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ABSTRACT Metagenomic next-generation sequencing (mNGS) can accurately detect
pathogens in clinical samples. However, wet-lab contamination constrains mNGS
analysis and may result in erroneous interpretation of results. Many existing methods
rely on large-scale observational microbiome studies and may not be applicable to
clinical mNGS tests. By generation of a pretrained profile of common laboratory con-
taminants, we developed an mNGS noise-filtering model based on the inverse linear
relationship between microbial sequencing reads and sample library concentration,
named the background elimination and correction by library concentration-normal-
ized (BECLEAN) model. Its efficacy was evaluated with bacteria- and yeast-spiked
samples and 28 cerebrospinal fluid (CSF) specimens. The diagnostic accuracy, precision,
sensitivity, and specificity of BECLEAN with reference to conventional methods and di-
agnosis were 92.9%, 86.7%, 100%, and 86.7%, respectively. BECLEAN led to a dramatic
reduction of background noise without affecting the true-positive rate and thus can
provide a time-saving and convenient tool in various clinical settings.

IMPORTANCE Most of the existing methods to remove wet-lab contamination rely
on large-scale observational microbiome studies and may not be applicable to clini-
cal mNGS testing in individual cases. In clinical settings, only a handful of samples
might be sequenced in a run. The lab-specific microbiome can complicate existing
statistical approaches for removing contamination from small-scale clinical metage-
nomic sequencing data sets; thus, use of a preliminary lab-specific training set is
necessary. Our study provides a rapid and accurate background-filtering tool for clin-
ical metagenomic sequencing by generation of a pretrained profile of common labo-
ratory contaminants. Notably, our work demonstrates that the inverse linear relation-
ship between microbial sequencing reads and library concentration can serve to
identify true contaminants and evaluate the relative abundance of a taxon in samples
by comparing the observed microbial reads to the model-predicted value. Our find-
ings extend the previously published research and demonstrate confirmatory results in
clinical settings.
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Metagenomic next-generation sequencing (mNGS) has rapidly emerged as a prom-
ising diagnostic tools for infectious diseases in various clinical settings. It can

generate both species-level taxonomic resolution and functional genomic information
without a priori knowledge of the potential pathogens. However, its high sensitivity
can also be a drawback that can undermine its application potential, because it easily
detects ubiquitous contaminating DNAs. The contaminants may distort taxonomic
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distributions and relative frequencies in microbial data sets, which may lead to errone-
ous interpretations and identifications, especially during the analysis of samples with
low microbial biomass (1–5). Contamination arising from homologous, similar, or host
sequences in bioinformatics analysis is one of the common problems in mNGS analysis,
and several tools have been developed to tackle it. Tennessen et al. (6), Lu et al. (7),
and Parrello et al. (8) described methods for identifying or removing contaminants from
genomes, whereas Burnham et al. developed a low-biomass background correction tool
to remove the noise, which was informed by the uniformity of the coverage of microbial
genomes and the batch variation (1). Moreover, DeconSeq (9), CS-SCORE (10), and
GenCoF (11) were developed to remove human DNA contamination from metagenomic
data sets. When it comes to intraspecies and cross-species contamination, several tools,
including CroCo (12), ConFindr (13), and Recentrifuge (14), are viable.

On the other hand, contamination can emanate from the reagents, consumables,
environment, technicians, or equipment at any point during sample collection, nucleic
acid extraction, or library preparation (15–17). The established best practices for miti-
gating wet-lab contamination constraints focus on inclusion of appropriate laboratory
controls during sampling and processing (1, 2). One way of minimizing background
noise for certain contaminants is by eliminating sequences that do not reach certain ar-
bitrary thresholds, based on negative-control (NC) or blank-control read counts (18).
However, this approach relies on the precondition that the input biomass of negative
controls be kept on the same (or similar) level as test samples, because the frequency
of contaminating DNA is inversely proportional to the total nucleic acid amount and
the prevalence of contaminants will be higher in negative controls than in true sam-
ples, due to the absence of competing DNA in the sequencing process (19). Thus, use
of negative controls or blank controls to calculate an arbitrary threshold for back-
ground filtering is vulnerable, particularly when samples of diverse origins or different
types are sequenced together in the absence of appropriate corresponding negative
controls. Considering that the biomass and microbiome of controls and samples vary
greatly in most cases, it is wiser to use a set of dynamic threshold values to remove
contaminants, rather than one fixed set of threshold values.

In the December 2018 issue of Microbiome, Davis et al. provided a user-friendly R
package entitled decontam and validated their approach on multiple data sets to dem-
onstrate robust detection of contaminating sequences in metagenomic sequencing
results (19). The decontam program implements two core methods to identify external
contamination: (i) the frequency-based model and (ii) the prevalence-based model.
Analyzing sequences with decontam eliminates the need to assign an arbitrary thresh-
old for background filtering and reduces reliance on an a priori set list of known con-
taminants. In April 2019, Zinter et al. (5) presented an amendment to the method of
Davis et al. and provided an ingenious approach for quantifying contaminating nucleic
acid by associating sequencing read output with the mass of a spike-in control. Their
approach relies on incorporation of multiple spike-in DNA or RNA controls into the
sample nucleic acid, with the approximate amount of original sample calculated based
on the following equation: contaminant mass (in picograms) = spike-in mass (in pico-
grams) � (contaminant reads/spike-in reads) (5, 20). However, the approaches devel-
oped by Zinter et al. (5) and Davis et al. (19) both depend on metadata generated from
collections of large batches of specimens and controls, which might be a time-consum-
ing process. In a clinical diagnostic laboratory, several samples of diverse origins must
be sequenced rapidly and perhaps without the flexibility for experimental design that
might be used in an optimal setting to statistically identify contaminants from within a
sample set; timely and accurate detection of pathogens is critical for clinical diagnosis
and the administration of appropriately targeted antibiotics. In these cases, rapid sepa-
ration of true microbial components from contaminants by bioinformatics analysis
may not be adequately served by the existing methods of Davis et al. and Zinter et al.,
because those approaches both depend on large metadata sets generated from a set
of biological samples or controls.
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Based on the assumption that generation of a pretrained profile (training set) of
common laboratory contaminants may be useful in clinical settings, here we provide a
premodeling solution to differentiate between wet-lab contaminant versus truly pres-
ent microbial taxa. This approach does not rely on incorporation of spike-in controls to
calculate biomass, but rather utilizes the inverse linear relationship between microbial
sequencing reads and sample library concentration; it is accordingly termed the back-
ground elimination and correction by library concentration-normalized (BECLEAN)
model. Furthermore, we validated the model by using contaminant spiked-in samples
and 28 clinical cerebrospinal fluid (CSF) specimens, and the model was demonstrated
to be effective and promising in mNGS background filtering under varied conditions.

