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The myeloproliferative neoplasms (MPNs) are characterized by an expansion of the
neoplastic hematopoietic stem/progenitor cells (HSPC) and an increased risk of
cardiovascular complications. The acquired kinase mutation JAK2V617F is present in
hematopoietic cells in a majority of patients with MPNs. Vascular endothelial cells (ECs)
carrying the JAK2V617F mutation can also be detected in patients with MPNs. In this
study, we show that a murine model with both JAK2V617F-bearing hematopoietic cells
and JAK2V617F-bearing vascular ECs recapitulated all the key features of the human
MPN disease, which include disease transformation from essential thrombocythemia to
myelofibrosis, extramedullary splenic hematopoiesis, and spontaneous cardiovascular
complications. We also found that, during aging and MPN disease progression, there was
a loss of both HSPC number and HSPC function in the marrow while the neoplastic
hematopoiesis was relatively maintained in the spleen, mimicking the advanced phases of
human MPN disease. Different vascular niche of the marrow and spleen could contribute
to the different JAK2V617F mutant stem cell functions we have observed in this
JAK2V617F-positive murine model. These results indicate that the spleen is functionally
important for the JAK2V617F mutant neoplastic hematopoiesis during aging and MPN
disease progression. Compared to other MPN murine models reported so far, our studies
demonstrate that JAK2V617F-bearing vascular ECs play an important role in both the
hematologic and cardiovascular abnormalities of MPN.
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HIGHLIGHTS

• A murine model in which JAK2V617F is expressed in both
hematopoietic cells and ECs recapitulated the key features of
the human MPN disease

• Different vascular niche of the marrow and spleen could
contribute to different JAK2V617F mutant HSC functions
during MPN disease progression
INTRODUCTION

The Philadelphia chromosome-negative myeloproliferative
neoplasms (MPNs), which include polycythemia vera (PV),
essential thrombocythemia (ET), and primary myelofibrosis
(PMF), are clonal stem cell disorders characterized by
hematopoietic stem/progenitor cell (HSPC) expansion,
overproduction of mature blood cells, a tendency to
extramedullary hematopoiesis, an increased risk of transformation
to acute leukemia or myelofibrosis, and an increased risk of vascular
thrombosis (1, 2). The incidence of MPNs increases significantly
with aging and MPN is uncommon before the age of 50 years (3).
Older age and longer disease duration are also associated with
higher risk of disease transformation to myelofibrosis or secondary
acute myeloid leukemia, as well as increased morbidity and
mortality in these patients (4). These observations suggest that
aging plays an important role in MPN development.

The acquired signaling kinase mutation JAK2V617F is
present in most patients with MPNs and aberrant JAK-STAT
signaling plays a central role in these disorders (5). Although
JAK2V617F-positive murine models have provided unequivocal
evidence that JAK2V617F is able to cause MPNs, there is
significant heterogeneity in disease phenotypes between
different murine models, and none has been able to
recapitulate both the myeloproliferative phenotype and the
cardiovascular pathology in patients with MPNs (6). In
addition, these murine models were mostly followed for less
than 3-9 months (7–18) and how aging affects MPN disease
progression has not been studied.

Endothelial cells (ECs) are an essential component of the
hematopoietic niche and most HSPCs reside close to a marrow
sinusoid (the “perivascular niche”) (19). Vascular ECs also play
critical roles in the regulation of hemostasis and thrombosis (20).
The JAK2V617F mutation can be detected in microvascular ECs
isolated from liver and spleen (by laser microdissection), and
marrow (by flow cytometry sorting) in 60-70% of patients with
MPNs (21, 22). The mutation can also be detected in 60-80% of
EC progenitors derived from the hematopoietic lineage and, in
some reports based on in vitro culture assays, in endothelial
colony-forming cells from patients with MPNs (22–26).
Previously, we reported that the JAK2V617F-bearing vascular
endothelium promotes the expansion of the JAK2V617F mutant
HSPCs in preference to wild-type HSPCs (27–31) and
contributes to the development of cardiovascular complications
(32) in a murine model of MPN. In the present study, we
Frontiers in Oncology | www.frontiersin.org 2
investigated how MPN progresses in the JAK2V617F-bearing
vascular niche during aging.
MATERIALS AND METHODS

