5 cm 5.4 
Coir 3.0 cm 2.6 

2.2. Mix Design 
The mortars were produced at two volumetric ratios: 1:4 (cement: aggregates) and 

1:1:6 (cement: air-lime: aggregates). The water to binder ratio varied according to the 

Figure 3. Optical microscope image of a coir fiber.

The bulk density of the constituents of the mortars produced is presented in Table 1.

Table 1. Bulk density of the constituents.

Component Apparent Bulk Density (kg/m3)

Cement 975.5
Air-lime 565.7

Sand 1230.8
Coir 1.5 cm 5.4
Coir 3.0 cm 2.6

2.2. Mix Design

The mortars were produced at two volumetric ratios: 1:4 (cement: aggregates) and
1:1:6 (cement: air-lime: aggregates). The water to binder ratio varied according to the
amount of mixing water required in each mortar, since the consistency by flow table
value was fixed at 140 ± 2 mm, which provides adequate workability for renderings. The
composition of the mortars produced in this work is presented in Table 2. The incorporation
of the fibers waste was analyzed at two ratios: 10% and 20% by total volume of the mortar;
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since the coir fiber bulk density is low, the contents expressed in volume represent a
considerable weight of incorporation, as seen in Table 2. Two different lengths were used:
1.5 cm and 3.0 cm.

Table 2. Composition of the mortars mixes by mass.

Mortar Water (mL) Cement (g) Air-Lime (g) Sand (g) Coir Fiber (g) Incorporation

REF 1:4 445 487.8 - 2461.6 0 0%
C 1.5-10c 415 439.1 - 2215.4 1.4 10% of 1.5 cm
C 3.0-10c 430 439.1 - 2215.4 0.7 10% of 3.0 cm
C 1.5-20c 370 390.2 - 1969.3 2.7 20% of 1.5 cm
C 3.0-20c 400 390.2 - 1969.3 1.3 20% of 3.0 cm
REF 1:1:6 465 304.8 176.8 2307.8 0 0%
C 1.5-10cl 425 274.4 159.1 2077.0 1.4 10% of 1.5 cm
C 3.0-10cl 420 274.4 159.1 2077.0 0.7 10% of 3.0 cm
C 1.5-20cl 396 243.9 141.4 1846.2 2.7 20% of 1.5 cm
C 3.0-20cl 396 243.9 141.4 1846.2 1.3 20% of 3.0 cm

2.3. Methods

The standards and number of specimens used for each test performed are listed below.
The properties determined in the fresh and hardened mortars tests were:

• Consistency of fresh mortar (by flow table)—EN 1015-3 [23]. Three samples per mortar.
• Bulk density of fresh mortar—EN 1015-6 [24]. Three samples per mortar.
• Dry bulk density of hardened mortar—EN 1015-10 [25], at 28, 90, 180, and 365 days.

Three prisms per mortar.
• Flexural strength of hardened mortar—EN 1015-11 [26], at 28, 90, 180, and 365 days.

Three prisms per mortar.
• Compressive strength of hardened mortar—EN 1015-11 [26], at 28, 90, 180, and

365 days. Six prisms per mortar.
• Dynamic modulus of elasticity by resonance frequency of hardened mortar—EN

14146 [27], at 28, 90, 180, and 365 days. Three prisms per mortar.
• Ultrasound pulse velocity of hardened mortar—EN 12504-4 [28]. To measure this

property, two methods were applied: direct and indirect. In the direct method,
the electrodes are on opposite sides of the prisms and, in the indirect method, the
electrodes are on the same surface of the prisms. The direct method measures the
wave’s propagation time between extremities and the indirect method makes the
measurements in small increasing distances on the same surface. This test evaluates
the mortar’s compactness; a lower wave propagation velocity indicates a less compact
material, since it means a greater volume of intercepted voids. Three prisms per
mortar at 28 days.

• Open porosity—EN 1936 [29]. Three samples per mortar, resulting from the compres-
sive strength test at 28 and 365 days.