RESULTS
Premodeling. To preliminarily generate a profile of common laboratory contami-

nants and figure out the dynamic threshold values for background filtering, we sought
to capture the characteristics of the contaminants from a set of training samples and
establish the statistical relationship (premodeling) between contaminant reads and
input biomass. We proposed that the quantity of microbial reads for a given taxon in a
given sample can be described according to its deviation from the value predicted by
the statistical model, and this value can be used to identify whether the taxon is a con-
taminant or a true microbial component in the sample. Hence, we first performed mul-
tiple sequencing by using an artificial DNA fragment which had no sequence similarity
with known species (see Table S1 in the supplemental material), to allow for definite
alignment after sequencing. The sequenced samples were comprised of different
amounts (100 pg to 100 ng, 8 input levels, and 9 duplicates for each group) of the arti-
ficial DNA as input template (Fig. 1A), as opposed to environmental or reagent-only
samples. In total, we analyzed the data set of 72 libraries (in 2 sequencing runs) pre-
pared from serial dilutions of synthetic DNA in lab A, which rationalized exploration of
background contaminants in reagents, consumables, environment, technicians, and
equipment. Interestingly, we found the logarithm of read counts per million total reads
(RPM) to base 2 to be inversely proportional to log2-transformed library concentration
for some taxa (e.g., Yarrowia lipolytica and Moraxella osloensis) (Fig. 1B), albeit with a
slightly smaller R2 value compared to that generated by a linear regression model fea-
turing log2-transformed sample input mass (Fig. 1C). To identify the most probable
contaminating taxa and minimize the effect of random variation, we selected the top
38 species with a frequency of occurrence of $20 (n = 72) as candidates (Fig. 1D), each
of which was described by a linear model (see Fig. S1, left panel). Some of the taxa
detected in 29 of these samples had reads outside the linear range (see Materials and
Methods) and were therefore excluded from modeling, with an average sequence-to-
sample ratio of 0.000013% (0.000008% to 0.000046%; median ratio, 0.000011%). Of the
top 38 suspected microbes identified by the modeling process, the residuals of 32 taxa
model fits approximated a near-normal distribution (e.g., Yarrowia lipolytica and
Moraxella osloensis) (Fig. 1E) and were thought to be significant background contami-
nants (P . 0.05) (Fig. 1F and Fig. S2). The approximately normal distribution of the
residuals indicated that the deviation of detected microbial reads from the model-pre-
dicted value could serve to identify outliers to the linear relationship while also
accounting for varying statistical power at different points along the linear regression.
To exclude nucleic acid contamination originating from aerosolized PCR amplicons, we
also investigated the genome distribution of reads for each taxon (see Fig. S3) in the
data set. Once the model was established, a Z-score of a given taxon in the test sample
could be calculated from the sample library concentration based on the model fit from
the training data set, thus describing the deviation of read density from the model-pre-
dicted value, which could then identify outliers. The high Z-score was because the read
density for the taxon was above what was predicted from contaminants based on the
library concentration using the trained model. Then, we can use the sample library
concentration and the Z-score metric (Z-score = 3, set as the threshold) to predict the
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FIG 1 Establishment of BECLEAN and background species profiling. (A) Flowchart of the experimental design for BECLEAN modeling. (B) Contaminant
sequencing reads were inversely proportional to library concentration. For a total n of 72 in the training data set, sequencing reads for Yarrowia lipolytica

(Continued on next page)
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RPM scope of a certain contaminant taxon in a given sample and to evaluate the rela-
tive abundance of a taxon in samples by comparing the detected RPM to the model-
predicted value. A diagram of how BECLEAN identifies outlier among contaminants is
provided in Fig. 1G. The red dots T1 and T2 represent most-probable contaminants,
whereas T3 represents a high likelihood of finding the suspected target taxon in the
sample metagenome.

To evaluate the effect of random variation of our premodeling process, we per-
formed principal coordinates analysis (PCoA) to examine the similarity of the microbial
communities in 2 separate premodeling sequencing runs. The scatterplot in Fig. 1H
shows the taxonomic compositional profiles of libraries of different input biomass
when there was no significant difference between the two sequencing runs (permuta-
tional multivariate analysis of variance [PERMANOVA] P = 0.924). We also established 2
models using the data sets of run 1 and run 2 and inspected the consistency between
these two models. As shown in Fig. 1I, species with different relative frequencies
showed a high congruence between the 2 models. These results indicated a good
reproducibility and robustness of the BECLEAN premodeling approach under relatively
stable conditions.