Experimental Mice
JAK2V617F Flip-Flop (FF1) mice (12) was provided by Radek
Skoda (University Hospital, Basal, Switzerland) and Tie2-Cre
mice (33) by Mark Ginsberg (University of California, San
Diego). FF1 mice were crossed with Tie2-Cre mice to express
JAK2V617F specifically in all hematopoietic cells (including
HSPCs) and vascular ECs (Tie2+/-FF1+/-, or Tie2FF1), so as to
model the human diseases in which both the hematopoietic stem
cells and ECs harbor the mutation. All mice used were crossed
onto a C57BL/6 background and bred in a pathogen-free mouse
facility at Stony Brook University. Animal experiments were
performed in accordance with the guidelines provided by the
Institutional Animal Care and Use Committee.

Marrow and Spleen Cell Isolation
Murine femurs and tibias were first harvested and cleaned
thoroughly. Marrow cells were flushed into PBS with 2% fetal
bovine serum using a 25G needle and syringe. Remaining bones
were crushed with a mortar and pestle followed by enzymatic
digestion with DNase I (25U/ml) and Collagenase D (1mg/ml) at
37°C for 20 min under gentle rocking. Tissue suspensions were
thoroughly homogenized by gentle and repeated mixing using
10ml pipette to facilitate dissociation of cellular aggregates.
Resulting cell suspensions were then filtered through a 40uM
cell strainer.

Murine spleens were collected and placed into a 40uM cell
strainer. The plunger end of a 1ml syringe was used to mash the
spleen through the cell strainer into a collecting dish. 5ml PBS
with 2% FBS was used to rinse the cell strainer and the resulting
spleen cell suspension was passed through a 5ml syringe with a
23G needle several times to further eliminate small cell clumps.

Complete Blood Counts and
In Vitro Assays
Complete blood counts and hematopoietic colony formation
assays were performed as we previously described (34). Mouse
methylcellulose complete media (Stem Cell Technologies,
Vancouver, BC) was used to assay hematopoietic colony
formation, which was enumerated according to the
manufacturer’s protocol.

For Lineage negative (Lin-) cell culture, marrow or splenic
Lin- cells were first enriched using the Lineage Cell Depletion Kit
(Miltenyi Biotec). On Day 0, 1,000 Lin- cells were seeded in a 48-
well plate and cultured in 150ul StemSpan serum-free expansion
medium (SFEM) containing recombinant mouse Stem cell factor
(100 ng/ml), recombinant mouse Interleukin-3 (6 ng/ml) and
recombinant human Interleukin-6 (10 ng/ml) (all from Stem
Cell Technologies). 200ul fresh SFEM medium with cytokines
was added on Day 5 and 8 and cells were counted on Day 5
and 10.
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Histology
Femur and spleen tissues were fixed in cold 4% paraformaldehyde
for 6hr at 4°C while shaking. The tissues were washed with PBS for
8-16hrs at room temperature to remove paraformaldehyde.
Femurs were then decalcified and paraffin sections (5-mm
thickness) were stained with hematoxylin and eosin or reticulin
(Reticulum II Staining Kit, Roche, Tucson, AZ) to assess fibrosis.
Images were taken using a Nikon Eclipse TS2R inverted
microscope (Nikon, Melville, NY).

Flow Cytometry
All samples were analyzed by flow cytometry using a
FACSAriaTM III or a LSR II (BD biosciences, San Jose, CA,
USA). Lineage cocktail (include CD3, B220, Gr1, CD11b,
Ter119; Biolegend), cKit (Clone 2B8, Biolegend), Sca1 (Clone
D7, Biolegend), CD150 (Clone mShad150, eBioscience), CD48
(Clone HM48-1, Biolegend), CD45 (Clone 104) (Biolegend, San
Diego, CA, USA), and CD31 (Clone 390, BD biosciences)
antibodies were used.