Prismatic samples with dimensions of 160 × 40 × 40 mm3 were used for the hardened
mortars tests. The mortars were cured as specified by EN 1015-11 [26], which establishes
that the specimens should be kept inside the molds for two days at a temperature of
20 ± 2 ◦C and a relative humidity of 95 ± 5%. Then, the prisms are demolded and the
specimens kept in the same conditions for 5 days inside of plastic bags. After seven days of
the mortars production, the specimens were kept in a room with temperature of 20 ± 2 ◦C
and 65 ± 5% of relative humidity, until the day of the test.

3. Results and Discussion
3.1. Workability

The fresh behavior of the mortars was evaluated through the consistency by flow table
test and bulk density. The workability was previously chosen by a proper consistency of
the mortar to be applied on vertical surfaces. In order to ensure an adequate workability,
an application on a brick was carried out. The consistency of the mortars was previously
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fixed at 140 ± 5 mm. Therefore, the amount of mixing water needed by each mortar was
different. The water to binder ratios are presented in Table 3. It was noticed that the
incorporation of coir fibers increased the water content required in order to achieve the
intended workability. Nonetheless, it can be seen in Figure 3 that the fibers maintain the
mortar agglutinated. The water/binder ratio increased by increasing the fibers length and
volume fraction. C 3.0-20c presented the highest increase of about 12% compared to that
of the REF 1:4. It is also stressed that longer fibers presented worse workability than the
shorter ones. The finding of coir fibers addition in cement-based mortars reducing the
workability was also presented by Hwang et al. [1] and Andiç-Çakir et al. [12]. The authors
reported that as increasing the fibers volume fraction, the mortars workability decreases
due to the fibers clustering.

Table 3. Fresh mortars properties.

Mortar Water/Binder Ratio Bulk Density (kg/m3)

REF 1:4 0.91 2005 ± 4
C 1.5-10c 0.94 1959 ± 16
C 3.0-10c 0.97 1971 ± 5
C 1.5-20c 0.94 1940 ± 30
C 3.0-20c 1.02 1989 ± 15
REF 1:1:6 0.98 1999 ± 8
C 1.5-10cl 0.99 1989 ± 18
C 3.0-10cl 0.98 2000 ± 7
C 1.5-20cl 1.03 1986 ± 8
C 3.0-20cl 1.03 1993 ± 8

Mortars with 10% of coir fibers using a mix of cement and air-lime as binders presented
similar water/binder ratio to the mortar without fibers, i.e., the addition of fibers did not
affect the mortars workability. On the other hand, the addition of 20% of coir fibers showed
an increase of the water required when compared to that of the REF 1:1:6. The results found
in this work are in agreement with the one found in the technical literature. Sathiparan
et al. [14] noticed that, as increasing the coir fibers content in cement-lime mortars, the
amount of water needed has increased.

The bulk density of the mortars reduced with the addition of coir fibers, regardless
of the type of binder used. However, this reduction is more significant for the modified
cement-based mortars. This could be due to the lower bulk density of the fibers. Figure 4
shows the bulk density test’s preparation.
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In short, the incorporation of fibers reduced the mortars’ workability. Therefore, a
higher mixing water content was used in order to reach an intended flow table value. The
mortars with fibers showed an increase in water to binder ratio when compared to the
reference mortar, which can affect the hardened properties of the mortars. It was noticed
that the workability decreased as the fibers’ length and volume fraction increased.
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3.2. Dry Bulk Density

Figure 5 presents the dry bulk density results of the mortars at 28, 90, 180, and 365 days.
A similar trend of the fresh bulk density was observed. The addition of coir fibers reduced
the bulk density of the mortars. It was found for C 3.0-10c a decrease of 4.5% in bulk
density when compared to the reference mortar at 365 days. Regarding the cement-lime
mortars, this reduction was not significant. Hwang et al. [1] also found a reduction in bulk
density of the modified mortars, this effect was attributed to the low density of the natural
fiber and the higher porosity of the modified mortars.
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3.3. Dynamic Modulus of Elasticity

