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Abstract: Pulmonary fibrosis is a type of chronic, progressive, fibrotic lung disease of unclear cause
with few treatment options. Cell therapy is emerging as a promising novel modality for facilitating
lung repair. Mesenchymal stem cell (MSC)-based and macrophage-based cell therapies are regarded
as promising strategies to promote lung repair, due to incredible regenerative potential and typical
immunomodulatory function, respectively. Extracellular vesicles (EVs), including exosomes and
microvesicles, are cell-derived lipid-bilayer membrane vesicles that are secreted from virtually every
cell and are involved in intercellular communication by delivering expansive biological cargos to
recipients. This review provides a deep insight into the recent research progress concerning the
effects of MSC and macrophage-associated EVs on the pathogenesis of pulmonary fibrosis. In
addition to discussing their respective vital roles, we summarize the importance of cross-talk, as
macrophages are vital for MSCs to exert their protective effects through two major patterns, including
attenuating macrophage activation and M1 phenotype macrophage polarization. Moreover, miRNAs
are selectively enriched into EVs as essential components, and consideration is given to the particular
effects of EV-associated miRNAs.

Keywords: pulmonary fibrosis; extracellular vesicles; mesenchymal stem cells; macrophages;
microRNAs

1. Introduction

Pulmonary fibrosis is a chronic and progressive parenchymal lung disease character-
ized by irreversible lung scarring. Pulmonary fibrosis can lead to significant morbidity via
aggravating dyspnoea and coughing, as a result causing overall irremediable functional de-
cline [1]. The prevalence of pulmonary fibrosis has increased, and its rates are three to nine
cases per 100,000 people annually in Europe and North America, and approximately four
cases per 100,000 people annually in East Asia and South America [2]. It predominantly
occurs in older adults (>50 years old), with an average life expectancy of 2.5–3.5 years
after diagnosis, which is comparable to or even more severe than some cancers [3,4]. Al-
though pirfenidone and nintedanib can promote lung function, neither is curative for the
disease [5–7]. Cell therapy is emerging as a promising novel modality for facilitating lung
repair. Mesenchymal stem cell (MSC) transplantation is attractive therapy since MSCs have
the potential to suppress detrimental immune response, promote the survival of injured
cells, and enhance tissue repair and regeneration [8–10]. MSCs can be obtained from a great
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number of tissues, such as the umbilical cord, endometrial polyps, menses blood, bone
marrow, adipose tissue, etc. [10]. MSCs can interact with cells of the innate and adaptive
immune systems, leading to the modulation of several effector functions [10]. Interestingly,
macrophages are the key players in organ systems’, including the lungs’, innate and adap-
tive immune responses to particles and pathogens [11,12]. Macrophages also play vital
roles in maintaining homeostasis and pathogen clearance [11]. The classically activated
macrophage (M1 phenotype) and alternatively activated macrophage (M2 phenotype) have
been extensively investigated in pulmonary fibrosis [12].

MSC-derived extracellular vesicles (EVs) have regulatory properties and transport
functional “cargo” through physiological barriers to target cells, for purposes of commu-
nication and regulatory activities. Notably, intensive basic experimental and preclinical
studies have identified MSC-derived EVs as possible novel therapeutic tools and provided
new insights into the treatment of pulmonary fibrosis. As an essential means of intercellular
communication, EVs have attracted considerable interest in this context. Compared with
direct donor cell transplantation, EV cargos can be protected from degradation by nucleases
due to the lipid bilayer membrane that can protect vesicle stability during circulation [13].
Furthermore, EVs show lower immunogenicity and toxicity when compared to other
nano-carriers [14]. EV secretion appears to be an evolutionarily conserved procedure, and
EV-based cell-to-cell communication occurs throughout all kingdoms of life [15]. EVs are
often classified according to their diameter size, as exosomes (30 to 150 nm), microvesicles
(50–1000 nm), or apoptotic bodies (500–5000 nm) [16–18]. In fact, size, which had been
regarded as a decisive factor for distinguishing different vesicles, has been found to be less
relevant due to size discrepancies observed by various measuring techniques [19]. EVs are
lipid bilayer-enclosed spheres with a critical role in delivering membrane-bound proteins,
bioactive metabolites, and RNAs to recipient cells [20]. The use of carrier systems for
the delivery of therapeutic payloads to targeted cells has attracted considerable attention,
and due to the capacity to shuttle cargos, EVs have gained prominence in the field of
nanotherapeutics.