BrdU Incorporation Analysis
Mice were injected intraperitoneally with a single dose of 5-
bromo-2′-deoxyuridine (BrdU; 100 mg/kg body weight) and
maintained on 1mg BrdU/ml drinking water for two days. Mice
were then euthanized and marrow cells isolated as described
above. For analysis of HSC (Lin-cKit+Sca1+CD150+CD48-)
proliferation, Lin- cells were first enriched using the Lineage Cell
Depletion Kit (Miltenyi Biotec) before staining with fluorescent
antibodies specific for cell surface HSC markers, followed by
fixation and permeabilization using the Cytofix/Cytoperm kit
(BD Biosciences, San Jose, CA), DNase digestion (Sigma, St.
Louis, MO), and anti-BrdU antibody (Biolegend, San Diego,
CA) staining to analyze BrdU incorporation (31).

Analysis of Apoptosis by Active
Caspase-3 Staining
Marrow cells were stained with fluorescent antibodies specific for
cell surface HSC markers, followed by fixation and
permeabilization using the Cytofix/Cytoperm kit (BD
Biosciences). Cells were then stained using a rabbit anti-
activated caspase-3 antibody (31). Data were acquired using a
LSR II flow cytometer.

Analysis of Senescence by Senescence
Associated b-Galactosidase Activity
Marrow cells were stained with fluorescent antibodies specific for
cell surface HSCmarkers. Cells were then washed and fixed using
2% paraformaldehyde and incubated with CellEvent™

Senescence Green Probe (ThermoFisher Scientific, Waltham,
MA) according to the manufacturer’s instruction. Data were
acquired using a LSR II flow cytometer.

VE-Cadherin In Vivo Staining and
Immunofluorescence Imaging
25ug Alexa Fluor 647-conjugated monoclonal antibodies that
target mouse VE-cadherin (clone BV13, Biolegend) were
Frontiers in Oncology | www.frontiersin.org 3
injected retro-orbitally into 2yr old Tie2FF1 or control mice
under anesthesia (35). Ten minutes after antibody injection, the
mice were euthanized. Mouse femurs and spleens were dissected
out and washed in PBS. After fixation in 4% paraformaldehyde
(PFA) (Affymetrix) for 6hr at 4°C while rotating, the samples were
washed in PBS overnight to remove PFA, cryoprotected in 20%
sucrose, embedded in OCT compound (Tissue-Tek), and flash
frozen at -80°C. Frozen samples were cryosectioned (~10uM)
using a Leica CM1510S Cryostat. Images were acquired using a
Nikon Eclipse Ts2R inverted fluorescence microscope.

Transthoracic Echocardiography
Transthoracic echocardiography was performed on mildly
anesthetized spontaneously breathing mice (sedated by
inhalation of 1% isoflurane, 1 L/min oxygen), using a Vevo
3100 high-resolution imaging system (VisualSonics Inc.,
Toronto, Canada). Both parasternal long-axis and sequential
parasternal short-axis views were obtained to assess global and
regional wall motion. Left ventricular (LV) dimensions at end-
systole and end-diastole and fractional shortening (percent
change in LV diameter normalized to end-diastole) were
measured from the parasternal long-axis view using linear
measurements of the LV at the level of the mitral leaflet tips
during diastole. LV ejection fraction (EF), volume, and mass are
measured and calculated using standard formulas for the
evaluation of LV systolic function (32, 36).

Histology
Hearts and lungs were fixed in 4% PFA overnight at 4°C while
rotating. The tissues were then washed multiple times with PBS
at room temperature to remove PFA. Paraffin sections (5-mm
thickness) were stained with Hematoxylin/Eosin (H&E)
following standard protocols. Images were taken using a Nikon
Eclipse Ts2R inverted microscope.