The dynamic modulus of elasticity was determined by resonance frequency over time,
from 28 days until 365 days, and the results are presented Figure 6. Rendering mortars
should be able to deform and accommodate the stresses without cracking. The modulus of
elasticity measures the mortar’s ability to deform under stress. A low modulus of elasticity
indicates that the mortars present a certain deformability, which may prevent cracking.
Regardless of the binder used, it was noticed that the incorporation of fibers reduced
the modulus of elasticity, which means that the modified mortars may behave in a more
deformable way than the control mortar.
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At 365 days, cement-based mortar with 10% of 3.0 cm coir fibers presented the highest
decrease of approximately 21% when compared to the reference mortar. In what concerns
the cement-lime mortars, the fibers’ length and volume fraction seemed not to affect this
reduction, since all the modified mortars presented similar values among them. The lowest
modulus of elasticity was attributed to the C 1.5-10cl sample, which reduced approximately
19.5% compared to that of the REF 1:1:6, at 365 days.
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A reduction in the modulus of elasticity with the addition of natural fibers in mortars
was also found in the literature. For cement-based mortars, Maia et al. [30] reported a
decrease in modulus of elasticity when natural sheep’s wool fibers were added. Sathiparan
et al. [14] also noticed a reduction in modulus of elasticity when coir fibers were incorpo-
rated in cement-lime mortars. Therefore, the authors stated that the coir fiber-reinforced
mortars presented a more ductile behavior than that of the control mortar.

3.4. Ultra-Sound Pulse Velocity

The ultra-sound pulse velocity of the mortars is presented in Figure 7, at 28 days. Two
methods were used: direct and indirect. The ultra-sound pulse velocity results, in both
methods, showed that the incorporation of fibers reduced the pulse velocity through the
mortar. This result indicates that the modified mortars present a higher volume of pores
and suggests a decrease of the mortars modulus of elasticity with the addition of the coir
fibers, which is consistent with the results of the resonance frequency test.
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Figure 7. Ultra-sound pulse velocity of the mortars.

A reduction in ultra-sound pulse velocity was also observed by Maia et al. [30]. The
authors incorporated sheep’s wool fibers in cement and cement-lime mortars, and, regard-
less of the binder used, the natural fiber-reinforced mortars presented less compactness
when compared to the reference mortar. These results corroborate the reduction in modulus
of elasticity, since the modified mortars may deform more than the mortars without fibers.

3.5. Compressive and Flexural Strengths

Compressive and flexural strengths tests were performed at 28, 90, 180, and 365 days,
and the results are presented in Figures 8 and 9.
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Rendering mortars should not exhibit a high compressive strength, which indicates
high rigidity, since a brittle behavior may be more susceptible to cracking. Therefore,
these results obtained in this work may be a positive factor for a render. On the other
hand, the flexural strength is most requested and should withstand the building move-
ments and thermal variations stresses without cracking. Flexural strength is strongly
correlated to other characteristics, such as susceptibility to cracking and adhesive strength
of rendering mortars.

For cement-based mortars, the incorporation of coir fibers slightly decreased the
compressive strength, in general, with the exception of C 1.5-20c, which presented an
increase in compressive strength when compared to the reference mortar until up to
180 days. C 1.5-10c presented the lowest compressive strength, which was a reduction of
about 32% when compared to the reference mortar at 365 days. In terms of flexural strength,
it can be noticed an increase in flexural strength with the coir addition until 90 days. After
that, a reduction is evidenced for all the samples. C 1.5-10c had the major reduction of
approximately 30% when compared to the REF 1:4, at 365 days. The volume fraction had
more influence in the mechanical strengths than the length of the fibers, since C 1.5-20c
and C 3.0-20c presented similar values at 28 and 365 days.