Currently, much insight has been obtained into the non-coding RNAs (ncRNAs) that
regulate gene expression at the levels of transcription, post-transcription, and epigenetic
processes. Many types of ncRNAs have been categorized as long non-coding RNAs (lncR-
NAs), microRNAs (miRNAs/miRs), or circular RNAs (circRNA) [21,22]. Interestingly,
miRNAs are selectively enriched as essential components in EVs, and miRNAs shuttled in
EVs can exert biological functions to regulate specific aspects of the onset and progression
of pulmonary fibrosis. This review is intended to summarize the latest literature concerning
the effects of MSC and macrophage-associated EVs as therapeutic tools for pulmonary
fibrosis, particularly emphasizing the effects of EV-associated miRNAs. A critical discus-
sion is provided of the vital role played by macrophages allowing MSCs to exert their
protective effects.

2. Ethics Statement

Because this is a review article, an ethics statement is not available. This exemption
was agreed by the ethics committee of The Third Affiliated Hospital of Guangzhou Medical
University.

3. An Overview of the Characteristics of Extracellular Vesicles

EVs cannot replicate, and are steadily secreted from all eukaryotic cells and from
various bacteria and archaea species. They have a structure consisting of a shell of a phos-
pholipid bilayer, and appear abundantly in body fluids including blood, urine, breast milk,
lacrimal, etc. [23,24]. They are classified into two major subcategories based on biogenesis
and size under healthy conditions. Roughly described, microvesicles are 50–1000 nm in
diameter and are released by budding directly from the cell plasma membrane [25,26].
Exosomes, the smallest EVs, are single-cell membrane vesicles with a size of approxi-
mately 30–150 nm and a density of about 1.13–1.21 g/mL, and have been extensively
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studied [17,25]. Exosomes originate from the endosomal compartment produced by the
curvature of the membrane of the multivesicular bodies (MVBs). Such MVBs cause their
initial formation as intraluminal vesicles (ILVs) enclosed in a lipid bilayer [27]. The exo-
somal membrane contains late endosomal markers (Tsg101, CD63, CD9, CD81, etc.) and
origin cell-specific membrane markers [28]. Apoptotic bodies, another kind of EV, are
500–5000 nm in diameter. They are produced by dying cells and are even more abundant
than exosomes or MVs under specific conditions [18,29,30]. Exosomes and microvesicles
have been suggested as ‘safe containers’ mediating cell-to-cell communication, however,
apoptotic bodies are derived from disassembling an apoptotic cell into subcellular frag-
ments. After being secreted into extracellular space, these nanoparticles can naturally target
neighboring or distant recipient cells and activate downstream signal pathways in recipient
cells by transferring membrane-protected cargos. Among the cytosolic cargos in EVs,
ncRNAs have been intensively studied because they play a crucial role at transcriptional
and post-transcriptional levels.

4. Contributions of EVs Derived from Mesenchymal Stem Cells (MSCs) in the
Treatment of Pulmonary Fibrosis

Mesenchymal stem cells (MSCs) transplantation is an attractive therapy. MSCs have
the abilities of proliferation and multilineage differentiation, and exhibit immunomodu-
latory properties [31,32]. Although MSCs can originate from any kind of tissue beyond
bone marrow, adipose, and placenta, they have similar core attributes of capacity for cell
migration, and behave as a treatment for lung repair [33–35]. We conducted a compre-
hensive literature search of preclinical studies on the effect of EVs derived from MSCs for
the treatment of pulmonary fibrosis in lung repair, through various electronic databases
including PubMed, Cochrane Library, EMBASE, and Web of Science, from the inception of
these databases to 31 August 2022. The following keywords were used in combination with
Boolean logic: “EVs”, “extracellular vesicles” or “exosomes” and “stem cell”, together with
“pulmonary fibrosis”. Then, the appraised reference list was manually checked to identify
other potential qualification trials. The process was iterated until no more publications
were obtained. A total of 17 studies were uncovered on this topic, from China, USA, Brazil,
Australia, France, and Korea, performed between 2014 and 2022 [36–52]. More information
is summarized in Table 1.

Table 1. Summary of studies in animal models evaluating the effect of mesenchymal stem cell
extracellular vesicles in pulmonary fibrosis.