Verification using contaminant-spiked samples. To verify the efficacy of BECLEAN
filtering and to demonstrate how much biomass is necessary for taxa identified as
contaminants in the training set to be accepted as real members of the community
in a given sample, we sequenced serial dilutions of samples, with or without a spike-
in mix of 4 background contaminants identified in the above-mentioned training
data set (including Yarrowia lipolytica, Moraxella osloensis, Acinetobacter johnsonii,
and Acinetobacter junii) (Fig. 2A). The BECLEAN pretraining model (Fig. 1) was reused
to calculate the Z-score (the likelihood of being either contaminants or truly present
microbial components) for these 4 spike-in microorganisms. The RPM and BECLEAN
Z-scores for each taxon are shown in Fig. 2B and C, respectively. For 1 � 104 human
cells (mimicking a low-biomass input), BECLEAN removed these 4 microbes to ,10
CFU/mL, as their Z-scores were less than 3, even though mNGS was able to detect 1
CFU/mL for Moraxella osloensis, Acinetobacter johnsonii, and Acinetobacter junii.
Meanwhile, for 1 � 105 human cells (mimicking median biomass input), the limit of
detection (LOD) of mNGS was about 100 CFU/mL for Yarrowia lipolytica, 1 CFU/mL for
Moraxella osloensis, and 10 CFU/mL for Acinetobacter johnsonii and Acinetobacter
junii, but BECLEAN was able to filter these 4 microbes to ,100 CFU/mL. These results
indicate that BECLEAN may be able to identify those manually spiked-in background
species of median or high abundance as true positives, whereas BECLEAN may fail to
distinguish between low-abundant spiked-in microbes and endogenous contaminants.

Validation using CSF samples. CSF is one of the typical types of samples with low
microbial biomass and is susceptible to endogenous contaminants and erroneous
interpretations during mNGS analysis. We performed a single-blinded, retrospective

FIG 1 Legend (Continued)
and Moraxella osloensis were normalized per million (RPM). The linear regressions associating log2-transformed library concentration with log2-transformed
RPM of Yarrowia lipolytica and Moraxella osloensis are described, with R2 and P values. (C) Contaminant sequencing reads were also inversely proportional
to sample input mass. The linear regressions associating log2-transformed sample input mass with log2-transformed RPM of Yarrowia lipolytica and
Moraxella osloensis are described with the R2 and P values. (D) The 60 most frequent contaminants identified in BECLEAN model in lab A. The species with
frequencies of occurrence of $20 (blue box) were considered the most likely background contaminants, whose P values all were ,0.05. (E) A histogram of
the residual (the difference between each observed value and the model-predicted value) and its probability density distribution for each observation.
Residuals approximated a near-normal distribution. (F) The P values of the normality test and linear regression R2 of the 38 most frequent ($20)
contaminants identified in BECLEAN model in lab A. Only 32 candidates passed the test (P . 0.05) and were kept as background species for subsequent
analysis (blue box). (G) Diagram of how BECLEAN filtering works. A Z-score can be calculated to describe the deviation from the model-predicted value for
a given sample, thus indicating the probability of background contamination or true component in the sample. T1, T2 are probable background
contaminants; for T3 there is a high probability that the outlier represents a true component in the sample. (H) PCoA based on Bray-Curtis distances of
serially diluted artificial DNA samples sequenced in two runs. The color of data points gradually deepen as DNA input mass increases from 0.1 ng to
100 ng. Dots and crosses represent libraries sequenced in run 1 and run 2, respectively. The microbial profile varied with DNA input mass, but no
significant difference in microbial profile was found between the 2 sequencing runs. (I) Similarity of background contaminant models based on two
separate runs. All taxa with different relative frequencies showed a high cosine similarity (close to 1.0) between the two models. Each point represents a
background species. The x-coordinate value indicates the relative frequency of a certain background species in two runs, and the y-coordinate value
indicates the cosine value of the angle between the two model vectors. Color bar shows the average R2 of the two models.
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FIG 2 Verification using contaminant-spiked samples. (A) Flowchart of experimental design for verification. (B) Heatmap analysis of the
normalized sequencing reads (RPM) of 4 spike-in species (column). Rows are experimental groups with different incorporation amounts of
the spike-in mixture. (C) Heatmap analysis of the Z-score of 4 spike-in species (column). Rows are experimental groups with different
incorporation amounts of spike-in mixture. The blue and magenta lines indicate each identification and filtering limit of BECLEAN for
1 � 104 and 1 � 105 human cells in background, respectively.
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study to validate the differential diagnosis of mNGS after BECLEAN filtering using 28
CSF samples, without inclusion of appropriate laboratory controls during sampling and
processing. We used the same batch of reagents for validation experiments and the
aforementioned modeling. Z-scores were calculated for each of the 32 contaminants
identified in our model (Fig. 3A, left panel), where only those with a Z-score of .3
were retained after BECLEAN filtering (Fig. 3A, right panel). After background filtration,
indeed only a few bacterial species could be identified as potential pathogens in some
CSF samples (Fig. 3B). We noted that Xanthomonas campestris, Malassezia restricta,
Malassezia globosa, Corynebacterium segmentosum, Alcaligenes faecalis, Staphylococcus
capitis, Staphylococcus hominis, Pseudomonas stutzeri, and Acinetobacter baumannii, ei-
ther ubiquitous or common colonizing microorganism on the skin, could not be com-
pletely removed from some samples after background filtration. This suggests BECLEAN
may not eliminate contaminants highly abundant in the environment, as well as true
community members in specimens. Accordingly, Xanthomonas campestris, Malassezia
restricta, Malassezia globosa, Corynebacterium segmentosum, and Alcaligenes faecalis
were indeed considered true-positive components in a given sample but clinically irrele-
vant. The common contaminant Acinetobacter baumannii, detected in case 22 and case
18, and Staphylococcus capitis, detected in case 27, were considered true positives and
clinically relevant (see Table S2). In contrast, Acinetobacter baumannii identified in case 5
and Staphylococcus hominis and Pseudomonas stutzeri identified in case 12 were
regarded as false positives because they were potential pathogens but clinically irrele-
vant. By comparing the results of conventional etiology testing and clinical diagnosis,
the accuracy, precision, sensitivity, and specificity of the mNGS approach were calculated
to be 92.9%, 86.7%, 100%, and 86.7%, respectively (Fig. 3C and Table S2). More impor-
tantly, the generation of BECLEAN pretrained models was practically efficient and time-
saving in clinical settings where only a handful of samples (or even a single sample)
might be sequenced in a run, whereas small-scale sample sequencing and insufficiently
rigorous case-control design was not the typical use case for the R package decontam
employed by Davis et al.