Statistical Analysis
Statistical analyses were performed using Student’s unpaired, 2-
tailed t tests using Excel software (Microsoft). A p value of less
than 0.05 was considered significant. For all bar graphs, data are
presented as mean ± standard error of the mean (SEM).
RESULTS

The Tie2FF1 Mice Develop ET to
PMF Transformation During Aging
To study the effects of the JAK2V617F-bearing vascular niche on
MPN disease development in vivo, we crossed mice that bear a
Cre-inducible human JAK2V617F gene (FF1) (12) with Tie2-Cre
mice (33) to express JAK2V617F specifically in all hematopoietic
cells and ECs (Tie2FF1). The Tie2FF1 mice developed an ET-like
phenotype with neutrophilia (3.8 vs 1.8 x 103)/uL, P=0.014),
thrombocytosis (1068 vs 558 x 103/uL, P=0.036), and normal
hemoglobin at 2mo of age, results consistent with previous
reports (28, 37). We followed these mice up to 18mo of age to
evaluate how the JAK2V617F mutant vascular niche regulate
October 2021 | Volume 11 | Article 753465
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MPN neoplastic hematopoiesis and disease transformation
during aging. The Tie2FF1 mice continued to develop
increasing neutrophilia and thrombocytosis, both of which
plateaued at ~1 yr of age. In addition, the mice developed
significant lymphocytosis and anemia after 6mo of age
(Figures 1A, B). At 18mo of age, there was significant
splenomegaly (spleen weight 611mg vs 89mg, P<0.001),
increased total spleen cell counts (267 vs 153 x 106 cells per
spleen, P=0.031), and decreased total marrow cell counts (23 vs
58 x 106 cells per femur, P<0.001) in the Tie2FF1 mice compared
to age-matched Tie2-cre control mice (Figures 1C–E). Histology
examination revealed extensive marrow osteopetrosis and
destroyed splenic architecture, as well as increased fibrosis in
both the marrow and spleen of the old Tie2FF1 mice compared
to age matched control mice (Figures 1F–I). No evidence of
Frontiers in Oncology | www.frontiersin.org 4
leukemia transformation was observed in the Tie2FF1 mice.
These findings indicate that the Tie2FF1 mice developed ET to
PMF disease transformation with extramedullary splenic
hematopoiesis during aging.

Decreased Marrow Hematopoiesis During
Aging in the Tie2FF1 Mice
Previously, we and others reported that marrow HSCs were
significantly expanded in young Tie2FF1 mice compared to age-
matched Tie2-cre control mice (28, 31, 38). To examine how
aging affects the neoplastic hematopoiesis in MPN, we first
measured the numbers of marrow hematopoietic progenitor
cells using colony formation assays. We found that the total
hematopoietic progenitor cells were significantly increased in
young (4-5mo) Tie2FF1 mice compared to age-matched control
A

B D E

F G

IH

C

FIGURE 1 | The Tie2FF1 mice develop ET to PMF transformation during aging. (A) Peripheral blood cell counts of Tie2FF1 (black line) and Tie2-cre control mice (grey line).
(n=5-10 mice in each group at 2mo and 4mo; n=6-7 mice in each group at 6mo, 12mo, and 15mo; n=10 mice in each group at 18mo). (B) Representative peripheral
blood smear of 18mo old Tie2-cre and Tie2FF1 mice (40X magnification). (C–E) Spleen weight (C), total spleen cell counts (D), and total femur cell counts (E) in 18mo old
Tie2-cre and Tie2FF1 mice (n=10 mice in each group). (F, G) Representative hematoxylin and eosin sections of marrow (F) and spleen (G) from 18mo old Tie2-cre and
Tie2FF1 mice [F: 1OX magnification, scale bar: 1OOuM; (G) 4X magnification, scale bar: 500uM]. (H, I) Representative reticulin stain of marrow (H) and spleen (I) from
18mo old Tie2-cre and Tie2FF1 mice (40X magnification). *P < 0.05.
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mice (2.6-fold, P=0.005); in contrast, there was no significant
difference in progenitor cell numbers between old (18mo)
Tie2FF1 mice and age-matched control mice (Figure 2A).
Consistent with these findings, flow cytometry analysis
revealed that marrow Lin-cKit+Sca1+CD150+CD48- HSCs (39)
were significantly expanded in young Tie2FF1 mice compared to
age-matched control mice (9.7-fold, P<0.001), while there was
no significant difference in HSC frequency between old Tie2FF1
and control mice (0.125% vs. 0.184%, P=0.087) (Figure 2B).
Considering that the total marrow cells were decreased 2.5-fold
in the old Tie2FF1 mice (Figure 1E), there was a 3.7-fold
decrease in the absolute marrow HSC cell numbers in old
Tie2FF1 mice compared to age-matched control mice.