Author, Year Country EVs Source Dosage Administration Primary Effects

Bandeira et al. [47]
2018 Brazil AD-MSC EVs from 105

MSCs
Intratracheal
injection

Ameliorates fibrosis and
inflammation

Xu et al. [44] 2022 China Huc-MSC Not available Not available Transfers let-7i-5p to inhibit
pulmonary fibrosis

Xu et al. [45] 2020 China Huc-MSC 100 µg/250 µL Tail vein
injection

Inhibits silica-induced pulmonary
fibrosis and regulate the
pulmonary function

Li et al. [46] 2021 China Huc-MSC 20 µg Tail vein
injection

Alleviates pulmonary fibrosis and
enhance the proliferation of
alveolar epithelial cells

Tan et al. [48] 2018 Australia
Amnion
Epithelial
Cell

10 µg Intranasal
administration

Demonstrates potent antifibrotic,
immunomodulatory, and
regenerative properties

Yang et al. [49] 2022 China Embryonic
MSC

200 µg or
1000 µg

Intratracheal or
tail vein injection

Inhibits bleomycin-induced
pulmonary fibrosis

Sun et al. [50] 2019 China Human MSC 0.5 mg/kg/day Tail vein
injection

Causes remittance of pulmonary
fibrosis by regulating ROS,
mtDNA damage, and NLRP3
inflammasome activation
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Table 1. Cont.

Author, Year Country EVs Source Dosage Administration Primary Effects

Lei et al. [51] 2021 China Placenta MSC 100 µg Tail vein
injection

Attenuates radiation-induced
lung injury via miRNA-214-3p

Kusuma et al. [36]
2022 Australia Human BMSC 10 µg Intranasal

administration

Exhibits immunomodulation,
antifibrotic, and
anti-inflammatory effects

Zhang et al. [37]
2021 China Rat BMSC Tail vein

injection 200 µg/mL/rat

Reverses epithelial-mesenchymal
transition via Wnt/β-catenin to
alleviate silica-induced
pulmonary fibrosis

Xiao et al. [38] 2020 China Human BMSC Tail vein
injection 70 µg

Reverses EMT process via
blocking NF-κB and Hedgehog in
LPS-induced acute lung injury

Mansouri et al. [39]
2019 USA Human BMSC Tail vein

injection
200 µL, 8.6 × 108

particles

Prevents and reverts
experimental pulmonary fibrosis
through modulation of monocyte
phenotypes

Wan et al. [40] 2020 China Human BMSC Tail vein
injection 100 µg

Suppresses pulmonary fibrosis by
downregulating FZD6 in
fibroblasts via microRNA-29b-3p

Zhou et al. [41] 2021 China Human BMSC Tail vein
injection 100 µg Alleviates pulmonary fibrosis via

interaction with SOX4 and DKK1

Li et al. [52] 2022 China Mouse MSC Tail vein
injection 200 µg

Reverses EMT process by
inhibiting AKT/GSK3β pathway
via c-MET in radiation-induced
lung injury

Choi et al. [42] 2014 Korea Human BMSC Tail vein
injection 10 µg

Exerts a cytoprotective effect on
reducing pulmonary fibrosis,
such as collagen deposition and
inflammation

Rozier et al. [43]
2021 France Mouse MSC Intravenous

injection 250 ng or 1500 ng
Improves lung repair by
modulating anti-inflammatory
and antifibrotic markers

Note: EVs, extracellular vesicles; MSCs, mesenchymal stem cells; BMSC, bone marrow mesenchymal stem cells;
Huc-MSC, human umbilical cord mesenchymal stem cells; AD-MSC, adipose mesenchymal stem cells; Men MSC,
menstrual blood-derived endometrial stem cells.

4.1. EVs from Adipose-Derived MSCs

EVs derived from many MSCs therapies have been extensively studied as avail-
able therapeutic strategies in preclinical models of lung diseases; among these MSCs,
the therapeutic effects of adipose-derived MSCs and their corresponding EVs have been
demonstrated. Interestingly, adipose-derived EVs can be efficiently taken up by alveolar
macrophages in vitro and in vivo, serving as a crucial regulator of M2 macrophage po-
larization by transferring miR-27a-3p to macrophages for repair of acute lung injury [53].
Interestingly, Huang et al. aimed to determine whether EVs from young and aging MSCs
had differential effects on lipopolysaccharide-induced acute lung injury in young mice.
They revealed that EVs derived from young adipose-derived MSCs were associated with
a more significant effect on alleviating tissue injury, due to a lower level of proinflam-
matory genes; however, EVs of aged cells had no protective response [54]. Silicosis, an
occupational disease, appears in patients who inhale silica particles, causing extensive
pulmonary fibrosis and ultimately leading to respiratory failure. Bandeira et al. indicated
that, adipose MSCs and their EVs, locally delivered at day 30, ameliorated fibrosis and
inflammation with reduction in collagen fiber content, size of granuloma, and the number
of macrophages inside the granuloma and the alveolar septa [47]. Notably, dose-enhanced
EVs yielded better therapeutic outcomes in this model of silicosis [47].
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4.2. Umbilical Cord MSC-Derived EVs