Notably, Xanthomonas campestris was identified in most CSF specimens even after
BECLEAN filtering (Fig. 3A and B). We speculate that this organism contaminated the
samples at collection or pretreatment with saline dilution. Therefore, we performed a
quantitative PCR (qPCR) test to confirm the presence of Xanthomonas campestris in
these samples. Compared with the no-template control and control group, the cycle
threshold values of contaminating endogenous DNA in some CSF samples were indeed
lower (Fig. 3D). This implies traces of Xanthomonas campestris nucleic acid constituted
those sample DNAs and will be identified as outliers in the linear regression model.

Comparison between BECLEAN and decontam. Next, we evaluated the perform-
ance of BECLEAN in a clinical diagnostic laboratory by comparing it to another back-
ground removal tool, decontam, which relies on similar statistics principles but without
the premodeling procedure to identify contamination. Instead, decontam uses a data
set consisting of multiple negative-control samples (e.g., reagent-only or blank sam-
pling instrument samples) and test samples to build frequency-based or prevalence-
based models. However, in real-world clinical settings, samples of diverse origins must
be sequenced rapidly and perhaps without the flexibility for experimental design
(including multiple appropriate controls) that might be used in an optimal setting to
statistically identify contaminants from within a sample set. To obtain an evaluation
data set suitable for both decontam and BECLEAN, we not only sequenced some libra-
ries for BECLEAN premodeling but also collected several negative CSF samples as well
as reagent-only blank controls for decontam modeling. In particular, BECLEAN premod-
eling was first performed through analysis of 80 libraries prepared from the artificial
DNA (used in Fig. 1) of different amounts (100 pg to 100 ng, 8 input levels, and 10
duplicates for each group) and sequenced in two separate runs (see Fig. S4A). PCoA
showed that there was no significant difference between the identified microbial pro-
files of the two separate sequencing runs (PERMANOVA P = 0.977) (Fig. S4C). All
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FIG 3 Clinical validation of BECLEAN by using CSF samples. (A) Heatmap analysis of the Z-score of 32 background contaminants (column) for 28 CSF
samples. Rows are individual samples tested. Abundance matrix before (left) and after (right) application of BECLEAN filtering is shown. (B) Heatmap

(Continued on next page)

BECLEAN Model for Filtering Clinical mNGS Data Microbiology Spectrum

September/October 2022 Volume 10 Issue 5 10.1128/spectrum.01779-22 8

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01779-22


background contaminants had considerable congruence in models established from
these two runs (e.g., Moraxella osloensis, Escherichia coli, and Pseudomonas aeruginosa)
(see Fig. S4B), and identified contaminants with different relative frequencies showed a
high congruence between the 2 models. Besides, the higher the relative frequency of a
certain taxon was, the higher the similarity between these models was, both in terms
of cosine similarity and R2 value of the linear regression model (see Fig. S4D and E).

For decontam modeling, we prepared some libraries from 27 negative CSF samples
validated by both culture and mNGS test in the clinical laboratory of Peking Union
Medical College Hospital, as well as 5 blank NC control samples, using the same batch
of reagents and protocol as for the BECLEAN premodeling procedure. When we used
the decontam R package to identify background contaminants from the data set from
those samples, we found that DNA concentrations of 4 blank NC and 8 negative CSF
samples were below the detection limit of the Qubit double-stranded DNA (dsDNA)
high-sensitivity assay, and so the effect of decontam modeling was compromised by
the inaccurate DNA quantification solution (see Fig. S5). Surprisingly, library concentra-
tion was a better indicator of sample biomass and more suitable for decontam model-
ing under such a situation (Fig. 4A to C, left panels). Moreover, decontam identified
well the same contaminants in the data set consisting of blank NC and negative CSF
samples as BECLEAN did (Moraxella osloensis [Fig. 4A], Escherichia coli [Fig. 4B], and
Pseudomonas aeruginosa [Fig. 4C]; left panels show decontam results and right panels
shown BECLEAN results). All NC and negative CSF samples were within the Z 6 3
region of the 3 preestablished models of BECLEAN, consistent with the distribution of
the modeling data set and suggesting stability of the background profile across differ-
ent data sets under the same experimental setting (Fig. 4, right panels, and Fig. S4B).

Afterwards, we spiked a diluted bacteria culture suspension (Moraxella osloensis,
Escherichia coli, or Pseudomonas aeruginosa, all identified by decontam and BECLEAN)
into several separate negative-control CSF samples to mimic three kinds of pathogen-
positive clinical specimens: (i) 1 Moraxella osloensis-positive sample with high biomass,
(ii) 8 Escherichia coli-positive samples with high biomass, and (iii) 6 Pseudomonas aeru-
ginosa-positive samples with low biomass. To mimic a scenario in which various types
of samples of diverse origins might be tested and analyzed together in a clinical diag-
nostic laboratory, these positive samples were added into the aforementioned data set
and analyzed by decontam and BECLEAN. It can be seen that the signals of spiked-in
contaminants showed an outlier pattern (Fig. 4A to C, red dots in middle and right pan-
els). BECLEAN well identified all positive samples (Z $ 3) based on the preestablished
model (Fig. 4A to C, right panels). However, decontam failed to recognize spiked-in
Pseudomonas aeruginosa and still regarded them as contaminants (Fig. 4C, middle
panel), because the difference between the positive and negative signals was not re-
markable (Z score range, 3.09 to 4.64) when only a small amount of Pseudomonas aeru-
ginosa was added into negative CSF samples. On the other hand, the P values of fre-
quency-based models for Moraxella osloensis and Escherichia coli increased markedly
(Fig. 4A and B, middle panels) after the incorporation of positive samples, indicating
that decontam’s statistical model noted the presence of outliers and found that the
signals no longer fit the contaminant pattern well. Notably, decontam only provides a
group analysis result of whether a taxon within all samples meets the characteristics of
contamination; it is not able to identify whether a taxon within each sample is