The mortars with cement and air-lime as a binary binder followed the same trend: the
addition of coir fibers reduced the mortars’ compressive strength in the first ages. However,
at 365 days, the C 3.0-10cl and C 1.5-20cl mortars both obtained an increase of 6% compared
to the reference mortar. This effect could be due to the improvement in interfacial transition
zone between the matrix and the fibers over time, which provides a better distribution of
the stresses when submitted to loading.

The major reduction was presented by C 1.5-10cl, which showed a decrease of 12%
in relation with the REF 1:1:6, at 365 days. Concerning the flexural strength, the incorpo-
ration of coir fibers increased when compared with a reference mortar, at 28 days. This
improvement lasted up to 180 days. Modified mortars presented a reduction in flexural
strength at 365 days, as increasing the fiber content and fiber length. C 3.0-20cl presented
major reduction of 19% compared to the REF 1:1:6. It can be seen that the reduction over
time is more relevant for cement-based mortars. This could be due to a higher water to
binder ratio in cement-mortars with coir fibers and the fiber’s degradation over time. The
use of air-lime in the binder improved the fibers performance in terms of flexural strength,
since the cement-lime mortar with coir fibers required less water to achieve the intended
workability than the reference mortar; thus, the cement-lime mortars presented higher
improvements in mechanical strengths than the mortar without fibers.

Figure 10 presents the coir fiber-reinforced cement-based mortars specimens after
compressive strength and flexural strength tests.
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In short, the compressive strength of the coir fiber-reinforced mortars showed a
decrease. C 1.5-10c and C 1.5-10cl had the lowest compressive strength, a reduction of 32%
and 12% compared to the respective reference mortars. Concerning flexural strength, the
use of coir fibers enhanced the flexural strength up to 90 days of the cement-based mortars.
The flexural strength of the cement-lime mortars showed an improvement until 180 days. It
was noticed that, over time, the flexural strength of the modified mortars presented similar
values to those of the mortars without fibers. It is stressed that the coir fiber may degrade
inside the matrices of cement or cement-lime mortar due to their composition. Therefore, a
reduction in the improvements provided by the fibers over time was noticed. A treatment
for coir fibers could enhance their performance.

The findings of previous studies present different results based on the fibers lengths
and volume fraction. The results presented in the literature referred to 28 days tests.
Hwang et al. [1] followed the trend found in the results obtained in this paper, i.e., the
authors reported a reduction in compressive strength of cement-based mortars as the coir
fibers content increased. Hwang et al. [1] and Andiç-Çakir et al. [12] found, similarly to
this research, that the coir fibers incorporation increased the flexural strength of cement-
based mortars.

Regarding the cement-lime mortars, Rupasinghe et al. [31] and Sathiparan et al. [14]
found that the incorporation of coir fibers increased the compressive strength up to 0.5%
of incorporation. Mortars with higher volume fraction reduced the compressive strength.
The flexural strength of mortars with 0.5% of coir fraction was 6% higher than the control
mortar, whilst the addition of 0.75% reduced the flexural strength around 16.5%. The
authors attributed this reduction to the fiber’s clustering.

3.6. Cracking Behaviour

The cracking behavior of the mortars was evaluated through some parameters pro-
posed by the Center Scientifique et Technique du Bâtiment (CSTB) [32] and by their fracture
toughness, which are presented in Table 4. Rendering mortars should dissipate the ten-
sile stresses without cracking, i.e., the mortar’s capacity to absorb and accommodate the
tensions correlates to its cracking resistance. In order to analyze the cracking susceptibil-
ity of the mortars, these parameters may indicate the mortars’ ability to resist cracking.
The former criterion is based on the ratio between the modulus of elasticity and flexural
strength (E/σf). It is well known that a low modulus of elasticity contributes to a better
deformation capacity, and a high flexural strength indicates a better mechanical resistance
to support the load applied. Consequently, when the E/σf ratio is high, the tendency of
the mortar to crack is greater. The other factor is related to another ratio (σf/σc), which is
between the flexural strength and compressive strength, which suggests the ductility of the
material, i.e., when the σf/σc ratio is closer to one, the mortar tends to be more ductile. The
deformability of the mortar before failure is measured through the ductility of the material.
The fracture toughness indicates the mortars ability to absorb energy during failure, and
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it can be measured through the area under the load-deflection curves from the results of
flexural strength at 28 days [33]. These load-deflection curves are presented in Figure 11.