Of these 17 studies, three evaluated the effect of umbilical cord MSC-derived EVs
on the regulation of pulmonary fibrosis [44–46]. Shi et al. found that umbilical cord
MSC-derived EVs suppressed pulmonary fibrosis and boosted the proliferation of alveolar
epithelial cells in fibrosis mice, as a result promoting quality of life, including survival rate,
body weight, fibrosis degree, and myofibroblast over-differentiation in lung tissue [46].
These effects of EVs on pulmonary fibrosis were probably achieved by suppressing the
transforming growth factor-β (TGF-β) signaling pathway, evidenced by decreased ex-
pression levels of TGF-β2 and TGF-βR2. Likewise, Xu et al. showed that EVs from
three-dimensional cultured umbilical cord MSC had the potential to repress silica-induced
pulmonary fibrosis and improve lung function [45]. Xu et al. further demonstrated that
such EVs served as a mediator by transmitting let-7i-5p to decrease fibroblast activation. A
decrease in fibroblast activation contributes to repairing pulmonary fibrosis mechanistically
via the TGFBR1/Smad3 signaling pathway [44].

4.3. Bone Marrow MSC-Derived EVs

Bone marrow is one of the most extensively investigated sources of MSCs, nine of
these studies having assessed the therapeutic effect of bone marrow MSC-derived EVs
on pulmonary fibrosis [36–43,52]. For example, bleomycin has been used as a primary
strategy to induce a pulmonary fibrosis model, and this approach has been well charac-
terized. Bleomycin is always administered by tracheal instillation using an intratracheal
aerosolizer. Interestingly, treatment with intravenous human bone marrow MSC-derived
EVs sowed a reversal of damage induced by pulmonary fibrosis through reducing collagen
deposition. Histopathological observations of lung tissue after injection of EVs from MSCs
pretreated in a 3D culture microenvironment found associations with increased collagen
deposition, myofibroblast differentiation, and leukocyte infiltration [36]. Moreover, hu-
man bone marrow MSC-derived EVs can also be involved in alleviating silica-induced
pulmonary fibrosis by reducing the expression of profibrotic factor TGF-β1 and repressing
the progression of epithelial-mesenchymal transition [37]. In addition to their effects on
silica- and bleomycin-induced pulmonary fibrosis, human bone marrow MSC-derived EVs
can inhibit the progression of LPS-induced lung injury and fibrosis by repressing NF-κB
and Hedgehog pathways [38]. Of note, mouse bone marrow MSC EVs have a similar
effect to human EVs, since mouse EVs appeared in the lungs of systemic sclerosis mice
with promotion of anti-inflammatory and antifibrotic markers, while IFNγ pre-activation
accelerated the therapeutic effect [43].

4.4. Other MSC-Derived EVs

EVs derived from many other MSCs, such as amnion epithelial cells, human embryonic
stem cells, human placenta, and menstrual blood-derived endometrial stem cells, have
also been involved in alleviating pulmonary fibrosis [48–51]. Soluble factors derived from
human amnion epithelial cells are capable of anti-inflammatory, antifibrotic, and pro-
regenerative activity, making them a potential novel therapy for pulmonary fibrosis [48].
Administration of human embryonic stem cell EVs showed a therapeutic effect, attenuating
pulmonary fibrosis and improving lung function [49]. Mechanistically, such EVs could
exert antifibrotic activity with a reduction of collagen levels during fibrogenesis, at least
in vitro, by repressing the TGFβ/Smad pathway. Moreover, human placenta EVs can
reduce pulmonary radiation injury by transmitting miR-214-3p, suggesting new avenues
to relieve lung injury [51]. Such EVs reduced levels of radiation-induced DNA damage
by downregulating ATM/P53/P21 signaling. The downregulation of ATM was regulated
by miR-214-3p, which was enriched in EVs. Menstrual blood-derived endometrial stem
cell-associated EVs are a new approach to exocytosis in treating fibrotic lung disease, since
the discovery that Let-7 from EVs can inhibit pulmonary fibrosis [50].
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5. Contributions of EVs Derived from Macrophages in the Treatment of
Pulmonary Fibrosis