FIG 3 Legend (Continued)
analysis of normalized sequencing reads (RPM) of 32 background contaminants and 9 suspected pathogens (column) for 28 CSF samples. Rows are
individual samples tested. Abundance matrix before (left) and after (right) application of BECLEAN filtering is shown. The magenta boxes indicate probable
false-positive detection even after BECLEAN filtering. The box with a plus sign indicates pathogens identified by mNGS in agreement with conventional test
or clinical diagnosis. (C) Accuracy of mNGS after application of BECLEAN filtering relative to clinical test or diagnosis of 28 CSF samples. A 2 � 2
contingency table shows the results of the clinical study. TP, true positive, the count of samples with exactly right pathogen(s) reported by mNGS after
filtering; TN, true negative, count of true-negative samples in which mNGS did not report any pathogens after filtering; FP, false positive, count of negative
samples with at least one pathogen reported by mNGS after filtering; FN, false nagative, count of positive samples with at least one positive pathogen not
reported by mNGS. (D) qPCR test for Xanthomonas campestris in 23 CSF samples, library preparation reagents, and no-template control (NTC). Five CSF
samples were not tested due to the lack of remaining sample and nucleic acid.

BECLEAN Model for Filtering Clinical mNGS Data Microbiology Spectrum

September/October 2022 Volume 10 Issue 5 10.1128/spectrum.01779-22 9

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01779-22


FIG 4 Comparison between BECLEAN and decontam. BECLEAN and decontam modeling and analysis for Moraxella osloensis (A), Escherichia coli (B), and
Pseudomonas aeruginosa (C) using different data sets. Left panels, frequency-based distribution plot generated by decontam when analyzing blank NC and
negative CSF samples only. Tables below the plots shows the P values and conclusions of each method under the default threshold of corresponding data
set. Middle panels, frequency-based model after incorporating certain positive sample(s). Tables below the plots shows the P values and conclusion of each
method under default threshold of corresponding data set. Right panels, preestablished model (red line) and Z 6 3 region (gray area) of BECLEAN, and
read distribution of negative and positive samples. Cyan dots, blank NC and negative CSF samples; red dots, pathogen-incorporated positive samples; blue
dots, artificial DNA samples for BECLEAN modeling.
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contaminant. To sum up, decontam may be vulnerable when distinguishing contami-
nation from true microbial taxa for analysis of data sets generated from different clini-
cal sample types harboring the same pathogens of widely different abundances.
Besides, when the positive signal in a real sample is close to the contaminant pattern,
it will be difficult for decontam to distinguish them as well.

Background contaminants identified by BECLEAN under different circum-
stances. Previous studies revealed that changes in reagents, consumables, environ-
ment, technicians, equipment, or protocols could critically impact sequence-based
microbiome analyses (2, 3, 16, 17, 21), which may be an important caveat for effective
implementation for BECLEAN. Therefore, it is necessary to regularly monitor the con-
taminant profile following any significant changes in experimental variables. We pro-
posed to sequence several low-biomass NC samples (the artificial DNA with xenobiotic
sequence used in the premodeling process) in each run and compare, with PCoA and
PERMANOVA, those samples with similar samples used for modeling. If there were sig-
nificant differences in the background composition between the two batches of low-
biomass NCs, it would be necessary to revalidate the BECLEAN model.

To test the above-mentioned proposal and evaluate the reproducibility of BECLEAN,
we decided to perform a second modeling in a second lab (lab B) using another training
data set (n = 72), with the same batch of reagents and protocol for lab A premodeling. In
addition, before premodeling in lab B, several artificial DNA samples with low input mass
were used for library preparation in both lab A and lab B, with the same batch of
reagents and protocol. After those NC libraries from 2 labs were sequenced and ana-
lyzed, PCoA based on Bray-Curtis distances demonstrated that the microbial profiles
between the 2 labs might be somehow different (Fig. 5A). The BECLEAN model was then
reestablished in lab B. The frequency distributions of all the background contaminants
identified by BECLEAN models in lab A and lab B are listed in Fig. 5B. The background
contaminants identified in the two models can be classified into groups according to
their frequency of occurrence: (i) 32 species with relative high occurrence frequency in
both models (Fig. 5B, green box on the top), which probably originated from a common
source of contaminants; (ii) contaminants with occurrence frequencies that differed
greatly between the two models (Fig. 5B, the two boxes in the middle), indicating a dif-
ferent background composition between the 2 labs; and (iii) contaminants with relatively
low occurrence frequencies in both models (Fig. 5B, box on the bottom), which may be
more susceptible to the random variation. In total, 56 species were thought to be signifi-
cant background contaminants in lab B, whereas 38 contaminants were identified in lab
A. The frequency and linear regression model of Yarrowia lipolytica and Moraxella osloen-
sis in lab A was comparable to that in lab B (Fig. 5C), implying common sources of con-
taminants. We also observed unique background species between the labs (e.g.,
Rubrobacter xylanophilus and Pseudomonas azotoformans) (Fig. 5C), implying that part of
the microbial flora differed between laboratories.