Table 4. Parameters related to cracking susceptibility of the mortars tested.

Mortar
Dynamic

Modulus of
Elasticity (MPa)

Flexural
Strength

(MPa)

Compressive
Strength

(MPa)
E/σf σf/σc

Fracture
Toughness

(N·mm)

REF 1:4 16,210 2.56 9.66 6332 0.27 195
C 1.5-10c 13,560 2.27 7.64 5974 0.30 225
C 3.0-10c 13,740 2.31 7.22 5948 0.32 192
C 1.5-20c 15,010 3.06 9.78 4905 0.31 393
C 3.0-20c 14,360 2.52 8.09 5698 0.31 217
REF 1:1:6 9820 1.40 5.27 7014 0.27 135
C 1.5-10cl 7020 1.65 4.35 4255 0.38 155
C 3.0-10cl 7860 1.47 4.44 5347 0.33 149
C 1.5-20cl 8240 1.67 4.24 4934 0.39 212
C 3.0-20cl 8290 1.47 4.30 5639 0.34 223
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From the results, it was noticed that the addition of coir fibers in mortars, considering
these two ratios parameters, has shown a more ductile behavior and less susceptibility
to cracking, regardless of the type of binder used. Moreover, it is clear, as expected, that
the mortars with cement and air-lime exhibited higher ductility when compared to the
cement-based mortars.

Taking into account the fracture toughness values, it can be seen that the modified
mortars presented an increase in relation to the REF’s. For cement-based mortars, shorter
fibers seemed to be more effective in improving the fracture toughness of the mortars.
C 1.5-20c attained up to 100% higher toughness values when compared to the reference
mortar. On the other hand, for mortars with cement and air-lime this increment was not so
high, since the highest value was of C 3.0-20cl, which was 65% higher than that of REF 1:1:6.
It was observed that the fracture toughness has increased as increasing the fiber content
and fiber length.

To conclude, mortars’ toughness exhibited a remarkable enhancement when coir fibers
were added. Moreover, according to the parameters analyzed, the coir fiber-reinforced
mortars showed a more ductile behavior. Therefore, the mortars with incorporation of coir
fibers revealed to be less susceptible to cracking. Furthermore, for cement-lime mortars, a
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higher volume fraction of fibers resulted in better load-carrying capacity after achieving
the maximum peak load.

Other authors also reported this improvement in fracture toughness by adding veg-
etable fibers in mortars [14,31,34,35]. Xie et al. [36] found that the incorporation of 16 wt.%
of rice and bamboo cellulosic fibers increased the fracture toughness in 37 and 45 times,
respectively, compared to the mortar without fibers. Rupasinghe et al. [31] and Sathiparan
et al. [14] found that the incorporation of coir fibres in cement-lime mortars presented a
better performance in terms of fracture toughness, residual strengths, and ductility. The
authors reported that the fracture toughness increased with an increase in the volume
fraction of coir fibers. The sample with a higher fibers content has increased about 10 times
over the control mortar [31].

From the load-deflection curves of the specimens, it can be seen the load-carrying
capacity after the maximum peak load achieved. It was observed that the incorporation
of coir fibers enhanced the post-peak behavior of the mortars. The cement-based mortars
with coir fibers showed a lower decay of load after the mortar achieved its maximum force,
since the reference mortars exhibited a brittle failure mode. It is evidenced that the coir
fiber-reinforced mortars with cement and air-lime withstand a residual load during failure
and sustain greater deformations. It is stressed that a higher volume fraction of fibers
presented a better load-carrying capacity.