Macrophages, the innate immune cells, have antimicrobial phagocytic potential with
an essential impact on the pathogenesis of pulmonary fibrosis [55]. Macrophages play a
vital role in all stages of lung injury and repair, and especially have the capacity to increase
as well as to decrease fibrosis [55]. Lumen-based alveolar macrophages in the airway and
parenchymal interstitial macrophages in the lung are two major distinct subtypes. When
the lung is insulted and subsequently progresses to pulmonary fibrosis, they are pushed
towards a proinflammatory phenotype (M1 macrophages) and eventually polarized to a
pro-remodeling phenotype (M2 macrophages) required to ensure restoration of physio-
logical tissue composition [56]. M1 macrophages are proinflammatory cells that regulate
extracellular matrix-degrading metalloproteases and proinflammatory cytokines, while
M2 macrophages are anti-inflammatory cells that secrete anti-inflammatory cytokines and
support tissue healing [57,58]. Nevertheless, extraordinary evidence indicates the impor-
tance of macrophage polarization in the modulation of pulmonary fibrosis. M2-polarized
macrophages play a crucial role in the progress of pulmonary fibrosis, due to their capability
of differentiating into fibrocyte-like cells that produce collagen [57]. For example, in a recent
study, bleomycin-induced pulmonary fibrosis was used as a model for pulmonary fibrosis
and Schisandra, a commonly used traditional Chinese medicine for treating pulmonary
fibrosis, was given for 7 or 28 days to suppress M2 macrophage polarization [57,59]. The
results showed that suppression of M2 polarization by Schisandra was associated with the
inhibition of bleomycin-induced pulmonary fibrosis. Likewise, Wang et al. reported the
inhibition of CD206+ M2 polarization of macrophages, using microcystinleucine arginine,
which eventually alleviated pulmonary fibrosis [60].

Currently, increasing evidence suggests that EVs derived from macrophages are also
involved in regulating pulmonary fibrosis. A literature search of all preclinical studies on
the effect of vesicles derived from macrophages on pulmonary fibrosis was conducted,
according to the approach described above, using the keywords “EVs”, “extracellular
vesicles” or “exosomes” and “macrophage”, together with “pulmonary fibrosis”. A total
of four articles were identified [61–64]; of these studies, three indicated a profibrogenic
effect, while one revealed a suppressive effect. Specifically, Yao et al. illustrated that
miR-328-containing EVs derived from M2 macrophages stimulated pulmonary fibrosis
in a rat model [61]. Mechanistically, miR-328 might exert a vital function by regulating
FAM13A. FAM13A expression was downregulated when the miR-328 expression was
upregulated. Moreover, a miR-target relationship between miR-328 and FAM13A was
identified. Silencing of FAM13A promoted pulmonary interstitial fibroblast proliferation
and the expression of Collagen 1A, Collagen 3A, and α-SMA. Likewise, silica-exposed
macrophage-derived EVs were collected and cocultured with fibroblasts, revealing reduced
expression of collagen I and α-SMA. However, mice pretreated with the EV-secretion
inhibitor GW4869 prior to silica exposure showed decreased lung fibrosis and expression of
TNF-α, IL-1β, and IL-6 [62]. In another study, Yamada et al. [65] investigated the quantity
of miRNAs in serum EVs of mice with bleomycin-induced lung fibrosis, and reported
significant upregulation of serum EV-miR-21e5p in the acute and chronic fibrotic phases.
Furthermore, as miR-21e5p promotes TGF-b signaling, a critical signaling pathway in
pulmonary fibrosis, miR-21e5p was suggested to be a potential biomarker of pulmonary
fibrosis. Guiot et al. revealed that sputum macrophages in pulmonary fibrosis were found
to contain elevated levels of EV-miR-142-3p, and macrophage-derived EVs could fight
against pulmonary fibrosis progression by transferring antifibrotic miR-142–3p to alveolar
epithelial cells and lung fibroblasts. By characterizing the miRNA content of sputum EVs
of patients with pulmonary fibrosis versus healthy subjects, miR-142-3p was identified
as a novel diagnostic biomarker [66]. It should be noted that sample sizes in preclinical
and clinical experiments have so far been insufficient, indicating that further high-quality
experiments are required [63]. More information regarding macrophage EVs’ effects on the
pathogenesis of pulmonary fibrosis is summarized in Table 2.
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Table 2. Summary of studies in animal models evaluating the effect of macrophage extracellular
vesicles in pulmonary fibrosis.