DISCUSSION

The successful use of shotgun sequencing in identifying Leptospira santarosai infec-
tion in the cerebrospinal fluid of a 14-year-old boy in 2013 (22) set the pedestal for
wide application of metagenomic sequencing in the diagnosis of infectious disease,
particularly for infections of the central nervous system (18, 23–25). However, the chal-
lenge of low biomass in CSF limits the application of metagenomic sequencing (26). In
addition, low pathogen loads in CSF samples also constrain efficient nucleic acid
extraction, as the samples are frequently laden with microbial contaminants. To address
background contamination, Zinter et al. and Davis et al. developed a novel statistical
approach for identification and removal of contaminant sequences, either by incorpora-
tion of standardized RNA controls to calculate sample input mass and the studentized re-
sidual of certain taxon (5) or by bioinformatics analysis of signatures of contaminant
DNA (19). These approaches are both based on the principle of inverse proportionality
of the microbe sequence read count to total sample input mass. These methods do not
rely on presequencing of environmental or reagent-only samples and readily fit into
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FIG 5 Background contaminants identified by BECLEAN under different circumstances. (A) PCoA based on Bray-Curtis distances of same artificial DNA
samples with low input mass sequenced in two labs. Colors of data points gradually deepen as DNA input mass increases from 0.1 ng to 1 ng. Dots and

(Continued on next page)
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existing mNGS workflows. In fact, the R package decontam employed by Davis et al. was
able to identify contaminants well in a data set consisting of blank NC and negative CSF
samples. However, when analyzing a mimic data set that incorporated contaminant-
spiked samples, decontam noted the abnormal signals of a Moraxella osloensis-positive
sample and Escherichia coli-positive samples but failed to recognize spiked-in Pseudomonas
aeruginosa, owing to its similar pattern to contaminants. The decontam is a group analysis
tool and will calculate the likelihood of whether a taxon within all samples meets the char-
acteristics of contamination; however, it is not suitable for individual analysis. In real-life
medical practice, it is common that some microorganisms detected by mNGS are both true
pathogenic positives and background contaminants (e.g., Escherichia coli, Pseudomonas
aeruginosa, and Acinetobacter baumannii). Concerns should be taken for such intractable
cases, as those microorganisms may be easily misclassified. In addition, decontam or the
approach developed by Zinter et al. are unsuitable for analyzing data sets generated
from different clinical samples of diverse origins at the same time. Clinical samples of dif-
ferent types can harbor various resident flora containing the same pathogens at different
abundance levels. Such a complicated situation will affect the effectiveness of these
modeling approaches to identify contamination. Take Escherichia coli as an example:
while it is more likely to be a low-abundance contaminant for blood samples due to its
ubiquitous existence in the lab environment, Escherichia coli is one of the major inhabi-
tants of the intestines, with high abundance. Thus, the two approaches mentioned
above are not applicable to analyze the presence of Escherichia coli in a mixed data set
generated from blood, CSF, anal swabs, and stool samples at the same time, because of
irregular distributions of abundance of the bacteria in such samples.

Additionally, a short turn-around time of pathogen identification in clinical settings
is necessary for mNGS-based methods. In addition to the complicated wet-lab proce-
dure, the collection of a large batch of specimens and controls is time-consuming.
Accordingly, there is a continuous search for rapid and accurate clinical mNGS solu-
tions for identification of pathogens, even for a small number of samples. As the
approaches developed by Zinter et al. (5) and Davis et al. (19) both depend on large
metadata sets generated from large biological samples or controls, without data accu-
mulation it may be unrealistic to apply these methods to quantify and eliminate back-
ground noise in small-scale clinical metagenomic data. To address these inherent limi-
tations, we determined the BECLEAN background premodeling before experiments to
have preunderstanding of possible contaminants, to minimize the interference in
metagenomics of test biological samples. The motivations for decontam and BECLEAN
are somewhat divergent, with decontam focusing on large-scale observational micro-
biome studies and BECLEAN focusing on small-scale clinical diagnostic use. Although
premodeling entails additional cost, it allows timely identification of pathogens not
only for small numbers of samples but also for varied samples. In addition, it eliminates
the need for incorporation of spike-in DNA or RNA controls in the sample.

In addition to the spike-in approaches employed by Zinter et al., alternative ways to
measure sample DNA mass are Qubit assays or UV spectroscopy (e.g., using a
NanoDrop spectrophotometer). We found that it was not ideal to measure sample
DNA mass for BECLEAN or decontam modeling when using Qubit assays or UV spec-
troscopy (see Fig. S5), especially when the input mass of many samples was lower than
the LOD of those approaches and hard to measure. It is not necessary to accurately
measure the sample input mass for modeling, as BECLEAN relies on the inverse linear
relationship between microbial sequencing reads and library concentration. Because
we employ PCR-free-based approaches for library preparation to reduce PCR bias that

FIG 5 Legend (Continued)
crosses represent libraries prepared in lab A and lab B, respectively. The microbial profile showed significant differences between the 2 labs. (B) The
frequency distribution of all the background contaminants identified in BECLEAN models in lab A and lab B. Taxa were grouped and labeled according to
their occurrence frequency in two models (green boxes). F, occurrence frequency; A, lab A; B, lab B. (C) BECLEAN modeling was established in lab A and
lab B, using the same batch of library preparation reagents. The linear regressions associating log2-transformed library concentration with log2-transformed
RPM of Yarrowia lipolytica, Moraxella osloensis, Rubrobacter xylanophilus and Pseudomonas azotoformans are described with the R2 and P values.
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may affect calculations of abundance (21), it is necessary to precisely measure the con-
centration of each library before pooling them. It is more advantageous to use library
concentration for linear regression modeling, both for BECLEAN and decontam (Fig. 4),
because in some instances the input mass is immeasurable due to an ultralow biomass
of many samples, while the LOD for the KAPA library quantification kit reaches as low
as 0.0002 pM.