To test whether the decreased phenotypic HSC number was
associated with altered HSC function, we isolated marrow Lin-

HSPCs fromTie2-cre control andTie2FF1miceandmeasured their
cell proliferation in vitro in serum-free liquid medium. At the end
of a ten-day culture, while JAK2V617F mutant HSPCs from
young Tie2FF1 mice displayed a higher proliferation rate than
wild-type HSPCs from young control mice (1.6-fold, P=0.012),
mutant HSPCs from old Tie2FF1 mice proliferated less than
old control HSPCs (2.0-fold, P=0.043) (Figures 2C, D). Taken
together, these data indicated that there was a loss of both HSPC
number and HSPC function in the marrow of old Tie2FF1 mice
during aging, mimicking the advanced phases of myelofibrosis (3).

Expanded Splenic Extramedullary
Hematopoiesis in the Tie2FF1 Mice
Spleen is the most frequent organ involved in extramedullary
hematopoiesis in patients with MPNs (3). To examine how the
Frontiers in Oncology | www.frontiersin.org 5
splenic hematopoiesis changes during aging and MPN disease
progression in the old Tie2FF1 mice, we first measured the
numbers of splenic hematopoietic progenitor cells using colony
formation assays. We found that splenic hematopoietic
progenitor cells were markedly increased in both young (19-
fold, P<0.001) and old (19-fold, P<0.001) Tie2FF1 mice
compared to age-matched control mice (Figure 3A). In line
with this finding, flow cytometry analysis revealed that spleen
HSCs were expanded in both young (53-fold P = 0.046) and old
(6.2-fold, P = 0.004) Tie2FF1 mice compared to age-matched
control mice (Figure 3B). Considering that the total spleen cells
were increased 1.7-fold in old Tie2FF1 mice (Figure 1D), there
was a 10.5-fold increase in the absolute spleen HSC numbers in
old Tie2FF1 mice compared to age-matched control mice. When
we isolated spleen Lin- HSPCs from young and old Tie2-cre
control and Tie2FF1 mice and cultured them in vitro, we found
that both young (12.9-fold, P=0.005) and old (4.3-fold, P=0.022)
JAK2V617F mutant spleen HSPCs displayed a higher
proliferation rate than age-matched wild-type control spleen
HSPCs (Figures 3C, D). These results suggest that, in contrast
to the decreased HSPC number and HSPC function we have
observed in the marrow (Figure 2), the spleen of old Tie2FF1
mice was able to maintain the expansion of JAK2V617F mutant
hematopoiesis during aging and MPN disease progression.

Different HSC Functions in the Marrow
and Spleen of Old Tie2FF1 Mice
The differences between marrow (Figure 2) and spleen
(Figure 3) hematopoiesis in the old Tie2FF1 mice prompted us
to further investigate how aging and MPN disease progression
A B