Author, Year Country EVs Source Dosage Administration Primary Effects

Yao et al. [61] 2019 China M2 macrophages 100 µg Tail vein injection
Exerts a promotive effect on the
progression of pulmonary fibrosis
via FAM13A

Qin et al. [62] 2021 China Silica-exposed
macrophage 50 µg Not available

EVs are profibrogenic and
contribute to pulmonary fibrosis
and inflammation during silicosis

Guiot et al. [63]
2020 Belgium Macrophage Not available Not available

Prevents pulmonary fibrosis
progression via the delivery of
miR-142–3 p to alveolar epithelial
cells and lung fibroblasts

Sun et al. [64]
2021 China Macrophage 1 g/kg Tail vein injection

Transfers angiotensin II type 1
receptor to lung fibroblasts
mediating bleomycin-induced
pulmonary fibrosis

Note: EVs, extracellular vesicles.

6. Macrophages Play an Important Role for Mesenchymal Stem Cells to Exert
Protective Effects

MSC-based and macrophage-based cell therapies are deemed promising strategies
to improve fracture healing, due to the incredible protective potential of MSCs and the
typical immunomodulatory effects of macrophages. Macrophages are vital for MSCs to
exert their protective effects; for instance, depletion of macrophages by lipoclodronate
solution represses the protective function of MSC [67]. MSCs or MSC-EVs serve as crucial
mediators to modulate macrophage behavior according to two major patterns, including
attenuating macrophage activation and M1 phenotype macrophage polarization [67]. The
transplantation of MSCs into rats three hours after focal cerebral ischemia, for example,
showed a significant reduction in macrophages on day three after treatment [68]. Concern-
ing macrophage polarization, according to reports by Abumaree et al. [69] and Maggini
et al. [70], MSCs can suppress M1 markers in vitro, namely TNF-α and iNOS; meanwhile,
they promote the differentiation of macrophages toward the M2 phenotype, producing
IL-10, CD206, and Arg1. Further evidence provided by Dayan et al. [71] from observations
of a myocardial infarction condition revealed that, compared with the non-MSC group,
the MSC group was associated with higher levels of Arg1 and IL-10 and lower expression
of proinflammatory M1 markers of IL-1β and IL-6. This observation is consistent with
similar reports on MSC-EVs, in which tissue restoration was boosted due to the inhibition
of M1 macrophage polarization after MSC-EVs treatment [72–75]. Interestingly, emerging
evidence has demonstrated that MSC-EVs can also modulate macrophage polarization
in pulmonary fibrosis, contributing to lung repair. Wang et al. [60] demonstrated that
MSC-EVs mitigated pulmonary fibrosis at least partially by transferring their cargos to
macrophages, further promoting M2 macrophage polarization and eventually contributing
to the alleviation of pulmonary fibrosis. Notably, protective effects against pulmonary
fibrosis differ between young and aging MSC-EVs, due to different effects on the mod-
ulation of M2 macrophage polarization. As reported by Huang et al. [54], compared to
young MSC-EVs, aging MSC-EVs showed impaired therapeutic effects in a murine model
of LPS-induced acute lung injury, and were deficient in promoting M2 macrophage polar-
ization and suppressing macrophage activation. Mechanistically, aging MSC-EVs are less
readily internalized by macrophages compared with their younger counterparts. MSC-EVs
were reported to mitigate pulmonary fibrosis at least partially by inhibiting macrophage
recruitment and promoting M2 macrophage polarization.
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7. Extracellular Vesicle-Associated miRNA as One of the Dominating Effectors
7.1. miRNA: Biogenesis and Characteristics

With the revolution in techniques for gene sequencing, the transcribed genome en-
codes over 20,000 types of protein; however, only ~2% of the whole human genome encodes
for proteins [76,77]. Not all RNAs can translate functional proteins, and RNAs can be clas-
sified into two main subcategories—those with the function of coding and those without,
known as ncRNAs [78]. Nevertheless, emerging evidence demonstrates that ncRNAs
play a vital role in the modulation of gene expression and contribute to numerous disor-
ders [78,79]. Based on their nucleotide length, ncRNAs are commonly classified into long
(namely lncRNA and circRNA) and small ncRNAs (miRNAs, tRNAs, piRNAs), taking
200 nucleotides as the limit [80]. miRNAs, one kind of endogenous ncRNAs, were reported
much earlier (first found in Caenorhabditis elegans in 1993) and are the best-described
type of small ncRNAs, no more than 18–24 nucleotides in length [81,82]. In vertebrates, a
total of five stages are involved in the biogenesis of miRNA: (I) Type-II RNA polymerases
promote the transcription of miRNAs from DNA facilitated into pre-miRNAs [83,84];
(II) pri-miRNAs are processed by various microprocessor complexes [84,85]; (III) Ran-GTP
and Exportin-5 help the pre-miRNA export from the nucleus [86,87]; (IV) the pre-miRNA is
further cleaved and forms a miRNA duplex by binding to the RNA-binding proteins; and
(V) the RISC is incorporated into an RNP that assimilates the mature miRNA [88,89]. De-
spite the fact that less than 0.02% of the cells’ total RNA content consists of miRNAs [78,90],
it is well established that miRNAs are involved in regulating approximately 60% of all
protein-coding genes, and miRNAs have an average of 200 targets [91,92]. miRNA is a
family of post-transcriptional gene repressors that modulate gene expression by combining
with the 3’ untranslated region of the target mRNA sequence, inhibiting mRNA levels [93].