While BECLEAN significantly minimizes the noise in metagenomic sequencing, it
does not completely remove the background reads incorrectly aligned to the taxa ge-
nome with high similarity, and it does not eliminate cross-contamination arising from
index switching or other causes, which can nonetheless be resolved by other
approaches (27). Because different bioinformatics databases or pipelines for micro-
biome analysis impact contaminant profiling and downstream interpretation, it is nec-
essary to use the same bioinformatics database and pipeline for BECLEAN premodeling
and subsequent decontamination.

In addition, BECLEAN can only identify the most probable background within the
scope of the wet-lab procedure employed during premodeling, and therefore it cannot
correctly identify contamination introduced at sample collection or pretreatment steps
(Xanthomonas campestris) (Fig. 3A and B). Moreover, a BECLEAN model is susceptible
to batch effect, which may compromise its performance when the reagents in the
library preparation step used for premodeling change. Changes in laboratory environ-
mental variables like reagents, equipment, staff members, and experimental protocols
can alter the composition of the laboratory background and thus impact the effective-
ness of the pretrained model. BECLEAN is not a “once and done” solution for filtering
metagenomics data against identified laboratory contamination; rather, it requires reg-
ular monitoring and revalidation over time. We strongly recommend use of the same
batch of reagents, consumables, and protocols for premodeling and sample test. PCoA
and PERMANNOVA of a few low-biomass NC samples in each run may provide an indi-
cator for the adjustment of the model as well. Finally, a requirement of using a PCR-
free library preparation approach is also a limitation of BECLEAN, because the true
library concentration will alter in PCR and purification steps for the PCR-based
methodology.

In summary, BECLEAN is an effective statistical tool that can separate contaminants
from true positives. With the features of its premodeling process and individual analy-
sis interpretation, BECLEAN provides a time-saving and convenient mNGS noise-filter-
ing solution for clinical laboratory staff. Along with decontam and other existing meth-
ods, BECLEAN is a complementary method for identifying contaminants, particularly in
various clinical settings.

MATERIALS ANDMETHODS
Establishment of premodeling training set for BECLEAN. A 2,672-bp artificial DNA (sequence is

provided in Table S1 in the supplemental material) was first designed, synthesized, and thereafter ampli-
fied using PCR (with PrimeSTAR HS DNA polymerase, TaKaRa catalog number R044). It was then purified
using magnetic beads (Matridx catalog number MD005T). The experiments were performed in a clean
and controlled environment (a hood in PCR rooms with constant temperature and humidity). Qubit fluo-
rometric quantitation was performed on the final amplicons (Qubit dsDNA HS assay kit, Thermo Fisher
catalog number Q32854), which were serially diluted (5 pg/mL to 5 ng/mL) in subsequent experiments.
On the other hand, we used 20 mL of artificial DNA (different input masses of 0.1, 0.5, 1, 2, 5, 10, 30, and
100 ng) for the automated library preparation independent of PCR (Matridx catalog number MD014).
Enzymatic fragmentation, end repairing, terminal adenylation, and adaptor ligation were performed by
an automated NGSmaster cartridge-based library preparation system (Matridx catalog number MAR002)
(28). All samples were independently extracted and underwent library preparation in separate car-
tridges. The complete training set for BECLEAN consisted of 9 (or 10) duplicate groups of 8 libraries of
different biomass input. The concentrations of the 72 (or 80) training set libraries were determined by
KAPA qPCR (Roche) according to the manufacturer’s instructions, followed by equimolar pooling. Two
rounds of 75-bp single-end sequencing were performed using the NextSeq 500 platform based on the
NextSeq High reagent kit v2 (Illumina), to an average depth of 10 million reads per library (;32 to 40
libraries per run).

Verification using contaminant-spiked samples. Yarrowia lipolytica, Moraxella osloensis, Acinetobacter
johnsonii, and Acinetobacter junii were collected and cultured at Peking Union Medical College laborato-
ries. The concentration of each bacteria or yeast suspension was standardized by comparing the
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turbidity of the suspension with that of a 0.5 McFarland standard. Then, 4 liquid suspensions were mixed
together. The mixture containing 1 � 106 CFU/mL of Yarrowia lipolytica, 1 � 108 CFU/mL of Moraxella
osloensis, 1 � 108 CFU/mL of Acinetobacter johnsonii, and 1 � 108 CFU/mL Acinetobacter junii was there-
after serially diluted (range from 1:0 to 1:106). Except for the negative-control group, 0.01 mL of the dif-
ferent dilutions were spiked with either 0.99 mL of 1 � 104 (mimicking low biomass input) or 1 � 105

(mimicking median biomass input) of immortalized human T lymphocytes to a final volume of 1 mL.
Finally, the contaminant-spiked samples with or without the spike-in mixture underwent ultrasonic dis-
ruption for 5 min, followed by DNA extraction, enzymatic fragmentation, end repairing, terminal adeny-
lation, and adaptor ligation using the NGSmaster cartridge-based automation library preparation system
(Matridx catalog number MAR002) (28). The reagents included a nucleic acid extraction cartridge
(Matridx catalog number MD014) and DNA library preparation kit (Matridx catalog number MD001T)
with the same batch as used in modeling. The concentrations of prepared NGS libraries were deter-
mined by KAPA qPCR followed by manual normalization and pooling. Sequencing of the 75-bp single
end with 8-bp dual index was performed at a median depth of 10 million reads per sample.