DC

FIGURE 2 | Decreased marrow hematopoiesis in the Tie2FF1 mice during aging. (A) Colony formation assays in marrow cells isolated from young (n=4 mice in each
group) and old (n=6-7 mice in each group) Tie2-cre control and Tie2FF1 mice. (B) Representative flow cytometry plots showing gating strategy (left) of marrow Lin
cKit+Sca1+CD150+CD48- HSCs frequency (right) in young (n=7 mice in each group) and old (n=5-6 mice in each group) Tie2-cre control and Tie2FF1 mice. (C, D) Cell
proliferation of marrow Lin- HSPCs isolated from young (C) and old (D) Tie2-cre control and Tie2FF1 mice. Cells were cultured on SFEM medium containing recombinant
mouse SCF (1OOng/mL), recombinant mouse IL3 (6ng/mL), and recombinant human IL6 (1Ong/mL). Data are from one of two independent experiments (with triplicates
in each experiment) that gave similar results. *P < 0.05.
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affect the JAK2V617F mutant HSC function differently in the
marrow and spleen. First, we measured HSC proliferation in vivo
by BrdU labeling (31). We found that JAK2V617F mutant HSCs
from old Tie2FF1 mice proliferated more rapidly than wild-type
HSCs from age-matched control mice in both the marrow (58%
vs 21%, P=0.001) and the spleen (41% vs 22%, P=0.042)
(Figures 4A, B). Next, we measured HSC cell apoptosis by
assessing their activated caspase-3 levels using flow cytometry
analysis (31). We found that JAK2V617F mutant marrow HSCs
from old Tie2FF1 mice displayed higher level of apoptosis
compared to wild-type marrow HSCs from age-matched
control mice (3.0% vs 0.8%, P=0.006); in contrast, mutant
spleen HSCs from old Tie2FF1 mice displayed significantly less
apoptosis compared to wild-type spleen HSCs from control mice
(1.8% vs 11.6%, P=0.002) (Figures 4C, D). Since oncogenic
mutation is a major stress to induce cellular senescence (40)
and the JAK-STAT signaling has been reported to induce cellular
senescence (41–44), we assessed HSC senescence by measuring
their senescence associated b-galactosidase (SA-b-Gal) activity,
which is a hallmark of cellular senescence (40). JAK2V617F
mutant marrow HSCs from old Tie2FF1 mice demonstrated
significantly higher senescence rates compared to wild-type
marrow HSCs from age-matched control mice (18% vs 9%,
P=0.011); in contrast, there was no difference in the cellular
senescence rate between the mutant spleen HSCs from old
Tie2FF1 mice and wild-type spleen HSCs from control mice
(Figures 4E, F). Taken together, although the JAK2V617F
mutant HSCs from old Tie2FF1 mice were more proliferative
than wild-type HSCs in both the marrow and spleen, mutant
HSCs were more apoptotic and senescent than wild-type HSCs
Frontiers in Oncology | www.frontiersin.org 6
in the marrow while the mutant cells were relatively protected in
the spleen.

Most HSCs reside close to a perivascular niche in the marrow
and spleen (19, 45). To understand how different vascular niches
contribute to different HSC functions in the old Tie2FF1 mice, we
measured marrow and spleen ECs (CD45-CD31+) by flow
cytometry analysis. We found that marrow ECs were
significantly decreased in old Tie2FF1 mice compared to age-
matched control mice; in contrast, spleen ECs were significantly
expanded in old Tie2FF1 mice. These results were also confirmed
by in vivo VE-cadherin labeling and immunofluorescence imaging
of the marrow and spleen tissue samples (Figures 4G, H). In
addition, while there was no difference in marrow EC senescence
rate between old Tie2FF1 mice and old control mice, the
JAK2V617F mutant splenic ECs from old Tie2FF1 mice were
much less senescent compared to wild-type splenic ECs from
age-matched control mice (Figures 4I, J). Therefore, the different
vascular niche of the marrow and spleen could contribute to the
decreased marrow hematopoiesis and expanded splenic
hematopoiesis we have observed in the Tie2FF1 mice during aging.