7.2. miRNA Loading into EVs and Uptake by Recipient Cells

As described above, a wide array of molecules, including proteins, lipids, DNAs, mR-
NAs, and miRNAs, can be transferred from donor to recipient cells by EVs from different
cell types [94–96]. Among these molecules, exosomal miRNAs have attracted increas-
ing interest. Although the underlying mechanisms are still not entirely understood, four
proposed modes for loading and sorting miRNAs into EVs have been confirmed [97].
These pathways include the sphingomyelinase 2-dependent pathway, sumoylated hnRNP-
dependent pathway (mainly including hnRNPA2B1, hnRNPA1, and hnRNPC), miRNA-
induced silencing complex (miRISC)-associated pathway, the RNA-binding protein path-
way, and the 3’ end of the miRNA sequence-dependent pathway [98–101]. It is generally
accepted that EVs’ size, surface components, and physical characteristics probably influ-
ence their recognition and capture by target cells [102]. Once released to the extracellular
environment, the exosomes can enter cells and interact with recipient cells to transmit in-
formation by several different mechanisms. The widely discussed EV uptake mechanisms
include direct fusion, receptor-mediated fusion, and endocytosis [103,104]. There have
also been reports of direct cell-to-cell extracellular vesicle transfer via tunneling nanotubes
for RNA delivery [105]. Typically, the EVs attach to the recipient cells and release their
content into the target cells by fusing with the plasma membrane or entering the cell [106].
Following internalization, various molecular cargoes in EVs can be released into the cy-
toplasm, delivered to lysosomes, destroyed, or targeted to specific locations within the
cell [107]. However, it remains unresolved whether the cells respond to specific EVs or
whether the process is unspecific and stochastic. After being delivered to the target cells, the
extracellular miRNAs can exert the translation of the target genes and the function of the
target cells, thereby acting as intercellular signaling molecules [108]. The brief mechanism
of how miRNA loading into EV and uptake by recipient cells was exhibited in Figure 1.



Pharmaceuticals 2022, 15, 1276 9 of 16

Pharmaceuticals 2022, 15, 1276 9 of 16 
 

 

mechanism of how miRNA loading into EV and uptake by recipient cells was exhibited 
in Figure 1. 
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sis, and receptor signaling. 
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Although fibrotic interstitial lung disease limits the lesion site in the lung, it results 

in a series of pathological events, among which fibroblast proliferation and differentiation, 
apoptosis, autophagy, and inflammatory damage may ultimately lead to lung function 
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The maturation of the miRNA form mainly by the canonical pathway. Based on the
EVs’ sizes, they can be divided into three subtypes: exosomes, microvesicles, and apoptotic
bodies. miRNAs can be loaded into extracellular vesicles via various RNA-binding proteins.
These extracellular vesicles containing miRNAs are released into the extracellular space.
Recipient cells can uptake exosomal miRNAs through direct fusion, endocytosis, and
receptor signaling.

7.3. EV-miRNA Is One of the Dominating Effectors

Although fibrotic interstitial lung disease limits the lesion site in the lung, it results in
a series of pathological events, among which fibroblast proliferation and differentiation,
apoptosis, autophagy, and inflammatory damage may ultimately lead to lung function
failure [109]. Due perhaps to the chronic and progressive nature and severity of lung
injury induced by pulmonary fibrosis, several profibrotic miRNAs are downregulated in
lung tissue in response to pulmonary fibrosis, as previously shown for miR-21, miR-506,
miR-96, miR-499a, miR-326, miR-410, miR-124, miR-328, miR-420, miR-7, miR-19a, miR-19b,
miR-26b, miR-9, miR-29, and miR-30a [110,111]. In contrast, other antifibrotic miRNAs,
such as miR-30, miR-101, miR-344, miR-323a-3p, miR-29b, miR-185, miR-29a, miR-185,
miR-186, miR-221, miR-1343, miR-27a-3p, and miR-27b, are increased [110,111]. miRNAs
have been shown to play an essential role in these pathological events. For example, several
miRNAs, namely miR-328, miR-420, miR-7, miR-19a, miR-19b, and miR-26b, can amelio-
rate pulmonary fibrosis by inhibiting fibroblast differentiation or proliferation, whereas
other miRNA molecules, such as miR-30, miR-101, and miR-344 exert the opposite ef-
fect [110,112,113]. miR-30a and miR-29 have been shown to be significantly downregulated
in a murine model of lung fibrosis [114,115], promoting epithelial cell apoptosis resistance.
However, miR-34a upregulation was found to accelerate lung epithelial cell apoptosis,
causing epithelial cell dysfunction and increased lung fibrosis [116]. The overexpression of
miR-499a and miR-326 significantly reduced lung fibrosis and promoted autophagy in vivo