CSF sample collection and validation using these samples. A single-blinded, retrospective study
was performed to evaluate BECLEAN performance. Sample processing and preparation for mNGS and
metagenomic sequencing analysis were also blinded experiments. Unblinding was performed after all
the sequencing and bioinformatics analysis were finished. Twenty-eight CSF samples were collected in
the clinical laboratory of Peking Union Medical College Hospital between January 2019 and July 2020.
Thirteen samples were from patients with suspected central nervous system (CNS) infections, whereas
the others were collected from patients diagnosed with non-CNS infection (see Table S2). Bacterial and
fungal cultures were performed in-house. The residual CSF samples were used for mNGS detection or
PCR-based testing after routine clinical testing in the microbiology laboratory. Positive pathogen(s) and
samples must be either detected by culture or qPCR (gold standard) or be adjudicated from clinician
input, which was performed before mNGS results. Negative samples were either CNS infection excluded
or with no definitive diagnosis. Negative samples were also culture or qPCR negative. Convenience sam-
pling for the collection was performed based on availability (sufficient sample residual volume). Residual
samples were stored at 280°C and tested within 14 days of collection. Saline was added into each 400-
to 800-mL CSF sample to a final volume of 1 mL, followed by a 5-min ultrasonic disruption. The DNA
library was prepared without PCR amplification using the automatic NGSmaster cartridge-based system
(Matridx catalog number MAR002) (28), which is composed of a nucleic acid extraction cartridge
(Matridx catalog number MD014) and DNA library preparation kit (Matridx catalog number MD001T).
The concentrations of the NGS libraries were determined using KAPA qPCR, and later equimolar library
solutions were pooled together. Sequencing of the 75-bp single end with 8-bp dual index was per-
formed with the NextSeq 500 platform, based on the NextSeq High reagent kit v2 (75 cycles; Illumina).
The median depth was 22.7 million reads per sample.

Comparison between BECLEAN and decontam. The isContaminant function in the decontam R
package (version 1.6.0) was used to analyze the relative abundance of three background contaminants
in the data set. A default threshold (0.1) was applied to the P value of the frequency, prevalence, and
combined methods returned by the isContaminant function. The frequency patterns were plotted with
the plot_frequency function provided by decontam. Blank NC and negative CSF samples and contami-
nant-spiked samples on the frequency plots were colored using R package ggplot2 (version 3.3.3) to bet-
ter distinguish these samples (29).

Bioinformatics analysis. Quality control was performed on the multiplex sequence reads for each
sample using an in-house tool, where those containing .5 nucleotide adapters at the end, with more
than two undefined bases, and those containing .10% of bases with a quality score of 2 were all dis-
carded. Clean reads were aligned to a human-specific database constructed from Homo sapiens sequen-
ces in the NCBI Nucleotide (NT) database (downloaded on 6 February 2020) using bowtie2 (version
2.3.5.1; “--very--sensitive --ignore-quals -k 50”) (30). Then, the remaining nonhuman reads were aligned
to a microbial database based on NT data supplemented with the sequences from RefSeq, using bow-
tie2, which assigned taxonomic identifiers (taxID) to each read. Taxa with .10 reads were validated by
BLAST (blastn; version 2.9.01; “-qcov_hsp_perc 70 -perc_identity 90”) against NT (31). The large index of
bowtie2 was built on a server with 512 CPUs and 1.5 TB of RAM with the command line parameter
“--large-index --threads 48.”

BECLEAN background species profiling. For BECLEAN background species profiling, the candidate
species were screened based on their relative frequency distribution in the training set. To distinguish
relatively stable contaminants (i.e., microbes derived from reagents, experimental processing, or labora-
tory environment) from episodic contaminants, species identified in fewer than 20 samples were first
excluded. A linear regression model between the logarithm of RPM to base 2 and the logarithm of
library concentration to base 2 was then established for stable contaminants using the least-squares
approach, which produced a series of model parameters and training set metrics: slope (S), intercept (I),
coefficient of determination (R2), and average log2 library concentration (lCmean). Because the log2 RPM
for each species in a sample has a minimum limit of log2[(1 � 106 reads)/(total reads)], the linear relation-
ship was not conformed when the log2 RPM reached this extreme. As such, data points outside the line-
arity range were excluded to establish the true relationship between RPM and library concentration.

After modeling, the log2 RPM of each background candidate species was normalized based on the
log2-transformed library concentration, using the following formula: lRnorm = lR 1 S � (lCmean 2 lC),
where lR denotes the log2 RPM and lC denotes the log2-transformed library concentration. Subsequent
analyses were only performed on species whose model residual, lR 2 (S � lC 1 I), passed the normality
test (P. 0.05).
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Background filtering. For each species in a sample, the Z-score was calculated to describe the devi-
ation from the model-predicted value. Z-scores measure the probability a species is a background con-
taminant or constitutive in the sample. Z-scores were calculated as Z = (lRnorm 2 lRmean)/SD, where lRnorm
denotes the normalized log2 RPM, lRmean stands for average normalized log2 RPM of the training set, and
SD is the standard deviation of the normalized log2 RPM of the training set. The cutoff value for the Z-
score was 3, to distinguish background contamination from the constitutive sample microbiome
(Fig. 1G).

Statistical analysis. Statistical analysis were performed using Python. The linear least-squares
regression for modeling was carried out using the “linregress” function in the SciPy package (32).
Normality test of lRnorm was based on D’Agostino’s method, and Pearson’s test was performed using the
“normaltest” function from SciPy. We used Python scipy.stats.normaltest (kurtosis and skew test) to test
the hypothesis of normal distribution of each taxa identified in BECLEAN premodeling process. Sample
size of 20 is the minimum value that meets the requirement of the kurtosis test. Significance level was
P , 0.05. PCoA and PERMANOVA was performed using the “pcoa” and “permanova” functions from the
skbio package.

Ethics approval and consent to participate. The study was reviewed and approved by the Human
Research Ethics Committee of Peking Union Medical College Hospital (S-K1186). This project did not
affect the normal diagnosis and treatment of patients. Written informed consent for participation was not
required for this study, in accordance with the national legislation and the institutional requirements.

Data availability. Data files are available in the Sequence Read Archive under BioProjects
PRJNA665328, PRJNA665350, and PRJNA788644. The ipython notebook and all necessary input data to
reproduce the analyses in this article are available in a GitHub repository, https://github.com/bioinfo
-matridx/BECLEAN.
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