Persistent But Compensated
Cardiomyopathy in the Old Tie2FF1 Mice
Cardiovascular complications are the leading cause of morbidity
and mortality in patients with MPNs. Previously, we reported
that the Tie2FF1 mice developed spontaneous heart failure with
thrombosis, vasculopathy, and cardiomyopathy at 20wk of age
(32). Here, we followed the cardiovascular function of Tie2FF1
mice during aging. At 18mo of age, the Tie2FF1 mice continued
to demonstrate a phenotype of dilated cardiomyopathy with a
A B

DC

FIGURE 3 | Expanded splenic extramedullary hematopoiesis in the Tie2FF1 mice. (A) Colony formation assays in spleen cells isolated from young (n=3 mice in each
group) and old (n=5-6 mice in each group) Tie2-cre control and Tie2FF1 mice. (B) Spleen Lin-cKit+Sca1+CD150+CD48- HSCs frequency in young (n=3 mice in each
group) and old (n=5 mice in each group) Tie2-cre control and Tie2FF1 mice. (C, D) Cell proliferation of spleen Lin HSPCs isolated from young (C) and old (D) Tie2-
cre control and Tie2FF1 mice. Cells were cultured in SFEM medium containing recombinant mouse SCF (1OOng/mL), recombinant mouse IL3 (6ng/mL), and
recombinant human IL6 (1Ong/mL). Data are from one of two independent experiments (with triplicates in each experiment) that gave similar results. *P < 0.05.
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moderate but significant decrease in LV EF (56% versus 66%,
P=0.043), an increase in LV end-diastolic volume (84mL vs 71mL,
P=0.086) and end-systolic volume (38 mL vs 25 mL, P=0.041), and
an increase in LV mass (156mg vs 113mg, P=0.021) compared to
age-matched control mice (Figure 5A). Pathological evaluation
confirmed the diagnosis of dilated cardiomyopathy in old
Tie2FF1 mice with significantly increased heart weight-to-tibia
length ratio compared to age-matched control mice (0.014 vs
0.011 gram/mm, P=0.004) (Figure 5B). Increased lung weight in
old Tie2FF1 mice compared to control mice (0.287 vs 0.226
gram) further indicated the presence of pulmonary edema
commonly associated with heart failure (Figure 5C). Similar to
what we previously reported in the young Tie2FF1 mice (32),
there was spontaneous thrombosis in the right ventricle and
pulmonary arteries in the old Tie2FF1 mice, while age-matched
Tie2-cre control mice had no evidence of spontaneous
thrombosis in their heart or lungs (Figures 5D, E). Despite
these cardiovascular dysfunctions, there was no difference in
body weight between old Tie2FF1 mice and control mice
(Figure 5F), nor was there any significantly increased
incidence of sudden death in the old Tie2FF1 mice compared
to age-matched control mice. These findings suggested that there
was a persistent but compensated cardiomyopathy and heart
failure in the Tie2FF1 mice during aging.
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With heterozygous human JAK2V617F transgene expression in
both the hematopoietic cells and vascular ECs, the Tie2FF1 mice
developed an ET-like phenotype at young age (2mo old) which
transformed to PMF during aging. The mice also demonstrated
features of extramedullary splenic hematopoiesis, spontaneous
vascular thrombosis, cardiovascular dysfunction, which persisted
during the aging process. Compared to other MPN murine
models reported so far (7–18), the Tie2FF1 mice is the first
MPN murine model that faithfully recapitulated almost all the
key features of the human MPN diseases. Considering the
presence of the JAK2V617F mutation in microvascular ECs
isolated from patients with MPNs (21, 22, 26) and the
recapitulation of all the key features of human MPN diseases
by the Tie2FF1 mice, the roles of endothelial dysfunction in the
hematologic and cardiovascular pathogenesis of MPN and
whether the MPN vascular niche can be targeted to provide
more effective therapeutic strategies for patients with these
diseases shall be further investigated.