Other authors also analyzed the load-deflection curves of vegetable fiber-reinforced
mortars and verified a similar trend obtained in this work [1,14,35,37]. Hwang et al. [1]
reported that the area under the load-deflection curves of the coir fiber-reinforced cement
mortars was greater than that of the mortar without fibers, which indicates an increase in
toughness indices of the modified mortars. Xie et al. [35] and Benaimeche et al. [37] also
followed a similar trend, showing that the addition of vegetable fibers in cement mortars,
namely rice, bamboo, and date-mesh palm fibers improved the post-peak behavior by
providing a not abrupt failure. This effect was attributed to the bridging mechanism of
the fibers across the cracks, which enable the mortars to distribute the stresses in non-
brittleness mode [14]. In the study of Pereira et al. [34], it was found that longer sisal fibers
exhibited higher fracture toughness than the shorter ones.

It can be concluded that the binders used to produce rendering mortars with coir
fibers addition affects their properties. In order to the fibers to be effectively requested to
improve the mortars behavior in terms of failure, the modulus of elasticity of the fibers
must be compatible with the modulus of elasticity of the mortar. Therefore, it is important
to note that the modulus of elasticity of the coir fibers is more similar to the modulus
of elasticity obtained in cement and air-lime mortars. For this reason, it is clear that the
cement-lime mortars presented a better cracking behavior with coir fibers addition. It is
also stressed that the volume fraction of the fibers has more influence than the fibers’ length
in improving specific properties, namely cracking susceptibility. In order to evaluate the
durability of the coir fibers inside the matrix, the tests were performed over time. From the
results, it was clear that the improvement of the fiber’s addition in mortar’s mechanical
properties slightly decayed, over time. However, in general, the fibers improved the failure
mode of the mortar, increasing their ductility that remains over time.

3.7. Open Porosity

The results of the open porosity test are presented in Figure 12. This test measures
the volume of interconnected pores inside the mortars, and it is strongly correlated to
the modulus of elasticity, ultra-sound pulse velocity, and mechanical strengths. From the
results, it can be noticed that the incorporation of coir fibers increased the porosity of the
mortars, regardless of the type of the binder used. At 28 days, the C 1.5-20cl and C 3.0-20cl
both presented a reduction of the modulus of elasticity of about 16%, and an increase of
the open porosity of 25% and 27%, respectively, relative to the reference mortar.
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Mortars with longer and higher volume fraction of fibers exhibited higher porosity.
At 365 days, C 3.0-20c and C 3.0-20cl increased 15% and 4% over their respective reference
mortar. This increase in open porosity of the mortars with fibers is attributable to the
fiber-matrix interfacial bond, which may generate some voids inside the matrix due to
the fibers clustering. Previous studies are in agreement with those results found in this
work [1,14,34]. The incorporation of coir fibers increased the porosity of the mortars. It can
be seen that the mortars with higher porosity obtained the lower modulus of elasticity.

4. Conclusions

From the results obtained in this study, the following conclusions can be drawn:

• Coir fiber addition reduces the mortars’ workability, regardless of the type of binder
used. As increasing the fiber length and volume fraction, a higher mixing water
content is required to achieve the intended consistency when compared to the reference
mortars.

• The mortars with coir fibers presented a more ductile behavior and less susceptibility
to cracking than that of the control mortars, since they presented lower modulus of
elasticity and higher fracture toughness. The addition of coir fibers also increased the
porosity of the mortars due to the fibers’ clustering inside the matrix.

• Concerning the mechanical behavior of the mortars, the coir fiber addition improved
in the first ages of the mortars. Over time, the coir fibers did not significantly affect
their compressive and flexural strengths.

The findings of this current work show that the addition of coir fibers in rendering
mortars led to improvements mainly in terms of cracking behavior. Furthermore, it pro-
vided an environmentally-friendly and low-cost product. The characterization of the coir
fiber-reinforced mortars highlighted that the volume fraction of the fibers and the binder
used are the most influencing factors to improve the brittleness of the mortar. A higher
fiber content and cement-lime as a binary binder obtained the highest fracture toughness,
according to the load-deflection curves.
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