Pharmaceuticals 2022, 15, 1276 10 of 16

and in vitro [117,118]. Additionally, miR-96 silencing can result in upregulation of FOXO3a,
thereby promoting the activation of NLRP3 inflammasome [119].

As mentioned above, macrophages are vital cells in the immune response; how-
ever, they can also promote pulmonary fibrosis. EV-miRNAs derived from macrophages
are also involved in mediating pulmonary fibrosis. For example, the overexpression of
M2 macrophage-derived EV-miR-328 contributed to boosted fibroblast proliferation and
increased pulmonary fibrosis by modulating FAM13A [61]. Another study using high-
throughput sequencing examined EV-miRNA profiles from macrophages exposed to silica.
Compared with unexposed macrophages, 155 miRNAs were upregulated, and 143 miR-
NAs were downregulated [120]. Delivery of EVs derived from various MSCs appeared
to restore reduced levels of miRNA in fibrotic lung tissue. EV-miRNAs play important
roles in coordinating responses to pulmonary fibrosis by modulating various pathologi-
cal processes. miR-186, miR-29b-3p, miR-21-5p, miR-182-5p, and miR-23a-3p from bone
marrow MSC-derived EVs [38,40,121,122], miR-27a-3p from adipose-derived EVs [53], and
miR-Let-7 from menstrual blood-derived endometrial stem cell-associated EVs have been
shown to inhibit pulmonary fibrosis [50]. Specifically, miR-29b-3p and miR-186 have the
potential to inhibit the activation of fibroblasts by regulating FZD6, SOX4, and DKK1.
miR-21-5p, miR-182-5p, miR-23a-3p, miR-Let-7, and miR-27a-3p can reduce the synthesis
of proinflammatory cytokines. They can also inhibit inflammation-activation-associated
signaling pathways (such as NLRP3 inflammasome and NF-κB). Notably, miRNAs from
MSC-EVs can also modulate macrophage polarization in pulmonary fibrosis. Compared
with aging MSC-EVs, young MSC-EVs are related to lower levels of miR-127-3p and miR-
125b-5p. Furthermore, inhibition of miR-127-3p and miR-125b-5p in bone-marrow-derived
macrophages was reported to downregulate M1 macrophage polarization [54]. Likewise,
miR-27a-3p was reported to be the key effector of MSC-EVs in mitigating pulmonary fibro-
sis. Mechanistically, miR-27a-3p was revealed to promote M2 macrophage polarization by
targeting NFKB1 [60]. Figure 2 described more details.
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Mesenchymal stem cells are isolated and identified from various tissue sources. Mes-
enchymal stem cells can produce various EV-miRNAs, which contribute to inhibiting
pulmonary fibrosis, whereas EV-miRNAs derived from macrophages can promote pul-
monary fibrosis. Of note, miRNAs from MSC-EVs can also modulate macrophage activation
and polarization, suppressing pulmonary fibrosis.

8. Conclusions

MSC-based and macrophage-based cell therapies are deemed promising strategies to
promote lung repair, due to tremendous regenerative potential and typical immunomod-
ulatory function. EVs are lipid bilayer-covered nanoparticles secreted from virtually all
cell types, and are a significant component of the broader class of nanoparticles that have
essential roles in intercellular communication. In this paper, we have shown that EVs from
MSCs and macrophages are profoundly involved in controlling the physiological responses
of pulmonary fibrosis. Macrophages are vital for MSCs to exert their protective effects
by attenuating macrophage activation and M1 phenotype macrophage polarization. As
essential components and effectors of EVs, miRNAs selectively sorted into EVs potentially
regulate specific aspects of the onset and progression of pulmonary fibrosis. However, the
study of EV miRNAs from MSCs and macrophages in pulmonary fibrosis remains in its
infancy, and further research is required to investigate their role.
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