Extramedullary splenic hematopoiesis often compensates for
normal hematopoietic suppression in neoplastic conditions (46,
47). Splenomegaly is a common feature in patients with MPNs as
a result of extramedullary hematopoiesis, in which HSCs
A B D

E F G

IH J

C

FIGURE 4 | Different HSC functions in the marrow and spleen of old Tie2FF1 mice (A, B) Cell proliferation rate of HSCs in the marrow (A) and spleen (B) measured
by in vivo BrdU labeling (A: n=4-5 mice in each group; B: n=4 mice in each group). (C, D) Representative flow cytometry histograms (left) and quantitative analysis of
cellular apoptosis rate of HSCs in the marrow (C) and spleen (D) measured by activated caspase-3 staining using flow cytometry analysis (C: n=5 mice in each
group; D: n=5-6 mice in each group). (E, F) Cellular senescence rate of HSCs in the marrow (E) and spleen (F) measured by SA-b-Gal activity using flow cytometry
analysis (E): n=5 mice in each group; (F) n=5-6 mice in each group). (G, H) Representative immunofluorescent images of VE cadherin (+) vasculatures (magnification
1Ox for femur marrow and 4x for spleen) (left) and flow cytometry quantitative analysis of CD45-CD31+ ECs (right) of the marrow (G) and spleen (H) from 18mo Tie2-
cre control and Tie2FF1 mice (G): n=8 mice in each group; (H) n=5 mice in each group). (I) Representative flow cytometry histograms (left) and quantitative analysis
of cellular senescence of marrow ECs (n=4 mice in each group). (J) Representative flow cytometry histograms (left) and quantitative analysis of cellular senescence of
spleen ECs (n=3 mice in each group).*P < 0.05.
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are mobilized to sites outside the marrow to expand
hematopoiesis. Our study showed that the extramedullary
splenic hematopoiesis could also compensate/maintain MPN
neoplastic hematopoiesis during disease transformation/
progression. Together with a previous report that the spleens
of PMF patients contain the neoplastic stem cells for MPN
development (48), these findings indicate that effective
targeting of the splenic neoplastic hematopoiesis might be
necessary for successful MPN therapies.

ECs are an essential component of the perivascular niche in the
marrow and spleen (19, 45). It is known that vascular ECs within
different tissues have unique gene expression profile and cellular
function (49). Results from our previous studies and current work
demonstrated that there was a significant heterogeneity of the
JAK2V617F mutant ECs in different parts of the circulation (e.g.,
marrow, spleen, heart32). How the same JAK2V617F mutation
results in different EC functions in different tissues is not fully
understood. Since flow shear stress has key roles in endothelial
function (50) and biomechanical forces can regulate HSC function
(51), it is possible that different e.g. flow rate, shear stress, or
hydrostatic pressure in different tissues can contribute to different
JAK2V617F -bearing EC functions.

In summary, our previous (27–32) and current work have
demonstrated that JAK2V617F-bearing vascular ECs play an
important role in both the hematologic and cardiovascular
disease processes of MPNs. Results from our studies also
revealed a significant heterogeneity of the JAK2V617F mutant
ECs in different parts of the circulation and the spleen is
functionally important for MPN neoplastic hematopoiesis
during aging and disease progression. Therefore, the Tie2FF1
mice provide a unique in vivo model to screen or test
Frontiers in Oncology | www.frontiersin.org 8
potential preventive and therapeutic interventions for patients
with MPNs.
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FIGURE 5 | Persistent cardiomyopathy and congestive heart failure in the old Tie2FF1 mice. (A) Measurements of left ventricular (LV) ejection fraction, end-diastolic
and end-systolic volume, and mass by transthoracic echocardiography in 18mo old Tie2-cre control and Tie2FF1 mice. (B) Heart weight adjusted by tibia length of
18mo old Tie2-cre control and Tie2FF1 mice. (C) Lung weight of 18mo old Tie2-cre control and Tie2FF1 mice. (D) Representative H&E staining of transverse
sections of heart from Tie2-cre control and Tie2FF1 mice. Note the presence of thrombus (*) in right ventricle (magnification 4x, scale bar: 500uM). (E) Representative
H&E staining of coronal sections of lung from Tie2-cre control and Tie2FF1 mice. Note the presence of thrombus (star*) in segment pulmonary arteries of the Tie2FF1
mice (magnification 4x, scale bar: 500uM). (F) Body weight of 18mo old Tie2-cre control and Tie2FF1 mice. n=8-11 mice in each group.*P < 0.05.
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